光子晶体光纤双芯耦合及传感机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文对双芯光子晶体光纤的耦合机理及其在新型光纤耦合器件设计、色散补偿和折射率传感等方面的应用进行了相关的研究。
     提出了一类新的同时基于全内反射和光子带隙效应两种导光机制的并排双芯光子晶体光纤,对其耦合特性进行了数值模拟和理论分析,发现了对称双芯光纤中的耦合长度具有局部极大值、超模交替截止和双芯退耦合等新现象,超模和高折射率柱中谐振模对称性的相对变化在其中起着重要作用。
     设计了分光比可调的定向耦合器和工作状态可调的双波长耦合器,对它们的工作原理进行了分析和说明,给出了它们的工作参数随折射率的变化关系。
     提出了光子晶体光纤中泄漏模完全耦合的条件,通过对所设计的新型同轴双芯光子晶体光纤双芯耦合特性的研究,证实了光子晶体光纤中泄漏模间的完全耦合不仅要求满足相位匹配条件,还要求耦合模式传播常数虚部之差小于耦合强度系数的两倍。
     提出了一种基于双芯耦合模式可选择的色散补偿光子晶体光纤,能够根据实际需要动态地选择耦合模式,可以在取得较高负色散值(-36000ps/nm/km)的同时获得尽可能大的模场面积(34.8μm~2),以减小色散补偿过程中非线性效应带来的不利影响。
     研究了有限外包层光子晶体光纤的纤芯模损耗特性,发现了纤芯模存在耦合引起的损耗峰,峰的位置与光纤外包层的大小和外部介质的折射率有关,可以通过测量纤芯模耦合损耗峰的位置来测量外部介质的折射率。
     本文的研究成果对光子晶体光纤的双芯耦合机理和相关应用的深入研究具有重要的参考价值。
In this dissertation, the mechanisms of dual-core coupling in photonic crystal fibers (PCFs) are analyzed and its applications in novel designs of fiber couplers, dispersion compensating and refractive index sensing are also discussed.
     A new type of paratactic symmetrical dual-core PCFs based on two guiding mechanisms of total internal reflection and photonic bandgap effects simultaneously is proposed, whose coupling properties are investigated numerically and theoretically. There are several special coupling features such as the existences of local maxima, alternative cutoffs of supermodes, mode decoupling between the two cores and so on. It is found that the relative change between the symmetries of supermodes and inclusion resonant modes play an important role in the coupling.
     A splitting ratio tunable directional coupler and a dual-wavelength coupler with tunable work stations are proposed and their work principles are illuminated. The relations between their work parameters and the refractive index of high-index inclusion are also presented.
     The conditions of complete coupling between leaky modes in PCFs are put forward. By investigating the coupling properties of proposed concentric dual-core PCFs, it is proved that complete coupling between leaky modes in PCFs requires not only satisfying the phase matching condition, but also that the difference between imaginary parts of mode propagation constant is less than two times of the coupling strength coefficient.
     Based on the coupling in concentric dual-core PCFs, a new dual-core PCF with optional mode coupling is proposed. Its coupling modes can be selected according to the requirements, and as high as -36000ps/nm/km negative dispersion and as large as 34.8μm~2 mode field area can be obtained at the same time. This merit is helpful to decrease the disadvantageous influence of nonlinear effects during the dispersion compensating.
     The confinement loss of index-guiding PCFs with finite outer cladding is analyzed. It is found that there are coupling-induced loss peaks for the core mode and the locations of loss peaks are related with the diameter of outer cladding and the refractive index of external medium. It is suggested that the refractive index of external medium can be surveyed by measuring the variations of loss peaks of the core mode.
     The research results have important reference value for the further study on dual-core coupling mechanisms and relevant applications.
引文
[1] T. A. Birks, J. C. Knight, P. S. Russell. Endlessly single-mode photonic crystal fiber. Optics Letters, 1997, 22(13):961-963.
    
    
    [2] D. Mogilevtsev, T. A. Birks, P. S. Russell. Group-velocity dispersion in photonic crystal fibers. Optics Letters, 1998, 23(21): 1662-1664.
    
    [3] A. Ferrando, J. J. Miret, E. Silvestre, M. V. Andres, P. Andres, P. S. Russell. Designing a photonic crystal fiber with flattened dispersion. 18th Congress of the International Commission for Optics: Optics for the Next Millennium, Technical Digest, 1999, 3749:65-66.
    
    [4] T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, H. Simonsen. Highly birefringent index-guiding photonic crystal fibers. IEEE Photonics Technology Letters, 2001, 13(6):588-590.
    
    [5] K. W. Koch. Focus issue: Photonic crystal fiber - Introduction. Optics Express, 2001, 9(13):675-675.
    
    [6] F. Benabid, J. C. Knight, G. Antonopoulos, P. S. J. Russell. Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber. Science, 2002, 298(5592):399-402.
    
    [7] D. Ferrarini, L. Vincetti, M. Zoboli, A. Cucinotta, S. Selleri. Leakage properties of photonic crystal fibers. Optics Express, 2002, 10(23): 1314-1319.
    
    [8] W. J. Wadsworth, A. Ortigosa-Blanch, J. C. Knight, T. A. Birks, T. P. M. Man, P. S. Russell. Supercontinuum generation in photonic crystal fibers and optical fiber tapers: a novel light source. Journal of the Optical Society of America B-Optical Physics, 2002, 19(9):2148-2155.
    
    [9] Y. N. Zhu, C. Lu, P. Shum. Photonic crystal fibers and their applications in optical communications and sensors. Apoc 2002: Asia-Pacific Optical and Wireless Communications, Optial Fiber and Planar Waveguide Technology Ii, 2002, 4904:37-42.
    
    [10] X. Fang, M. Hirasawa, R. S. Windeler, R. Morita, M. Yamashita. Experimental and theoretical supercontinuum generation in a photonic crystal fiber by use of a-few-cycle optical pulse nonlinear propagation. Ultrafast Phenomena Xiii, 2003, 71:238-240.
    
    [11] K. S. Abedin, T. Miyazaki, F. Kubota. Wavelength-conversion of pseudorandom pulses at 10 Gb/s by using soliton self-frequency shift in a photonic crystal fiber. IEEE Photonics Technology Letters, 2004, 16(4): 1119-1121.
    
    
    [12] F. Benabid, G. Antonopoulos, J. C. Knight, P. S. Russell. Stokes amplification regimes in quasi-cw pumped hydrogen-filled hollow-core photonic crystal fiber. Physical Review Letters, 2005, 95(2l):2l3903.
    
    
    [13] A. Betlej, S. Suntsov, K. G. Makris, L. Jankovic, D. N. Christodoulides, G. I. Stegeman, J. Fini, R. T. Bise, J. DiGiovanni. All-optical switching and multifrequency generation in a dual-core photonic crystal fiber. Optics Letters, 2006, 31 (10): 1480-1482.
    
    [14] D. Chen. Stable multi-wavelength erbium-doped fiber laser based on a photonic crystal fiber Sagnac loop filter. Laser Physics Letters, 2007,4(6):437-439.
    
