稻草秸秆的碱法氧化预处理方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
开发以木质纤维素为原料的生物质能是解决当前人类社会所面临的能源与环境问题的主要途径之一。全世界稻谷的产量仅次于小麦与玉米,稻草秸秆是主要的木质纤维素原料,目前稻草秸秆主要是作为燃料或还田肥料,利用效率低。在本论文中,分别研究了NaOH预处理、H2O2/NaOH预处理、O3/NaOH预处理三种化学方法对稻草秸秆组分、酶水解糖化及表观结构的影响,分析探讨了稻草秸秆的三种化学预处理机理,并对木质素的臭氧氧化降解动力学及机理进行了研究。
     研究结果表明,三种化学预处理方法均可降低稻草秸秆中木质素的含量,提高纤维素的含量,并可明显促进稻草秸秆酶解糖化。预处理后稻草秸秆的酶解糖化率得到明显提高,其中稻草秸秆的O3/NaOH预处理效果最好。在相同酶解条件下(pH5.0、每单位底物加酶量为31.2mg/g、酶水解温度45℃、酶水解时间120h), NaOH预处理(2%NaOH、固液比1:12、处理温度30℃、处理时间24h)、H2O2/NaOH预处理(2%NaOH、2%H2O2、固液比1:12、处理温度40℃、处理时间24h,最优处理条件)、O3/NaOH预处理(在2%NaOH、固液比1:12、温度30℃条件下处理时间20h后,再通入03处理4h),处理后的稻草秸秆的糖化率分别为74.90%、83.23%、92.57%、53.53%。
     预处理前后稻草秸秆的扫描电镜观察表明:未处理稻草秸秆的外表面整齐地被硅质突起、硅细胞、栓细胞所覆盖;NaOH预处理后的稻草秸秆外表面覆盖物部分被除掉;H2O2/NaOH预处理后的稻草秸秆外表面覆盖物已完全除掉,下层机械组织充分暴露;O3/NaOH预处理后的稻草秸秆外表面覆盖物已被完全除掉,下层机械组织间物质也部分失去,纤维素结构暴露。未处理稻草秸秆的内表面覆盖着一层较厚的硅质与腊质,髓腔薄壁细胞基本不可见;NaOH预处理与H2O2/NaOH预处理后的稻草秸秆内表面中硅质与腊质已除去,髓腔薄壁细胞外露且其中的物质基本上已失去;而经过O3/NaOH预处理后的内表面中硅质与腊质已除完全除去,髓腔薄壁细胞外露且细胞内物质已完全除去,细胞壁较松弛,产生的孔隙更大。因而在增大酶解时有效比表面积、加快酶解速率方面,O3/NaOH预处理优于H2O2/NaOH预处理,H2O2/NaOH预处理优于NaOH预处理,处理后的稻草秸秆明显优于未处理。
     稻草秸秆的NaOH预处理机理与H2O2/NaOH预处理机理相似,都是在于NaOH使以醚键相连的木质素结构单元断开,高分子量的木质素分解为小分子量的木质素而溶解在溶液中。同时,NaOH使连接木质素分子与半纤维素分子间的酯键因皂化作用断开,半纤维素分子与纤维素分子间的氢键强度减小,从而使稻草秸秆发生膨胀,体积增大。差别在于H202促进了其它物质的氧化溶出,并不能使木质素分子开环氧化降解。O3/NaOH预处理机理在于臭氧使木质素开环氧化降解,同时除纤维素以外的其它物质也同时被氧化降解。这与臭氧的氧化能力强于过氧化氢有关。
     预处理前后稻草秸秆成分含量的变化及酶水解糖化率表明,原料中木质素含量并不是影响其酶解糖化的决定因素,预处理前后有效比表面积的变化对其酶解糖化也有非常重要的影响。
     动力学研究表明,碱性条件下木质素的臭氧氧化降解为一级反应,反应的活化能在45kJ/mol左右,其氧化降解在于羟基自由基氧化作用,氧化降解过程主要经过了由高分子量木质素分子到小分子量的基本结构单元,到苯丙烷基本结构单元侧链氧化为苯甲酸,再到苯环被开环氧化为羧酸和醛,最后被氧化为乙酸、
Development of biomass energy which is prepared by lignocellulose is the main way to solve the problems of energy and environment. The methods of pretreatment of rice straw were studied in this paper.The composition, enzyme hydrolysis saccharification and the surface morphology of rice straw were studied after the pretreatment of rice straw by NaOH,H2O2/NaOH and03/NaOH. The mechanism of pretreatment was discussed, and the kinetics of ozone oxidization on lignin was investigated as well.
