TiNi相变悬臂梁的冲击响应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
相变对材料和结构的力学响应可造成重大影响,是固体力学和材料科学的基本问题和重点研究领域之一。相变材料由于其独特的力学性能已经得到了广泛的应用,其材料性能的研究也相对成熟,然而对于相变材料结构件的力学性能特别是在冲击载荷下的响应的研究却十分匮乏。本文主要选取一种基本的工程结构件—悬臂梁作为对象,从实验和数值模拟两个方面,对具有相变特性的TiNi合金悬臂梁的冲击响应进行了较为系统的研究,发现了一些新现象和新规律,对相变弯曲波在梁中的传播规律、相变铰的形成与发展规律、以及相变悬臂梁的冲击响应和吸能特性获得了较深入的认识,可为其工程应用提供依据。主要结果有:
     对两种典型的相变材料FeMnNi合金和TiNi合金的力学特性进行了实验测定,结果表明,高速冲击下FeMnNi合金的α-ε相变可以引起冲击波形的强烈变化,并能够形成多次层裂,Mn、Ni合金元素的同时加入会大大降低相变应力阈值。TiNi合金由于初始相的不同在室温下分别处于伪弹性(PE)和形状记忆(SME)状态,马氏体相变表现出伪弹性行为,而R相变则表现出形状记忆特性。
     利用改装的SHPB装置,对处于PE和SME状态的TiNi合金矩形悬臂梁进行了横向冲击实验研究。实验发现,冲击下悬臂梁中的相变铰具有波动性与可回复性,拉压不对称性并不明显。对于PE梁,打击自由端时,相变铰在根部形成,随着冲击速度的提高,相变铰的最大变形增大,并且形成的时间提前,冲击速度较高时,可能在梁中部首先发生少量相变。打击位置距离自由端1/3处时,会在该处首先形成相变弯曲波,梁中能够形成多个相变铰,靠近根部的两个铰呈现出峰谷相对、此消彼长的趋势。SME梁受冲击时首先会形成R相变弯曲波,当发生马氏体相变时也会形成相变铰。相变的发生、相变铰的存在能够较快的衰减梁的振动,R相变则能够使得SME梁振动衰减更快。冲击结束后,PE梁能完全回复原状,SME粱残余变形很小,不随冲击速度的增大而增大,并且加热后可回复。
     采用简化的理想伪弹性本构模型,从理论上分析了TiNi梁微元段在纯弯曲条件下截面上变形行为,揭示了梁截面上相变区的发展演化以及相边界的运动规律,给出相应的解析表达式,由此得到矩形截面梁加、卸载过程中的弯矩-曲率曲线,并给出矩形截面梁在完整的加载卸载循环下由于相变滞回所耗散的能量。
     借助有限元计算软件LS-DYNA,对理想伪弹性相变悬臂梁中相变弯曲波的传播规律进行了数值模拟研究,讨论了相变弯曲波的产生、传播、反射以及卸载。相变弯曲波总是通过弹性弯曲波的不断发展增大然后产生的,相变峰中心附近可能形成相变铰,当梁截面材料进入二相弹性时,会形成二相弹性弯曲波,并且波形发生严重的扭曲。反射弯曲波与入射波关于固定端近似对称,固定端反射弹性弯曲波可以显著的改变相变弯曲波的波形,而固定端能否发生相变以及发生的时间,取决于到达固定端并发生反射的弹性波峰的强度。卸载弯曲波也具有弥敞和不断发展的特点,卸载波对加载波的作用取决于两者波峰相遇时的位相差,相变弯曲波的卸载使得相边界发生移动。当受到卸载波和固定端反射波同时作用时,整个相变区的时空演化图表现为许多个离散的封闭区域。
     对PE悬臂梁在阶跃载荷和矩形脉冲载荷作用下的动力响应进行了数值模拟研究,分析了相变铰的不同形式及其演化过程,以及高载短脉冲作用下悬臂梁的变形行为。阶跃载荷作用下,可能形成根部相变铰区、中部单铰、双铰以及连续的铰区等不同的形式。卸载后相变铰回复并发生移动,相变区在梁内重新分布,形成复杂的演化模式。高载短脉冲的作用下,PE悬臂梁的响应可分为四个相:加载时弯曲波的传播与相变铰的形成、卸载后相变铰的复杂演变、梁摆动至最大挠度过程中的大幅甩动、梁绕根部的往复振动。前三相所占时间不长,但是消耗能量非常高。
     对实验的数值模拟结果表明,早期子弹和梁发生了多次撞击,子弹动能的衰减主要发生在这一短时间内,相变对能量的耗散主要发生在梁第一次回摆至平衡位置之前。模型加入硬化模量之后,模拟结果和实验更加吻合。
Phase transformation(PT) can greatly affect the mechanical response of material and structure. It is a basic problem and major research task of solid mechanics and material science. Because of the peculiar mechanical behavior phase transformation material has gained widespread application. The study of mechanical property is relatively mature, but it is very short of the study of the mechanical property of the phase transformation structures, especially the response under impact loading. In this paper, the impact response of pseudoelastic phase transformation cantilever(PPTC) is systematically investigated experimentally and numerically, and found some interesting phenomena and regularity, gained in-depth understanding about regularity of propagation of the phase transformation flexural wave(PTFW), formation and development of phase transformation hinge(PTH), and impact response of PPTC.
     Experimental investigation was conducted on two typical phase transformation materials-FeMnNi alloy and TiNi alloy using light gas gun and MTS. It is found that for FeMnNi alloy upon high velocity impacting the a-e PT can greatly change the shock wave profile and spall the sample into pieces, and addition of Mn and Ni may lower the transformation pressure strongly. Because of the different initial phases, TiNi alloy is in pseudoelastic(PE) or shape memory effect(SME) state. Martensite PT PE and R PT exhibits SME.