    [15] C. K. Chen, A. Laronche, G. Bouwmans, L. Bigot, Y. Quiquempois, J. Albert. Sensitivity of photonic crystal fiber modes to temperature, strain and external refractive index. Optics Express, 2008, 16(13):9645-9653.
    
    [16] P. Russell. Photonic Crystal Fibers. Science, 2003, (299):358-362.
    
    [17] S. Gupta, G. Tuttle, M. Sigalas, K. M. Ho. Infrared filters using metallic photonic band gap structures on flexible substrates. Applied Physics Letters, 1997, 71(17):2412-2414.
    
    [18] J. Trull, J. Martorell, R. Vilaseca. Angular dependence of phase-matched second-harmonic generation in a photonic crystal. Journal of the Optical Society of America B, 1998,15(10):2581-2585.
    
    [19] H. Kosaka, T. Kawashima, A. Tomita, M. Notomi. Photonic crystals for micro lightwave circuits using wavelength-dependent angular beam steering. Applied Physics Letters, 1999, 74(10): 1370-1372.
    
    [20] X. Lei, H. Li, F. Ding, W. Zhang, N. Ming. Novel application of a perturbed photonic crystal: High-quality filter. Applied Physics Letters, 1997, 71(20):2889-2891.
    
    [21] E. Yablonovitch. Inhibited spontaneous emission in solid-state physics and electronics. Physical Review Letters, 1987, 58(20):2059-2062.
    
    [22] S. John. Strong localization of photons in certain disordered dielectric superlattices. Physical Review Letters, 1987, 58(23):2486 - 2489.
    
    [23] J. D. Joannopoulos, R. D. Meade, J. N. Winn. Photonic Crystals: Molding the Flow of Light. Princeton: Princeton University Press, 1995,
    
    [24] L. Jin, Z. Wang, Q. Fang, Y. Liu, B. Liu, G. Kai, X. Dong. Spectral characteristics and bend response of Bragg gratings inscribed in all-solid bandgap fibers. Optics Express, 2007, 15(23):15555-15565.
    
    [25] K. O. Hill, G. Meltz, C. R. Center, O. Ottawa. Fiber Bragg grating technology fundamentals and overview. Journal of Lightwave Technology, 1997, 15(8):1263-1275.
    
    [26] F. Bilodeau, D. C. Johnson, S. Theriault. B. Malo, J. Albert, K. O. Hill. An all-fiber dense wavelength-division multiplexer/demultiplexerusing photoimprinted Bragg gratings. IEEE Photonics Technology Letters, 1995, 7(4):388-390.
    [27] H. Lim, F. O. Ilday, F. W. Wise. Femtosecond ytterbium fiber laser with photonic crystal fiber for dispersion control. Optics Express, 2002, 10(25): 1497-1502.
    
    [28] F. Druon, N. Sanner, G. Lucas-Leclin, P. Georges, K. P. Hansen, A. Petersson. Self-compression and Raman soliton generation in a photonic crystal fiber of 100-fs pulses produced by a diode-pumped Yb-doped oscillator. Applied Optics, 2003, 42(33):6768-6770.
    
    [29] X. J. Fang, N. Karasawa, R. Morita, R. S. Windeler, M. Yamashita. Nonlinear propagation of a-few-optical-cycle pulses in a photonic crystal fiber - Experimental and theoretical studies beyond the slowly varying-envelope approximation. IEEE Photonics Technology Letters, 2003, 15(2):233-235.
    
    [30] A. Ferrando, E. Silvestre, J. J. Miret, P. Andres. Nearly zero ultraflattened dispersion in photonic crystal fibers. Optics Letters, 2000, 25(11):790-792.
    
    [31] K. P. Hansen. Dispersion flattened hybrid-core nonlinear photonic crystal fiber. Optics Express, 2003, 11(13):1503-1509.
    
    [32] L. P. Shen, W. P. Huang, S. S. Jian. Design of photonic crystal fibers for dispersion-related applications. Journal of Lightwave Technology, 2003, 21(7): 1644-1651.
    
    [33] M. T. Myaing, J. Y. Ye, T. B. Norris, T. Thomas, J. R. Baker, W. J. Wadsworth, G. Bouwmans, J. C. Knight, P. S. J. Russell. Enhanced two-photon biosensing with double-clad photonic crystal fibers. Optics Letters, 2003, 28(14):1224-1226.
    
    [34] J. B. Jensen, P. E. Hoiby, L. H. Pedersen, A. Carlsen, L. B. Nielsen, A. Bjarklev, T. P. Hansen. Evanescent-wave sensing using a hollow-core photonic crystal fiber. Optical Fibers and Sensors for Medical Applications Iv, 2004, 5317:139-146.
    
    [35] L. Rindorf, O. Bang. Sensitivity of photonic crystal fiber grating sensors: biosensing, refractive index, strain, and temperature sensing. Journal of the Optical Society of America B-Optical Physics, 2008, 25(3):310-324.
    
    [36] T. Yamasaki, T. Tsutsui. Spontaneous emission from fluorescent molecules embedded in photonic crystals consisting of polystyrene microspheres. Applied Physics Letters, 1998, 72(16):1957-1959.
    
    [37] A. Blanco, C. Lopez, R. Mayoral, H. Miguez, F. Meseguer, A. Mifsud, J. Herrero. CdS photoluminescence inhibition by a photonic structure. Applied Physics Letters, 1998, 73(13):1781-1783.
    
    [38] T. D. Happ, M. Kamp, A. Forchel, J.-L. Gentner, L. Goldstein. Two-dimensional photonic crystal coupled-defect laser diode. Applied Physics Letters, 2003, 82(1):4-6.
    
    [39] A. Mekis, J. C. Chen. I. Kurland, S. Fan, P. R. Villeneuve, J. D. Joannopoulos. High Transmission through Sharp Bends in Photonic Crystal Waveguides. Physical Review Letters, 1996, 77(18):3787-3790.
    
    [40] E. Yablonovitch, T. J. Gmitter. Photonic band structure:The face-centered-cubic case. Physical Review Letters, 1989, 63(18): 1950-1953.
    
    [41] Y. A. VLASOV, M. O'BOYLE, H. F. HAMANN, S. J. MCNAB. Active control of slow light on a chip with photonic crystal waveguides. Nature, 2005,438(7064):65-69.
    
    [42] M. Loncar, T. Yoshie, A. Scherer, P. Gogna, Y. Qiu. Low-threshold photonic crystal laser Applied Physics Letters, 2002, 81(15):2680-2682.
    
    [43] T. J. Karle, Y. J. Chai, C. N. Morgan, I. H. White, T. F. Krauss. Observation of pulse compression in photonic Crystal coupled cavity waveguides. Journal of Lightwave Technology, 2004, 22(2):514- 519.
    
    [44] M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, T. Tanabe. Optical bistable switching action of Si high-Q photonic-crystal nanocavities. Optics Express, 2005, 13(7):2678-2687.
    
    [45] P. R. Villeneuve, M. Piche'. Photonic band gaps in two-dimensional square and hexagonal lattices. Physical Review B, 1992,46(8):4969 - 4972
    
    [46] P. V. Kaiser, E. A. J. Marcatili, S. E. Miller. A new optical fiber. The Bell System Technical Journal, 1973, 52(2):265-269.
    