     Pretreatment was evaluated by the conversion of rice straw hemicellulose and cellulose to reducing sugars, the results showed that all the pretreatment dropped the content of lignin, increased the content of cellulose and accelerated the enzymatic saccharification of rice straw. The enzymatic scarification ratio of the pretreated straw was improved obviously. The best pretreatment effect was obtained by03/NaOH. Under the same enzymatic hydrolysis conditions(using31.2g enzyme preparation per gram of substrate,45℃, pH5.0,120h), by NaOH pretreatment(sodium hydroxide2.0%, solid-to-liquid ratio1:12, temperature30℃, reaction time24h), H2O2/NaOH pretreatment (sodium hydroxide2.0%, hydrogen peroxide2.0%, solid-to-liquid ratio1:12, temperature40℃, reaction time24h, the optimal pretreatment condition),03/NaOH pretreatment (after the milled rice straw was mixed with2.0%NaOH solution and shaken by an incubator at140rpm at30℃for20h, ozone pretreatment was performed by continuously sparging ozone through the suspension for4h) and untreatment, the enzymatic scarification ratios of rice straw were74.90%、83.23%、92.57%、53.53%, respectively.
     The results of SEM images of the rice straw show that the outer surface of the untreated rice straw is coated tidily with silica cells, suberized cells and silica swelling. However the silica cells, suberized cells and silica swelling which coated on the surface of rice straw have been removed partly by NaOH pretreatment, removed entirely by H2O2/NaOH and03/NaOH pretreatment. The inner substances of thin-walled cells were removed partly by NaOH pretreatment, removed entirely by and03/NaOH pretreatment. The cell walls became loosened and the porosity was increased since the inner substances of the thin-walled cells were completely lost, thus03/NaOH, H2O2/NaOH, NaOH pretreatment is much better than untreated on the increasing of the effect surface of enzymatic hydrolysis and accelerating of enzymatic hydrolysis velocity. The method of03/NaOH pretreatment shows the best effect among those pretreatments.
     There is no big difference on the mechanism of NaOH and H2O2/NaOH pretreatment, either bond of the lignin was broken down by NaOH, high molecular weight lignin is decomposed into small molecular weight lignin and dissolved in solution. At the same time, ester bond which contacted lignin and hemicellulose was broken due to saponification by NaOH, thus thehydrogen bond strength decreased between hemicellulose and cellulose, and so that the rice straw expensed, the difference between those two methods was that H2O2promoted the solve of materials instead of opening epoxidation degradation of lignin. While O3make lignin open epoxidation degradation, meanwhile, other materials were also oxidation, due to the oxidation of O3is much stronger than that of H2O2.
     The component contents change and enzyme hydrolysis sacchrification rate of rice straw before and after the pretreatment show that the contents of lignin is not the decisive factor to the enzyme hydrolysis saccharification, the change of effective specific surface area of the rice straw have very important influence after pretreatment.
     The decomposition kinetics results show that the ozone oxidation degradation of lignin was first order reaction under the condition of alkaline, and its reaction activation energy was about45kJ/mol, the mechanism of lignin oxidative degradation was hydroxyl free radical oxidation, during the oxidative degradation, the lignin was take place from high molecular to small molecular weight, from benzene propane to benzoic acid by oxidation to carboxylic acids and aldehydes, and finally to acetic acid, carbon dioxide and water by oxidation.
引文
[1]周志强.中国能源现状、发展趋势及对策[J].能源与环境,2008,6:9-10.