    [47] P. V. Kaiser, H. W. Astle. Low-loss single material fibers made from pure fused silica. The Bell System Technical Journal, 1974, 53(6):1021-1039.
    
    [48] T. A. Birks, P. J. Roberts, P. S. J. Russell, D. M. Atkin, T. J. Shepherd. Full 2-D photonic band gaps in silica/air structures. Electronics Letters, 1995, 31 (22): 1941-1943.
    
    [49] J. C. Knight, T. A. Birks, P. S. Russell, D. M. Atkin. All-silica single-mode optical fiber with photonic crystal cladding. Optics Letters, 1996, 21(19): 1547-1549.
    
    [50] J. C. Knight, J. Broeng, T. A. Birks, P. S. J. Russell. Photonic Band Gap Guidance in Optical Fibers. Science, 1998, 282(5393): 1476-1478.
    
    [51] R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. Russell, P. J. Roberts, D. C. Allan. Single-mode photonic band gap guidance of light in air. Science, 1999, 285(5433):1537-1539.
    
    [52] J. C. Knight, T. A. Birks, R. F. Cregan, P. S. J. Russell, J.-P. d. Sandro. Large mode area photonic crystal fiber. Electronics Letters, 1998, 34(13): 1347-1348.
    
    [53] W. H. Reeves, J. C. Knight, P. S. J. Russell, P. J. Roberts. Demonstration of ultra-flattened dispersion in photonic crystal fibers. Optics Express, 2002, 10(14):609-613.
    
    [54] F. Gerome, J. L. Auguste, J. M. Blondy. Design of dispersion-compensating fibers based on a dual-concentric-core photonic crystal fiber. Optics Letters, 2004, 29(23):2725-2727.
    [55] K. Suzuki, H. Kubota, S. Kawanishi, M. Tanaka, M. Fujita. Optical properties of a low-loss polarization-maintaining photonic crystal fiber. Optics Express, 2001, 9(13):676-680.
    
    [56] I. D. Chremmos, G. Kakarantzas, N. K. Uzunoglu. Modeling of a highly nonlinear chalcogenide dual-core photonic crystal fiber coupler. Optics Communications, 2005, 251(4-6):339-345.
    
    [57] K. Saitoh, N. J. Florous, M. Koshiba, M. Skorobogatiy. Design of narrow band-pass filters based on the resonant-tunneling phenomenon in multicore photonic crystal fibers. Optics Express, 2005, 13(25):10327-10335.
    
    [58] W. N. MacPherson, M. J. Gander, R. McBride, J. D. C. Jones, P. M. Blanchard, J. G. Burnett, A. H. Greenaway, B. Mangan, T. A. Birks, J. C. Knight, P. S. Russell. Remotely addressed optical fibre curvature sensor using multicore photonic crystal fibre. Optics Communications, 2001, 193(1-6):97-104.
    
    [59] K. Saitoh, M. Koshiba, N. A. Mortensen. Nonlinear photonic crystal fibres: pushing the zero-dispersion towards the visible. New Journal of Physics, 2006, 8(9):207-215.
    
    [60] T. M. Monro, P. J. Bennett, N. G. R. Broderick, D. J. Richardson. Holey fibers with random cladding distributions. Optics Letters, 2000, 25(4):206-208.
    
    [61] B. J. Eggleton, C. Kerbage. Hybrid active polymer/silica microstructured photonic crystal optical fibers. Organic Optoelectronic Materials, Processing and Devices, 2002, 708:457-466.
    
    [62] G. Bouwmans, L. Bigot, Y. Quiquempois, F. Lopez, L. Provino, M. Douay. Fabrication and characterization of an all-solid 2D photonic bandgap fiber with a low-loss region (< 20 dB/km) around 1550 nm. Optics Express, 2005, 13(21):8452-8459.
    
    [63] T. R. Wolinski, K. Bondarczuk, K. Szaniawska, P. Lesiak, A. W. Domanski, R. Dabrowski, E. Nowinowski-Kruszelnicki, J. Wojcik. Propagation effects in a photonic crystal fiber filled with a low-birefringence liquid crystal. Liquid Crystals Viii, 2004, 5518:232-237.
    
    [64] J. C. Knight, T. A. Birks, P. S. J. Russell, D. M. Atkin. All-silica single-mode fiber with photonic crystal cladding. Optics Letters, 1996, 21(19): 1547-1549.
    
    [65] P. S. J. Russell. Photonic-crystal fibers. Journal of Lightwave Technology, 2006, 24(12):4729-4749.
    
    [66] V. V. R. K. Kumar, A. K. George. W. H. Reeves, J. C. Knight, P. S. Russell, F. G. Omenetto, A. J. Taylor. Extruded soft glass photonic crystal fiber for ultrabroad supercontinuum generation. Optics Express, 2002, 10(25):1520-1525.
    
    [67] J. Mrazek, V. Matejec, I. Kasik. Application of the Sol-Gel Method at the Fabrication of Micro-Structure Fibers. Joural of Sol-Gel Science and Technology, 2004, 31:175-178.
    
    [68] P. Falkenstein, C. D. Merritt, B. L. Justus. Fused Preforms for the Fabrication of Photonic Crystal Fibers. Optics Letters, 2004, 29(16): 1858-1860.
    
    
    [69] J. C. Knight, T. A. Birks, P. S. J. Russell, J. P. de Sandro. Properties of photonic crystal fiber and the effective index model. Journal of the Optical Society of America a-Optics Image Science and Vision, 1998,15(3):748-752.
    
    [70] A. Suzuki, M. Tanaka, S. Yamaguchi, M. Fujita, T. Yamamoto, H. Kubota, S. Kawanishi. Polarization maintaining photonic crystal fibers. Active and Passive Optical Components for Wdm Communications Iii, 2003, 5246:366-374.
    
    [71] K. Saitoh, M. Koshiba. Single-polarization single-mode photonic crystal fibers. IEEE Photonics Technology Letters, 2003, 15(10):1384-1386.
    
    [72] M. Eguchi, Y. Tsuji. Single-mode single-polarization holey fiber using anisotropic fundamental space-filling mode. Optics Letters, 2007, 32(15):2112-2114.
    
    
    [73] F. D. Zhang, J. Li, X. Y. Liu, M. Zhang, P. D. Ye. Novel design for a single-polarization single-mode photonic crystal fiber at 1310 nm. Optical Engineering, 2007, 46(6):065005.
    
    [74] J. C. Knight, T. A. Birks, R. F. Cregan, P. S. Russell, J. P. de Sandro. Large mode area photonic crystal fibre. Electronics Letters, 1998, 34(13):1347-1348.
    
    [75] P. Roy, S. Fevrier, L. Lavoute, D. Gaponov, R. Jamier, C. Lecaplain, G. Martel, A. Hideur, M. E. Likhachev, M. M. Bubnov, E. M. Dianov, M. Y. Salganskii, V. F. Khopin, M. Y Yashkov, A. N. Guryanov, K. Schuster, J. Kobelke, S. Grimm. Large mode area all-solid optical fiber lasers with tailored microstructured cladding. Fiber and Integrated Optics, 2008, 27(5):440-452.
    
    [76] K. Furusawa, A. Malinowski, J. H. V. Price, T. M. Monro, J. K. Sahu, J. Nilsson, D. J. Richardson. Cladding pumped Ytterbium-doped fiber laser with holey inner and outer cladding. Optics Express, 2001, 9(13):714-720.
    
    [77] P. Petropoulos, H. Ebendorff-Heidepriem, V. Finazzi, R. C. Moore, K. Frampton, D. J. Richardson, T. M. Monro. Highly nonlinear and anomalously dispersive lead silicate glass holey fibers. Optics Express, 2003, 11(26):3568-3573.
    
    [78] P. J. Roberts, T. J. Shepherd. The guidance properties of multi-core photonic crystal fibres. Journal of Optics a-Pure and Applied Optics, 2001, 3(6):S133-S140.
    
    [79] L. Yuan, J. Yang, C. Y. Guan, Q. Dai, F. J. Tian. Three-core fiber-based shape-sensing application. Optics Letters, 2008, 33(6):578-580.
    
    [80] N. J. Florous, K. Saitoh, T. Murao, M. Koshiba, M. Skorobogatiy. Non-proximity resonant tunneling in multi-core photonic band gap fibers: An efficient mechanism for engineering highly-selective ultra-narrow band pass splitters. Optics Express, 2006, 14(11):4861-4872.
    
    [81] L. Rosa, F. Poli, M. Foroni, S. Bertolaccini, A. Cucinotta, S. Selleri. Polarization selective coupling in three-core holey fibers. 2005 7th International Conference on Transparent Optical Networks, Vol 1, Proceedings, 2005:125-128.
    
    [82] B. J. Eggleton, P. S. Westbrook, C. A. White, C. Kerbage, R. S. Windeler, G. L. Burdge. Cladding-mode-resonances in air-silica microstructure optical fibers. Journal of Lightwave Technology, 2000,18(8): 1084-1100.
    
    [83] T. A. Birks, D. Mogilevtsev, J. C. Knight, P. S. Russell. Dispersion compensation using single-material fibers. IEEE Photonics Technology Letters, 1999, 11(6):674-676.
    
    [84] J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, P. S. Russell. Anomalous dispersion in photonic crystal fiber. IEEE Photonics Technology Letters, 2000, 12(7):807-809.
    
    [85] G. Humbert, J. C. Knight, G. Bouwmans, P. S. Russell, D. P. Williams, P. J. Roberts, B. J. Mangan. Hollow core photonic crystal fibers for beam delivery. Optics Express, 2004, 12(8):1477-1484.
    
    [86] S. Ghosh, J. E. Sharping, D. G. Ouzounov, A. L. Gaeta. Resonant optical interactions with molecules confined in photonic band-gap fibers. Physical Review Letters, 2005, 94(9):093902.
    
    [87] T. P. White, R. C. McPhedran, C. M. de Sterke, N. M. Litchinitser, B. J. Eggleton. Resonance and scattering in microstructured optical fibers. Optics Letters, 2002, 27(22):1977-1979.
    
    [88] A. K. Abeeluck, N. M. Litchinitser, C. Headley, B. J. Eggleton. Analysis of spectral characteristics of photonic bandgap waveguides. Optics Express, 2002, 10(23):1320-1333.
    
    [89] N. M. Litchinitser, S. C. Dunn, P. E. Steinvurzel, B. J. Eggleton, T. P. White, R. C. McPhedran, C. M. de Sterke. Application of an ARROW model for designing tunable photonic devices. Optics Express, 2004, 12(8):1540-1550.
    
    [90] A. Argyros, T. A. Birks, S. G.Leon-Saval, C. M. B. Cordeiro, F. Luan, P. S. J. Russell. Photonic bandgap with an index step of one percent. Optics Express, 2005, 13(1):309-314.
    
    [91] S. G. Johnson, M. Ibanescu, M. Skorobogatiy, O. Weisberg, T. D. Engeness, M. Soljacic, S. A. Jacobs, J. D. Joannopoulos, Y. Fink. Low-loss asymptotically single-mode propagation in large-core omniguide fibers. Optics Express, 2001, 9(13):748-779.
    
    [92] F. Brechet, P. Roy, J. Marcou, D. Pagnoux. Single mode propagation in depressed-core-index photonic-bandgap fiber designed for zero-dispersion propagation at short wavelengths.Electronics Letters,2000,36(6):514-515.
    [93]S.A.Cerqueira,F.Luan,C.M.B.Cordeiro,A.K.George,J.C.Knight.Hybrid photonic crystal fiber.Optics Express,2006,14(2):926-931.
    [94]M.Perrin,Y.Quiquempois,G.Bouwmans,M.Douay.Coexistence of total internal reflexion and bandgap modes in solid core photonic bandgap fibre with intersticial air holes.Optics Express,2007,15(21):13783-13795.
    [95]李玉权,崔敏.光波导理论与技术.北京:人民邮电出版社,2002.
    [96]K.Morl,H.R.Muller,J.Kirchhof,J.Kobelke,K.Gerth,K.Schuster,H.Bartelt.Optical properties of microstructured optical fibers.Active and Passive Optical Components for Wdm Communications Iv,2004,5595:66-77.
    [97]N.A.Mortensen,J.R.Folkenberg,M.D.Nielsen,K.P.Hansen.Modal cutoff and the V parameter in photonic crystal fibers.Optics Letters,2003,28(20):1879-1881.
    [98]A.Marl,J.V.Moloney,D.Kouznetsov,A.Schulzgen,S.B.Jiang,T.Luo,N.Peyghambarian.A large-core compact high-power single-mode photonic crystal fiber laser.IEEE Photonics Technology Letters,2004,16(12):2595-2597.
    [99]M.Bottacini,F.Poli,A.Cucinotta,S.Selleri.Modeling of photonic crystal fiber Raman amplifiers.Journal of Lightwave Technology,2004,22(7):1707-1713.
    [100]J.C.Knight,D.V.Skryabin.Nonlinear waveguide optics and photonic crystal fibers.Optics Express,2007,15(23):15365-15376.
    [101]B.Kuhlmey,G.Renversez,D.Maystre.Chromatic dispersion and losses of microstructured optical fibers.Applied Optics,2003,42(4):634-639.
    [102]R.Bhattacharya,S.Konar.Design of a photonic crystal fiber with zero dispersion wavelength near 0.65 urn.Fiber and Integrated Optics,2008,27(2):89-98.
    [103]Z.L.Liu,X.D.Liu,S.G.Li,G.Y.Zhou,W.Wang,L.T.Hou.A broadband ultra flattened chromatic dispersion microstructured fiber for optical communications.Optics Communications,2007,272(1):92-96.
    [104]K.Saitoh,M.Koshiba,T.Hasegawa,E.Sasaoka.Chromatic dispersion control in photonic crystal fibers:application to ultra-flattened dispersion.Optics Express,2003,11(8):843-852.
    [105]K.M.Gundu,M.Kolesik,J.V.Moloney,K.S.Lee.Ultra-flattened-dispersion selectively liquid-filled photonic crystal fibers.Optics Express,2006,14(15):6870-6878.
    [106]A.Huttunen,P.Torma.Optimization of dual-core and microstructure fiber geometries for dispersion compensation and large mode.Optics Express,2005,13(2):627-635.
    [107]F.Gerome,P.Dupriez,J.Clowes,J.C.Knight,W.J.Wadsworth.High power tunable femtosecond soliton source using hollow-core photonic bandgap fiber, and its use for frequency doubling. Optics Express, 2008, 16(4):2381-2386.
    