    [2]曾祥艳.生物新材料—芒草的开发利用[J].广西热带农业,2007,5:37-38.
    [3]李运生.关于发展生物质能源产业的调研与思考[J].安徽农业科学,2007,35(24):7562-7563.
    [4]P. Binod, R. Sindhu, R. R. Singhania, et al. Bioethanol production from rice straw: An overview[J]. Bioresour. Technol.2010,101:4767-4774.
    [5]谭季秋,刘军安,朱培立,等.稻草秸秆压缩研究及制粒机械设计[J].湖南工程学院学报,2012,22(1):30-33.
    [6]任天宝,尹双耀,马孝琴,等.几种化学物质对稻草秸秆酶解糖化的影响[J].农业环境科学学报,2012,31(1):206-211.
    [7]计红果,庞浩,张容丽,等.木质纤维素的预处理及其酶解[J].化学通报,2008,5:229-230.
    [8]朱跃钊,卢定强,万红贵,等.木质纤维素预处理技术研究进展[J].生物加工过程,2004,2(4):11-15.
    [9]李盛贤,贾树彪,顾立文.利用纤维素原料生产燃料酒精的研究进展[J].酿酒,2005,32(2):13-15.
    [10]A. Esteghlalian, A. G. Hashimoto, J. J.Fenske, et al. Modeling and Optimization of the dilute sulfuric acid pretreatment of corn stover poplar and switchgrass[J]. Bioresour. Technol.,1997,59:129-136.
    [11]S. B. Kim, Y.Y. Lee. Diffusion of sulfuric acid within lignocellulosic biomass particles and its impact on dilute-acid pretreatment[J]. Bioresour. Technol.,2002, 83:165-171.
    [12]R. Zhao, Z. Zhang, R Zhang, et al. Methane production from rice straw pretreated by a mixture of acetic-propionic acid[J]. Bioresour. Technol.,2010,101: 990-994.
    [13]K. Karimi, S. Kheradmandiniaa, M. J. Taherzadeh. Conversion of rice straw to sugars by dilute-acid hydrolysis[J]. Biomass Bioenergy,2006,30:247-253.
    [14]A. Biswas, B. C. Saha, J. W. Lawton, et al. Process for obtaining cellulose acetate from agricultural by-products[J]. Carbohydr. Polym.,2006,64:134-137.
    [15]P. A. Beatriz, C. Pavla, G. Mats, Z. Guido. Ethanol production from non-starch carbohydrates of wheat bran[J]. Bioresour. Technol.,2005,96:843-850.
    [16]Z.S. Yu, H.X. Zhang. Pretreatments of cellulose pyrolysate for ethanol production by Saccharomyces cerevisiae, Pichia sp. YZ-1 and Zymomonas mobilis[J]. Biomass Bioenergy,2003,24:257-262.
    [17]B. C. Saha, R. J. Bothast. Pretreatment and Enzymatic Saccharification of Corn Fiber[J]. Appli. Biochem. Biotechnol.,1999,76(2):65-76.
    [18]W. Liao, Y. Liu, C. B. Liu,et al. Acid hydrolysis of fibers from dairy manure[J]. Bioresour. Technol.,2006,97:1687-1695.
    [19]Y. Y. Lee, Z. W. Wu, R.W. Torget. Modeling of countercurrent shrinking-bed reactor in dilute-acid total-hydrolysis of lignocellulosic biomass[J]. Bioresour. Technol.,2000,71:29-39.
    [20]A. Mohagheghi, N. Dowe, D. Schell,et al. Performance of a newly developed integrant of Zymomonas mobilis for ethanol production on corn stover hydrolysate[J]. Biotechnol. Lett.,2004,26:321-325.
    [21]G.L. Guo, W.H. Chen, W. H. Chen,et al.Characterization of dilute acid pretreatment of silvergrass for ethanol production [J]. Bioresour. Technol.,2008, 99 (14):6046-6053.
    [22]A. M. J. Kootstra, H. H. Beeftinkb, E. L. Scott, et al. Comparison of dilute mineral and organic acid pretreatment for enzymatic hydrolysis of wheat straw[J]. Biochem. Eng. J.,2009,46:126-131.