    [108] L. Orsila, R. Herda, 0. G. Okhotnikov. Monolithic fiber mirror and photonic crystal technology for high repetition rate all-fiber soliton lasers. IEEE Photonics Technology Letters, 2007, 19(24):2009-2011.
    
    [109] A. Isomaki, O. G. Okhotnikov. Femtosecond soliton mode-locked laser based on ytterbium-doped photonic bandgap fiber. Optics Express, 2006,14(20):9238-9243.
    
    [110] J. Rothhardt, S. Hadrich, F. Roser, J. Limpert, A. Tunnermann. 500 MW peak power degenerated optical parametric amplifier delivering 52 fs pulses at 97 kHz repetition rate. Optics Express, 2008, 16(12):8981-8988.
    
    [111] S. Kivisto, R. Herda, O. G. Okhotnikov. All-fiber supercontinuum source based on a mode-locked ytterbium laser with dispersion compensation by linearly chirped Bragg grating. Optics Express, 2008, 16(1):265-270.
    
    [112] P. Falk, M. H. Frosz, O. Bang. Supercontinuum generation in a photonic crystal fiber with two zero-dispersion wavelengths tapered to normal dispersion at all wavelengths. Optics Express, 2005, 13(19):7535-7540.
    
    [113] J. C. Travers, J. M. Stone, A. B. Rulkov, B. A. Cumberland, A. K. George, S. V. Popov, J. C. Knight, J. R. Taylor. Optical pulse compression in dispersion decreasing photonic crystal fiber. Optics Express, 2007, 15(20):13203-13211.
    
    [114] C. P. Yu, J. H. Liou, S. S. Huang, H. C. Chang. Tunable dual-core liquid-filled photonic crystal fibers for dispersion compensation. Optics Express, 2008,16(7):4443-4451.
    
    [115] T. Matsui, K. Nakajima, I. Sankawa. Dispersion compensation over all the telecommunication bands with double-cladding photonic-crystal fiber. Journal of Lightwave Technology, 2007, 25(3):757-762.
    
    [116] G.P. Agrawal. Nonlinear Fiber Optics. San Diego: Academic Press, 2001.
    
    [117] S. O. Konorov, D. A. Sidorov-Biryukov, A. M. Zheltikov, I. Bugar, D. Chorvat, D. Chorvat, V. I. Beloglazov, N. B. Skibina, M. J. Bloemer, M. Scalora. Self-phase modulation of submicrojoule femtosecond pulses in a hollow-core photonic-crystal fiber. Applied Physics Letters, 2004, 85(17):3690-3692.
    
    [118] S. O. Konorov, A. A. Ivanov, D. A. Akimov, M. V. Alfimov, A. A. Podshivalov, Y. N. Kondrat'ev, V. S. Shevandin, K. V. Dukel'skii, A. V. Khokhlov, A. M. Zheltikov. Cross-phase modulation control of ultrashort pulses spectrally transformed in photonic-crystal fibers. Laser Physics, 2004, 14(5):791-794.
    
    [119] B. Kibler, R. Fischer, G. Genty, D. N. Neshev, J. M. Dudley. Simultaneous fs pulse spectral broadening and third harmonic generation in highly nonlinear fibre: experiments and simulations. Applied Physics B-Lasers and Optics, 2008, 91(2):349-352.
    
    [120] P. D. Rasmussen, J. Laegsgaard, 0. Bang. Degenerate four wave mixing in solid core photonic bandgap fibers. Optics Express, 2008, 16(6):4059-4068.
    
    [121] A. C. Peacock, A. Amezcua-Correa, J. X. Yang, P. J. A. Sazio, S. M. Howdle. Highly efficient surface enhanced Raman scattering using microstructured optical fibers with enhanced plasmonic interactions. Applied Physics Letters, 2008, 92(14): 141113.
    
    [122] S. Lebrun, P. Delaye, G. Roosen. Stimulated Raman scattering in hollow core photonic crystal fibres. Annales De Physique, 2007, 32(2-3):45-51.
    
    [123] J. E. McElhenny, R. K. Pattnaik, J. Toulouse, K. Saitoh, M. Koshiba. Unique characteristic features of stimulated Brillouin scattering in small-core photonic crystal fibers. Journal of the Optical Society of America B-Optical Physics, 2008, 25(4):582-593.
    
    [124] J. M. Dudley, L. Provino, N. Grossard, H. Maillotte, R. S. Windeler, B. J. Eggleton, S. Coen. Supercontinuum generation in air-silica microstructured fibers with nanosecond and femtosecond pulse pumping. Journal of the Optical Society of America B-Optical Physics, 2002, 19(4):765-771.
    
    [125] G. Humbert, W. J. Wadsworth, S. G. Leon-Saval, J. C. Knight, T. A. Birks, P. S. J. Russell, M. J. Lederer, D. Kopf, K. Wiesauer, E. I. Breuer, D. Stifter. Supercontinuum generation system for optical coherence tomography based on tapered photonic crystal fibre. Optics Express, 2006, 14(4): 1596-1603.
    
    [126] J. K. Ranka, R. S. Windeler, A. J. Stentz. Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm. optics Letters, 2000, 25(1):25-27.
    
    [127] J. G. Rarity, J. Fulconis, J. Duligall, W. J. Wadsworth, P. S. Russell. Photonic crystal fiber source of correlated photon pairs. Optics Express, 2005, 13(2):534-544.
    
    [128] J. H. Lee, J. van Howe, C. Xu, X. Liu. Soliton self-frequency shift: Experimental demonstrations and applications. IEEE Journal of Selected Topics in Quantum Electronics, 2008, 14(3):713-723.
    
    [129] D. V. Skryabin, F. Luan, J. C. Knight, P. S. Russell. Soliton self-frequency shift cancellation in photonic crystal fibers. Science, 2003, 301(5640): 1705-1708.
    
    [130] F. Benabid, J. C. Knight, P. S. Russell. Particle levitation and guidance in hollow-core photonic crystal fiber. Optics Express, 2002, 10(21): 1195-1203.
    
    [131] D. G. Ouzounov, F. R. Ahmad, D. Muller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, A. L. Gaeta. Generation of megawatt optical solitons in hollow-core photonic band-gap fibers. Science, 2003, 301(5640): 1702-1704.
    
    [132] S. O. Konorov, A. B. Fedotov, A. M. Zheltikov. Enhanced four-wave mixing in a hollow-core photonic-crystal fiber. Optics Letters, 2003, 28(16): 1448-1450.
    
    [133] M. J. Steel, T. P. White, C. M. de Sterke, R. C. McPhedran, L. C. Botten. Symmetry and degeneracy in microstructured optical fibers. Optics Letters, 2001, 26(8):488-490.
    