    [23]Y. Teramoto, S.H. Lee, T. Endo. Cost reduction and feedstock diversity for sulfuric acid-free ethanol cooking of lignocellulosic biomass as a pretreatment to enzymatic saccharification[J]. Bioresour. Technol.,2009,100:4783-4789.
    [24]A. M. J. Kootstra, N. S. Mosierb, E. L. Scott, et al. Differential effects of mineral and organic acids on the kinetics of arabinose degradation under lignocellulose pretreatment conditions[J]. Biochem. Eng. J.,2009,43:92-97.
    [25]S. Bower, R. Wickramasinghe, N. J. Nagle, et al. Modeling sucrose hydrolysis in dilute sulfuric acid solutions at pretreatment conditions for lignocellulosic biomass[J]. Bioresour. Technol.,2008,99:7354-7362.
    [26]B.C. Saha, L. B. Iten, M. A. Cotta, et al. Dilute Acid Pretreatment, Enzymatic Saccharification, and Fermentation of Rice Hulls to Ethanol[J]. Biotechnol. Progr., 2005,21:816-822.
    [27]G L. Guo, D.C. Hsu,W. H. Chen, et al. Characterization of enzymatic saccharification for acid-pretreated lignocellulosic materials with different lignin composition[J]. Enzyme Microb. Technol.,2009,45:80-87.
    [28]辛芬,陈汉平,王贤华,等.木质纤维素生物质生产乙醇的预处理技术[J].能源工程,2006,3:25-26.
    [29]Y. Sun, J.Y. Cheng. Hydrolysis of lignocellulosic materials for ethanol production: a review[J]. Bioresour. Technol.2002,83:1-11.
    [30]R. A. Silverstein, Y. Chen, R. R. Sharma-Shivappa, et al. A comparison of chemical pretreatment methods for improving saccharification of cotton stalks[J]. Bioresour. Technol.2007,98:3000-3011.
    [31]R.C. Suna, J. Tomkinson, Y.X. Wang. Physico-chemical and structural characterization of hemicelluloses from wheat straw by alkaline peroxide extraction[J]. Polymer,2000,41:2647-2656.
    [32]J.M. Fang, R.C. Sun, D. Salisbury, et al. Comparative study of hemicelluloses from wheat straw by alkali and hydrogen peroxide extractions[J]. Polym. Degrad. Stab.,1999,66:423-432.
    [33]N. Curreli, M. Agelli, B. Pisu, et al. Complete and efficient enzymic hydrolysis of pretreated wheat straw[J]. Process Bioch.,2002,37:937-941.
    [34]Q. Z. Zhang, W. M. Cai. Enzymatic hydrolysis of alkali-pretreated rice straw by Trichoderma reesei ZM4-F3[J]. Biomass Bioenergy,2008,32:1130-1135.
    [35]J. K. Ko, J. S. Bak, M. W, Jung, et al. Ethanol production from rice straw using optimized aqueous-ammonia soaking pretreatment and simultaneous saccharification and fermentation processes[J]. Bioresour. Technol.,2009,100: 4374-4380.
    [36]J. Xu, J. J. Cheng, R. R. Sharma-Shivappa, et al. Lime pretreatment of switchgrass at mild temperatures for ethanol production[J]. Bioresour. Technol., 2010,101:2900-2903.
    [37]W. E. Karr, T. Holtzapple. Using lime pretreatment to facilitate the enzymatic hydrolysis of corn stover[J]. Biomass Bioenergy,2000,18:189-199.
    [38]P. V. Lyer, Z. W. Wu, S. B. Kim, et al. Ammonia recycled percolation Process for pretreatment of herbaceous biomass[J]. Appl Biochem. Biotechnol.,1996,57/58: 121-132.
    [39]N. Curreli, M. B. Fadda, A. Rescigno, et al. Mild alkaline/oxidative pretreatment of wheat straw[J]. Process Bioch.,1997,32(5):665-670.