    [134] M. J. Steel, Osgood, R. M. Jr. Polarization and dispersive properties of elliptical-hole photonic crystal fibers. Journal of lightwave technology, 2001,19(4):495-503.
    
    [135] C. Kerbage, P. Steinvurzel, P. Reyes, P. S. Westbrook, R. S. Windeler, A. Hale, B. J. Eggleton. Highly tunable birefringent microstructured optical fiber. Optics Letters, 2002, 27(10):842-844.
    
    [136] D. H. Kim, J. U. Kang. Sagnac loop interferometer based on polarization maintaining photonic crystal fiber with reduced temperature sensitivity. Optics Express, 2004, 12(19):4490-4495.
    
    [137] P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, T. A. Birks, J. C. Knight, P. S. J. ussell. Loss in solid-core photonic crystal fibers due to interface roughness scattering. Optics Express, 2005, 13(20):7779-7793.
    
    [138] T. Sorensen, J. Broeng, A. Bjarklev, E. Knudsen, S. E. B. Libori. Macro-bending loss properties of photonic crystal fibre. Electronics Letters, 2001, 37(5):287-289.
    
    [139] J. C. Baggett, T. M. Monro, K. Furusawa, V. Finazzi, D. J. Richardson. Understanding bending losses in holey optical fibers. Optics Communications, 2003, 227(4-6):317-335.
    
    [140] K. Tajima, J. Zhou, K. Nakajima, K. Sato. Ultralow loss and long length photonic crystal fiber. Journal of Lightwave Technology, 2004, 22(1):7-10.
    
    [141]K. Kurokawa, K. Tajima, K. Tsujikawa, K. Nakajima, T. Matsui, I. Sankawa, T. Haibara. Penalty-free dispersion-managed soliton transmission over a 100-km low-loss PCF. Journal of Lightwave Technology, 2006, 24(1):32-37.
    
    [142] K. Saitoh, N. A. Mortensen, M. Koshiba. Air-core photonic band-gap fibers: the impact of surface modes. Optics Express, 2004,12(3):394-400.
    
    [143] H. K. Kim, J. Shin, S. H. Fan, M. J. F. Digonnet, G. S. Kino. Designing air-core photonic-bandgap fibers free of surface modes. IEEE Journal of Quantum Electronics, 2004, 40(5):551-556.
    
    [144] P. J. Roberts, D. P. Williams, B. J. Mangan, H. Sabert, F. Couny, W. J. Wadsworth, T. A. Birks, J. C. Knight, P. S. J. Russell. Realizing low loss air core photonic crystal fibers by exploiting an antiresonant core surround. Optics Express, 2005, 13(20):8277-8285.
    
    [145] C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Muller, J. A. West, N. F. Borrelli, D. C. Allan, K. W. Koch. Low-loss hollow-core silica/air photonic bandgap fibre. Nature, 2003, 424(6949):657-659.
    
    [146] P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, A. Tomlinson, T. A. Birks, J. C. Knight, P. S. J. Russell. Ultimate low loss of hollow-core photonic crystal fibers. optics Express, 2005, 13(1):236-244.
    
    [147]J. Limpert, N. Deguil-Robin, S. Petit, I. Manek-Honninger, F. Salin, P. Rigail, C. Honninger, E. Mottay. High power Q-switched Yb-doped photonic crystal fiber laser producing sub-10 ns pulses. Applied Physics B-Lasers and Optics, 2005, 81(1): 19-21.
    
    [148] K. Saitoh, Y. Sato, M. Koshiba. Coupling characteristics of dual-core photonic crystal fiber couplers. Optics Express, 2003, 11(24):3188-3195.
    
    [149] T. M. Monro, Y. D. West, D. W. Hewak, N. G. R. Broderick, D. J. Richardson. Chalcogenide holey fibres. Electronics Letters, 2000, 36(24): 1998-2000.
    
    [150] G. Barton, M. A. van Eijkelenborg, G. Henry, M. C. J. Large, J. Zagari. Fabrication of microstructured polymer optical fibres. Optical Fiber Technology, 2004, 10(4):325-335.
    
    [151] L. J. Chen, H. W. Chen, T. F. Kao, J. Y. Lu, C. K. Sun. Low-loss subwavelength plastic fiber for terahertz waveguiding. Optics Letters, 2006, 31(3):308-310.
    
    [152] V. V. R. K. Kumar, A. K. George, J. C. Knight, P. S. Russell. Tellurite photonic crystal fiber. Optics Express, 2003, 11(20):2641-2645.
    
    [153] K. Furusawa, T. Kogure, T. M. Monro, D. J. Richardson. High gain efficiency amplifier based on an erbium doped aluminosilicate holey fiber. Optics Express, 2004, 12(15):3452-3458.
    
    [154] J. Sun, C. C. Chan, N. Ni. Analysis of photonic crystal fibers infiltrated with nematic liquid crystal. Optics Communications, 2007, 278(1):66-70.
    
    [155] A. Wang, G. J. Pearce, F. Luan, D. M. Bird, T. A. Birks, J. C. Knight. All solid photonic bandgap fiber based on an array of oriented rectangular high index rods. Optics Express, 2006, 14(22):10844-10850.
    
    [156] R. Albandakji, A. Safaai-Jazi, R. Stolen. Simple models for predicting transmission properties of photonic crystal fibers. Microwave and Optical Technology Letters, 2006, 48(7):1286-1290.
    
    [157] C. Martelli, J. Canning, B. Gibson. S. Huntington. Bend loss in structured optical fibres. Optics Express, 2007, 15(26): 17639-17644.
    
    [158] J. Ju, W. Jin, Y. L. Hoo, M. S. Demokan. A simple method for estimating the splice loss of photonic-crystal fiber/single-mode fiber. Microwave and Optical Technology Letters, 2004. 42(2):171-173.
    [159] G. B. Ren, P. Shum, L. R. Zhang, X. Yu, W. J. Tong, J. Luo. Low-loss all-solid photonic bandgap fiber. Optics Letters, 2007, 32(9): 1023-1025.
    
    [160] J. R. Folkenberg, M. D. Nielsen, N. A. Mortensen, C. Jakobsen, H. R. Simonsen. Polarization maintaining large mode area photonic crystal fiber. Optics Express, 2004, 12(5):956-960.
    
    [161] J. M. Dudley, G. Genty, S. Coen. Supercontinuum generation in photonic crystal fiber. Reviews of Modern Physics, 2006, 78(4): 1135-1184.
    
    [162] L. Ji, P. Lu, N. Dai, J. Zhang, Z. Yang, Y. Li, W. Chen, Z. Jiang, J. Li. Multiplex frequency conversion of femtosecond laser pulses in trefoil and quatrefoil channels of a holey fiber. Applied Physics B-Lasers and Optics, 2008, 91(2):295-298.
    
    [163] A. B. Fedotov, Y N. Kondrat'ev, V. S. Shevandin, K. V. Dukel'skii, A. V. Khokhlov, A. M. Zheltikov. Pulse-shaping control of spectral transformations of ultrashort pulses in photonic-crystal fibers. Laser Physics, 2006, 16(6):957-959.
    