    [40]H. B. Klinke, L. Olsson, A. B. Thomsen, et al. Potential inhibitors from wet oxidation of wheat straw and their effect on ethanol production of saccharomyces cerevisiae:wet oxidation and fermentation by yeast. Biotechnol. Bioeng.,2003,81: 738-747.
    [41]A. S. Schmidt, Anne Belinda Thomsen. Optimization of wet oxidation pretreatment of wheat straw[J]. Bioresour. Technol.,1998,64:139-151.
    [42]C. Maes, J. A. Delcour. Alkaline hydrogen peroxide extraction of wheat bran non-starch polysaccharides[J]. J. Cereal Sci.,2001,34:29-35.
    [43]B. B. Anne, B. O. Anne, F. Tomas, et al. Pretreatment of wheat straw using combined wet oxidation and alkaline hydrolysis resulting in convertible cellulose and hemicellulose[J]. Biotechnol. Bioeng.,1996,49:568-577.
    [44]B.K.Ahring, D.Licht, A.S.Schmidt, et al. Production of ethanol from wet oxidized wheat straw by Thermoanaerobacter mathranii[J]. Bioresour. Technol., 1999,68:3-9.
    [45]B. K. Ahring, K. Jensen, P. Nielsen, et al. Pretreatment of wheat straw and conversion of xylose and xylan to ethanol by thermophilic anaerobic bacteria[J]. Bioresour. Technol.,1996,58:107-113.
    [46]T. G. C. Ma, G. B. Gerardo, I. Irune, M. Coca,et al. Effect of ozonolysis pretreatment on enzymatic digestibility of wheat and rye straw[J]. Bioresour. Technol.,2009,100:1608-1613.
    [47]A. M. Aznm. Pretreatment of cane bagasse with alkaline hydrogen peroxide for enzymatic hydrolysis of cellulose and ethanol ferment-atiom[J]. J. Environ. Sci. Health,1989,24(4):421-433.
    [48]Z. H. Hu, Z. Y. Wen. Enhancing enzymatic digestibility of switchgrass by microwave-assisted alkali pretreatment[J]. Biochem. Eng. J.,2008,38:369-378.
    [49]H. Ma, W. W. Liu, X. Chen,et al. Enhanced enzymatic saccharification of rice straw by microwave pretreatment[J]. Bioresour. Technol.,2009,100:1279-1284.
    [50]J. S. Bak, J. K. Ko, Y. H. Han, et al. Improved enzymatic hydrolysis yield of rice straw using electron beam irradiation pretreatmentfJ]. Bioresour. Technol.,2009, 100:1285-1290.
    [51]H. K. Sreenath, R. G. Koegel, B. Ana, et al. Enzymic saccharification of alfalfa fibre after liquid hot water pretreatment[J]. Process Bioch.,1999,35:33-41.
    [52]D. Montane, X. Farriol, J. Salvadoa, et al. Application of steam explosion to the fractionation and rapid vapor-phase alkaline pulping of wheat straw[J]. Biomass Bioenergy,1998,14(3):261-276.
    [53]P. Eva, H. H. Barbel, G G. Mats, et al. The effect of water-soluble inhibitors from steam-pretreated willow on enzymatic hydrolysis and ethanol fermentation[J]. Enzyme Microb. Technol.,1996,19:470-476.
    [54]M. Linde, M. Galbe, G Zacchi. Steam pretreatment of acid-sprayed and acid-soaked barley straw for production of ethanol[J]. Appl. Biochem. Biotechnol., 2006,129-132(12):546-562.
    [55]M. Ballesteros, J.M. Oliva, M.J. Negro, et al. Ethanol from lignocellulosic materials by a simultaneous saccharification and fermentation process (SFS) with Kluyveromyces marxianus CECT 10875[J]. Process Bioch.,2004,39:1843-1848.
    [56]M. J. Negro, P. Manzanares, J. M. Oliva, et al. Changes in various physical/ chemical parameters of Pinus pinaster wood after steam explosion pretreatment[J]. Biomass Bioenergy,2003,25:301-308.
    [57]E. Y. Vlasenko, H. Ding, J. M. Labavitch, et al. Enzymatic hydrolysis of pretreated rice straw[J]. Bioresour. Technol.,1997,59:109-119.
    [58]杨长军,汪勤,张光岳.木质纤维素原料预处理技术研究进展[J].酿酒科技,2008,3:85-89.
    [59]K. H. Kim, J. Hong. Supercritical CO2 pretreatment of lignocellulose enhances enzymatic cellulose hydrolysis[J]. Bioresour. Technol.,2001,77:139-144.
    [60]K. Kusuma, G H. Chon, J. S. Lee, et al. Hydrolysis of agricultural residues and kraft pulps by xylanolytic enzymes from alkaliphilic Bacillus sp. strain BK[J]. J. Microbiol. Biotechnol.,2006,16(8):1255-1261.
    [61]H. B. Yu, G N. Guo, X. Y. Zhang, et al. The effect of biological pretreatment with the selective white-rot fungus Echinodontium taxodii on enzymatic hydrolysis of softwoods and hardwoods[J]. Bioresour. Technol.,2009,100: 5170-5175.
    [62]C. Y. Xu, F. Y. Ma, X. Y. Zhang. Lignocellulose degradation and enzyme production by Irpex lacteus CD2 during solid-state fermentation of corn stover[J]. J. Biosci. Bioeng.,2009,108(5):372-375.
    [63]S. H. Krishna, T. J. Reddy, G. V. Chowdary. Simultaneous saccharification and fermentation of lignocellulosic wastes to ethanol using a thermotolerant yeast[J]. Bioresour. Technol.,2001,77:193-196.
    [64]P. L. Beltrame. Cellulose pretreaments of lignocellulosic substrates[J]. Bioresour. Technol.,1992,39:165.
    [65]X. Y. Zhang, H. B. Yu, H. Y. Huang, et al. Evaluation of biological pretreatment with white rot fungi for the enzymatic hydrolysis of bamboo culms[J]. Int. Biodeter. Biodegrad.,2007,60:159-164.
    [66]J. Shi, M. S. Chinn, R. R. S. Shivappa. Microbial pretreatment of cotton stalks by solid state cultivation of Phanerochaete chrysosporium[J]. Bioresour. Technol., 2008,99:6556-6564.
    [67]H. Akihiro, I. Hiroyuki, T. Kenichiro, et al. Wet disk milling pretreatment without sulfuric acid for enzymatic hydrolysis of rice straw[J]. Bioresour. Technol.,2009, 100:2706-2711.
    [68]Z. Michael, B. Daniela, F. Matthias, et al. High-throughput screening for ionic liquids dissolving (ligno-)cellulose[J]. Bioresour. Technol.,2009,100:2580-2587.
    [69]崔美,黄仁亮,苏荣欣,等.木质纤维素新型预处理与顽抗特性[J].化学通报,2012,63(3):677-687.
    [70]J. Yu, J. Zhang, J. He, Z. Yu. Combinations of mild physical or chemical pretreatment with biological pretreatment for enzymatic hydrolysis of rice hull [J]. Bioresour. Technol.,2009,100(2):903-908.
    [71]A. Erich. Lignin chemistry:past, present, future[J]. Wood Sci. Technol.,1977, 11(1):169-217.
    [72]詹怀宇.纤维化学与物理[M].北京:科学技术出版社,2005:226-316.
    [73]彭晓光,杨林娥,张磊.生物法降解秸秆木质素研究进展[J].现代农业科技,2010,1:18-20.
    [74]陶用珍,管映亭.木质素的化学结构及其应用[J].纤维素科学与技术,2003,11(1):42-55.
    [75]张木明,徐振林,张兴秀,等.预处理对稻草秸秆纤维素酶解产糖及纤维素木质素含量的影响[J].农产品加工,2006(3):4-6.
    [76]谭东.木质素的提取及应用[J].广西化工,1994,23(4):6-13.
    [77]邬义明.植物纤维素化学[M].北京:中国轻工业出版社,1995.