    [164] J. Rothhardt, S. Hadrich, D. N. Schimpf, J. Limpert, A. Tunnermann. High repetition rate fiber amplifier pumped sub-20 fs optical parametric amplifier. Optics Express, 2007, 15(25):16729-16736.
    
    [165] G. B. Ren, P. Shum, J. J. Hu, X. Yu, Y. D. Gong. Fabrication of all-solid photonic bandgap fiber coupler. Optics Letters, 2007, 32(21):3059-3061.
    
    [166] S. K. Varshney, K. Saitoh, N. Saitoh, Y. Tsuchida, M. Koshiba, R. K. Sinha. Strategies for realizing photonic crystal fiber bandpass filters. Optics Express, 2008, 16(13):9459-9467.
    
    [167] L. Rosa, F. Poli, M. Foroni, A. Cucinotta, S. Selleri. Polarization splitter based on a square-lattice photonic-crystal fiber. Optics Letters, 2006, 31(4):441-443.
    
    [168] Y. P. Wang, W. Jin, J. Ju, H. F. Xuan, H. L. Ho, L. M. Xiao, D. N. Wang. Long period gratings in air-core photonic bandgap fibers. Optics Express, 2008,16(4):2784-2790.
    
    [169] B. J. Mangan, J. C. Knight, T. A. Birks, P. S. Russell, A. H. Greenaway. Experimental study of dual-core photonic crystal fibre. Electronics Letters, 2000, 36(16): 1358-1359.
    
    [170] F. Fogli, L. Saccomandi, P. Bassi, G. Bellanca, S. Trillo. Full vectorial BPM modeling of index guiding photonic crystal fibres and couplers. Optics Express, 2002, 10(1):54-59.
    
    [171] M. Y. Chen, R. J. Yu. Coupling characteristics of dual-core rectangular lattice photonic crystal fibres. Journal of Optics a-Pure and Applied Optics, 2004, 6(8):805-808.
    
    [172] J. Laegsgaard, O. Bang, A. Bjarklev. Photonic crystal fiber design for broadband directional coupling. Optics Letters, 2004, 29(21):2473-2475.
    
    [173] W. E. P. Padden, M. A. van Eijkelenborg, A. Argyros, N. A. Issa. Coupling in a twin-core microstructured polymer optical fiber. Applied Physics Letters, 2004, 84(10):1689-1691.
    [174]L.Zhang,C.X.Yang.Polarization-dependent coupling in twin-core photonic crystal fibers.Journal of Lightwave Technology,2004,22(5):1367-1373.
    [175]L.Zhang,C.X.Yang.A novel polarization splitter based on the photonic crystal fiber with nonidentical dual cores.IEEE Photonics Technology Letters,2004,16(7):1670-1672.
    [176]L.Zhang,C.X.Yang.Nonreciprocal coupling in asymmetric dual-core photonic crystal fibres.Chinese Physics Letters,2004,21(8):1542-1544.
    [177]N.J.Florous,K.Saitoh,M.Koshiba.Synthesis of polarization-independent splitters based on highly birefringent dual-core photonic crystal fiber platforms.IEEE Photonics Technology Letters,2006,18(9-12):1231-1233.
    [178]Y.Yue,G.Y.Kai,Z.Wang,C.S.Zhang,Y.F.Lu,Y.Li,T.T.Sun,L.Jin,J.G.Liu,Y.G.Liu,S.Z.Yuan,X.Y.Dong.Broadband single-polarization single-mode photonic crystal fiber coupler.IEEE Photonics Technology Letters,2006,18(17-20):2032-2034.
    [179]Z.Wang,G.Y.Kai,Y.G.Liu,J.F.Liu,C.S.Zhang,T.T.Sun,C.Wang,W.G.Zhang,S.Z.Yuan,X.Y.Dong.Coupling and decoupling of dual-core photonic bandgap fibers.Optics Letters,2005,30(19):2542-2544.
    [180]Z.Wang,T.Taru,T.A.Birks,J.C.Knight.Coupling in dual-core photonic bandgap fibers:theory and experiment.Optics Express,2007,15(8):4795-4803.
    [181]J.Laegsgaard.Directional coupling in twin-core photonic bandgap fibers.Optics Letters,2005,30(24):3281-3283.
    [182]Z.Wang,Y.G.Liu,G.Y.Kai,J.G.Liu,Y.Li,T.T.Sun,L.Jin,Y.Yue,W.G.Zhang,S.Z.Yuan,X.Y.Dong.Directional couplers operated by resonant coupling in all-solid photonic bandgap fibers.Optics Express,2007,15(14):8925-8930.
    [183]X.W.Sun.Wavelength-selective coupling of dual-core photonic crystal fiber with a hybrid light-guiding mechanism.Optics Letters,2007,32(17):2484-2486.
    [184]K.Saitoh,N.J.Florous,S.K.Varshney,M.Koshiba.Tunable photonic crystal fiber couplers with a thermo-responsive liquid crystal resonator.Journal of Lightwave Technology,2008,26(6):663-669.
    [185]J.B.Du,Y.G.Liu,Z.Wang,Z.Y.Liu,B.Zou,L.Jin,B.Liu,G.Y.Kai,X.Y.Dong.Thermally tunable dual-core photonic bandgap fiber based on the infusion of a temperature-responsive liquid.Optics Express,2008,16(6):4263-4269.
    [186]Y.Ni,L.Zhang,L.An,J.D.Peng.C.C.Fan.Dual-core photonic crystal fiber for dispersion compensation.IEEE Photonics Technology Letters,2004,16(6):1516-1518.
    [187]P.M.Blanchard,J.G.Burnett,G.R.G.Erry,A.H.Greenaway,P.Harrison,B.Mangan, J. C. Knight, P. S. Russell, M. J. Gander, R. McBride, J. D. C. Jones. Two-dimensional bend sensing with a single, multi-core optical fibre. Smart Materials & Structures, 2000, 9(2):132-140.
    
    [188] Y. L. Hoo, W. Jin, C. Z. Shi, H. L. Ho, D. N. Wang, S. C. Ruan. Design and modeling of a photonic crystal fiber gas sensor. Applied Optics, 2003,42(18):3509-3515.
    
    [189] J. M. Fini. Microstructure fibres for optical sensing in gases and liquids. Measurement Science & Technology, 2004, 15(6): 1120-1128.
    
    [190] J. B. Jensen, L. H. Pedersen, P. E. Hoiby, L. B. Nielsen, T. P. Hansen, J. R. Folkenberg, J. Riishede, D. Noordegraaf, K. Nielsen, A. Carlsen, A. Bjarklev. Photonic crystal fiber based evanescent-wave sensor for detection of biomolecules in aqueous solutions. Optics Letters, 2004,29(17):1974-1976.
    
    [191] G. Pickrell, W. Peng, A. Wang. Random-hole optical fiber evanescent-wave gas sensing. Optics Letters, 2004, 29(13): 1476-1478.
    
    [192] C. M. B. Cordeiro, M. A. R. Franco, G. Chesini, E. C. S. Barretto, R. Lwin, C. H. B. Cruz, M. C. J. Large. Microstructured-core optical fibre for evanescent sensing applications. Optics Express, 2006, 14(26): 13056-13066.
    