    [78]郑大锋,邱学青,楼宏铭.木质素的结构及其化学改性进展[J].精细化工, 2005,22(4):249-252.
    [79]姚穆,孙润君,陈美玉,等.植物纤维素、木质素、半纤维素等的开发和利用[J].精细化工,2009,26(10):937-941.
    [80]李志兰,孟浩.木质素的生物合成及降解研究现状[J].浙江农业科学,2010,4:914-918.
    [81]J. Y. Shim, K. Cho, S. Hee. Degradation of azodye by an electroenzymatic method using horseradish peroxidase immobilized on porous support[J]. Korean J. Chem. Eng.,2007,24 (1):72-78.
    [82]J. Y. Daniel, R. John, F. Lu, et al. Evidence for cleavage of lignin by a brown rot basidiomycete [J]. Environ. Microbiol.,2008,10(7):1844-1849.
    [83]P. Parpot, N. Nunes, A. P. Betteneour. Eleetrocatalytic oxidation of monosaccharides on gold electrode in alkaline medium structure-reactivity relationship [J]. J Electroanal. Chem.,2006,596:65-73.
    [84]R. S. Reiner, E. L. Springer, R. H. Atalla. Electrochemical delignification of wood pulp using polyoxometalate mediators [D]. Madison,Wisconsin USA,12nd ISWPC International Symposium on Wood and Pulping Chemistry,2003: 181-184.
    [85]S. Ltitz, K. Vuorilehto, A. Liese. Process development for the electroenzymatic synthesis of (R) methylphenylsulfoxide by use of a 3-dimensional electrode [J]. Biotechnol. Bioeng.,2007,98:525-534.
    [86]陈云平,傅艳斌,杨平等.纳米TiO2光催化降解碱木质素研究[J].生物质化学工程,2009,11:31-35.
    [87]张辉,戴传超,朱奇,等.生物降解木质素研究新进展[J].安徽农业科学,2006,34(9):1780-1784.
    [88]江凌,吴海珍,韦朝海,等.白腐菌降解木质素酶系的特征及其应用[J].化工进展,2007,26(2):198.
    [89]G M. Zeng, D. L. Huang, G. H. Huang, et al. Composting of lead-contaminated solid waste with inocula of white-rot fun-gus[J]. Bioresour Techn.,2007,98(2): 320.
    [90]A. G. Kumar, G. Sekaran, S. Krishnamoorthy. Solid state fermentation of Achras zapota lignocellulose by Phanerochaete chrysosporium[J]. Bioresour. Technol.,2006,97:1521-1528.
    [91]王洪春,王凤娥.白腐真菌研究与秸秆利用[J].江面畜牧兽区杂志,2008,3: 29-30.
    [92]胡雪竹.木质素降解酶的研究进展[J].安徽农业科学,2011,39(11):6326-6328,6363.
    [93]张辉.木质素降解酶系研究新进展[J].天津农业科学,2006,12(3):8-12.
    [94]王海磊,李宗义.三种重要木质素降解酶研究进展[J].生物学杂志,2003,10:9-11.
    [95]X. H. Wen, Y. N. Jia, J. X. Li. Degradation of tetracycline and Oxytetracycline by crude lignin peroxidase prepared from Phanerochaete chrysosporium-A white rot fungus[J]. Chemosphere,2009,75:1003-1007.
    [96]M. B. Roncero, A. L. Torres, J. F. Colom, et al. TCF bleaching of wheat straw pulp using ozone and xylanase. Part B:kinetic studies [J]. Bioresour. Technol., 2003,87:315-323.
    [97]天津大学物理化学教研室.物理化学[M].北京高等教育出版社,2001:195-223.
    [98]金士威,朱圣东,吴元欣,等.木质纤维原料酶水解研究进展[J].生物质化学工程,2006,40(3):48-52.
    [99]P. Binod, R. Sindhu, R. R. Singhania, et al. Bioethanol production from rice straw:An overview[J]. Bioresour. Technol.,2010,101:4767-4774.
    [100]辛欣.未来全球能源的新亮点-生物质能[J].青海经济研究,2005,4:62-64.
    [101]韩文友.Van Soest饲草分析方案[J].饲料博览,2004,2:48.
    [102]P. J. VanSoest, J. B. Rovertson, B. A. Lewis. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition[J]. J. Dairy Sci.,1991,74(10):3583-3597.
    [103]丛峰松,童耕雷.生物化学实验[M].上海交通大学出版社,2005:56-63.
    [104]E. K. Steven. Getting serious about biofuels[J]. Science,2006,311(5760):435.
    [105]A. G. Kevin, L. S. Zhao, E. Mark. Bioethanol [J]. Curr. Opin. Chem. Biol.,2006, 10(2):141-146.
    [106]B. C. Saha. Hemicellulose bioconversion[J]. Microbiol. Biotechnol.,2003, 30(1):279-291.
    [107]李十中.生物质工程前沿领域关键技术研究进展[J].科技导报,2005,23(5):9-11.
    [108]B. C. Saha, M. A. Cotta. Ethanol production from alkaline peroxide pretreated enzymatically saccharified wheat straw[J]. Biotechnol. Prog.,2006,22(2):449-453.
    [109]B. C. Saha, L. B. Iten, M. A. Cotta, et al. Dilute acid pretreatment, enzymatic saccharification and fermentation of wheat straw to ethanol[J]. Process Biochem., 2005,40(12):3693-3700.
    [110]E. Ruiz, C. Cara, M. Ballesteros, et al. Ethanol production from pretreated olive tree wood and sunflower stalks by an SSF srocess[J]. Appl. Biochem. Biotechnol.,2006,129-132(12):631-643.
    [111]T. V. Ojumu, O. A. Ogunkunle. Production of glucose from lignocellulosic under extremely low acid and high temperature in batch process, auto-hydrolysis approach[J]. J. Appl. Sci.,2005,5(1):15-17.
    [112]路鹏,江滔,李国学.木质纤维素乙醇发酵研究中的关键点及解决方案[J].农业工程学报,2006,22(9):237-240.
    [113]赵律,李志光,李辉勇,等.木质纤维素预处理技术研究进展[J].化学与生物工程,2007,24(5):5-8.
    [114]Y. Sun, J. J. Cheng. Dilute acid pretreatment of rye straw and bermudagrass for ethanol production[J]. Bioresour. Technol.,2005,96(14):1599-1606.
    [115]A. Thygesen, A. B. Thomsen, A. S. Schmidt, et al. Production of cellulose and hemicellulose-degrading enzymes by filamentous fungi cultivated on wet-oxidised wheat straw[J]. Enzyme Microb. Technol.,2003,32(5):606-615.
    [116]H. K. Sreenath, R. G. Koegel, A. B. Moldes, et al. Enzymic saccharification of alfalfa fibre after liquid hot water pretreatment[J]. Process Biochem.,1999, 35(1):33-41.
    [117]I. Ballesteros, J. M. Oliva, M. J. Negro, et al. Enzymic hydrolysis of steam exploded herbaceous agricultural waste (Brassica carinata) at different particule sizes[J]. Process Biochem.,2002,38(2):187-192.
    [118]K. H. Barbara, Z. Maria, N. Jacek Catalytic ozonation and methods of enhancing molecular ozone reactions in water treatment[J].Appl. Catal. B: Environmental,2003,46:639-669.
    [119]G. U. Von.Ozonation of drinking water:Part I.Oxidation kinetics and product formation [J]. Water Res.,2003,37(7):1443-1467.
    [120]A. Roborte, C. Vincenzo, I. Amedeo, et al. Advanced oxidation processes(AOP) for water purification and recovery[J]. Catal. Today,1999,53:51-59.
    [121]A.M. Amat, A. Arques, M.A. Miranda, et al. Use of ozone and/or UV in the treatment of effluents from board paper industry[J]. Chemosphere,2005,60: 1111-1117.
    [122]F. V. Pierre, M. Jacques.Ozonolysis of lignin-improvement of in vitro digestibility of poplar sawdust [J]. Biomass,1988,16:1-17.