    [193] V. P. Minkovich, D. Monzon-Hernandez, J. Villatoro, G. Badenes. Micro structured optical fiber coated with thin films for gas and chemical sensing. Optics Express, 2006, 14(18):8413-8418.
    
    [194] A. M. Cubillas, J. M. Lazaro, M. Silva-Lopez, O. M. Conde, M. N. Petrovich, J. M. Lopez-Higuera. Methane sensing at 1300 nm band with hollow-core photonic bandgap fibre as gas cell. Electronics Letters, 2008, 44(6):403-405.
    
    [195] L. F. Zou, X. Y. Bao, L. Chen. Distributed Brillouin temperature sensing in photonic crystal fiber. Structural Health Monitoring and Intelligent Infrastructure, 2003, l(2):229-232.
    
    [196] T. Martynkien, M. Szpulak, W. Urbanczyk. Modeling and measurement of temperature sensitivity in birefringent photonic crystal holey fibers. Applied Optics, 2005, 44(36):7780-7788.
    
    [197]T. Nasilowski, T. Martynkien, G. Statkiewicz, M. Szpulak, J. Olszewski, G. Golojuch, W. Urbanczyk, J. Wojcik, P. Mergo, M. Makara, F. Berghmans, H. Thienpont. Temperature and pressure sensitivities of the highly birefringent photonic crystal fiber with core asymmetry. Applied Physics B-Lasers and Optics, 2005, 81(2-3):325-331.
    
    [198] J. Ju, Z. Wang, W. Jin, M. S. Demokan. Temperature sensitivity of a two-mode photonic crystal fiber interferometric sensor. IEEE Photonics Technology Letters, 2006, 18(20):2168-2170.
    [199]G.Statkiewicz,T.Martynkien,W.Urbanczyk.Measurements of modal birefringence and polarimetric sensitivity of the birefringent holey fiber to hydrostatic pressure and strain.Optics Communications,2004,241(4-6):339-348.
    [200]N.M.Litchinitser,E.Poliakov.Antiresonant guiding microstructured optical fibers for sensing applications.Applied Physics B-Lasers and Optics,2005,81(2-3):347-351.
    [201]V.P.Minkovich,J.Villatoro,D.Monzon-Hernandez,S.Calixto,A.B.Sotsky,L.I.Sotskaya.Holey fiber tapers with resonance transmission for high-resolution refractive index sensing.Optics Express,2005,13(19):7609-7614.
    [202]H.Dobb,K.Kalli,D.J.Webb.Temperature-insensitive long period grating sensors in photonic crystal fibre.Electronics Letters,2004,40(11):657-658.
    [203]L.Rindorf,J.B.Jensen,M.Dufva,L.H.Pedersen,P.E.Hoiby,O.Bang.Photonic crystal fiber long-period gratings for biochemical sensing.Optics Express,2006,14(18):8224-8231.
    [204]Y.P.Wang,L.M.Xiao,D.N.Wang,W.Jin.Highly sensitive long-period fiber-grating strain sensor with low temperature sensitivity.Optics Letters,2006,31(23):3414-3416.
    [205]L.Rindorf,O.Bang.Highly sensitive refractometer with a photonic-crystal-fiber long-period grating.Optics Letters,2008,33(6):563-565.
    [206]A.Hassani,M.Skorobogatiy.Design of the microstructured optical fiber-based surface plasmon resonance sensors with enhanced microfluidics.Optics Express,2006,14(24):11616-11621.
    [207]N.J.Florous,K.Saitoh,M.Koshiba.Numerical modeling of cryogenic temperature sensors based on plasmonic oscillations in metallic nanoparticles embedded into photonic crystal fibers.IEEE Photonics Technology Letters,2007,19(5-8):324-326.
    [208]A.Hassani,M.Skorobogatiy.Design criteria for microstructured-optical-fiber-based surface-plasmon-resonance sensors.Journal of the Optical Society of America B-Optical Physics,2007,24(6):1423-1429.
    [209]M.Hautakorpi,M.Mattinen,H.Ludvigsen.Surface-plasmon-resonance sensor based on three-hole microstructured optical fiber.Optics Express,2008,16(12):8427-8432.
    [210]S.O.Konorov,A.B.Fedotov,A.M.Zheltikov,R.B.Miles.Phase-matched four-wave mixing and sensing of water molecules by coherent anti-Stokes Raman scattering in large-core-area hollow photonic-crystal fibers.Journal of the Optical Society of America B-Optical Physics,2005,22(9):2049-2053.
    [211]L.Rindorf,P.E.Hoiby,J.B.Jensen,L.H.Pedersen,O.Bang,O.Geschke.Towards biochips using microstructured optical fiber sensors.Analytical and Bioanalytical Chemistry, 2006,385(8):1370-1375.
    [212]M.Digonnet,S.Blin,H.K.Kim,V.Dangui,G.Kino.Sensitivity and stability of an air-core fibre-optic gyroscope.Measurement Science & Technology,2007,18(10):3089-3097.
    [213]金建铭.电磁场有限元方法.西安:西安电子科技大学出版社,1998.
    [214]T.P.White,B.T.Kuhlmey,R.C.McPhedran,D.Maystre,G.Renversez,C.M.de Sterke,L.C.Botten.Multipole method for microstructured optical fibers.I.Formulation.Journal of the Optical Society of America B-Optical Physics,2002,19(10):2322-2330.
    [215]W.Wijngaard.Guided normal modes of two parallel circular dielectric rods.Journal of the Optical Society of America,1973,63(8):944-950.
    [216]M.D.Feit,J.A.Fleck.Computation of Mode Properties in Optical Fiber Waveguides by a Propagating Beam Method.Applied Optics,1980,19(7):1154-1164.
    [217]D.Yevick,B.Hermansson.New Formulations of the Matrix Beam Propagation Method:Application to Rib Waveguides.IEEE Journal of Quantum Electronics,1989,25(2):221-229.
    [218]D.Schulz,C.Glingener,E.Voges.Novel Generalized Finite-Difference Beam Propagation Method.IEEE Journal of Quantum Electronics,1994,30(4):1132-1140.
    [219]J.Yamauchi,J.Shibayama,O.Saito,O.Uchiyama,H.Nakano.Improved finite-difference beam-propagation method based on thegeneralized Douglas scheme and its application to semivectorial analysis.Journal of Lightwave Technology,1996,14(10):2401-2406.
    [220]S.M.Lee.Finite-difference vectorial-beam-propagation method using Yee's discretization scheme for modal fields.Journal of the Optical Society of America a-Optics Image Science and Vision,1996,13(7):1369-1377.
    [221]J.Yamauchi,G.Takahashi,H.Nakano.Full-Vectorial Beam-Propagation Method Based on the McKee-Mitchell Scheme with Improved Finite-Difference Formulas.Journal of Lightwave Technology,1998,16(12):2458-2464.
    [222]A.Huttunen,R T(o|¨)rm(a|¨).Optimization of dual-core and microstructure fiber geometries for dispersion compensation and large mode area.Optics Express,2005,13(2):627-635.