     Experimental investigation was conducted on PE and SME TiNi cantilever with rectangular section under transversal impact using a revised split Hopkinson pressure bar (SHPB) apparatus. It is found that PTH of the PTC is recoverable and its strain increases fluctantly upon impact, but the asymmetry between the tension and compression side is not remarkable. For PE cantilever, when impacting free end, PTH formed at the root, and the deformation of PTH increases and it forms earlier as the impact velocity increases; When the impact velocity is high a little PT maybe appear in the middle of the beam at first. When the impacting location is at the third of the beam length from free end PTFW may appear at first, several PTHs can form and deformation of the two hinges near the root displays such a trend that when one increases the other decreases, and the peak and valley of the two hinges is opposite. For SME beam R PTFW appears at first, and PTH can also form when martensite PT occurs. Occurrence of PT and existence of PTH can attenuate the vibration of beam greatly, and R PT attenuates the vibration faster. After impact, a PE beam will come back to its original shape, SME beam has some residual deformation which does not increase with increasing impact velocity and disappears upon heating.
     Using a simplified ideal PE constitutive model, the behavior of the beam section is theoretically analyzed. Regularity of development and evolvement of PT zone and of motion of phase boundaries is disclosed, and corresponding analytic expression is given. Then moment-curvature relationship of rectangular beam during the loading and unloading procedure is obtained, and the energy dissipation due to PT of rectangular beam during a complete loading-unloading cycle is given.
     Numerical simulation study is conducted on the propagation problem of PTFW in ideal PPTC using FEA software LS-DYNA, and the problem of initiation, propagation, reflection and unloading of PTFW is discussed. Results show that PTFW is initiated by development and enlargement of elastic flexural wave(EFW), and PTH may form at the center of the peak of PTFW; When beam section material enter the second phase the second phase EFW may occur and waveform will be distorted seriously. The reflected flexural waves and the incident waves at the fixed end of the beam are approximately symmetry, and the reflected elastic flexural waves could distinctively change the waveform of PTFW. Whether PT occurs at the fixed end or not and the time depends on the intensity of the elastic wave peak which arrives the fixed end and reflects. The effect of the unloading flexural wave, which is dispersive and developing, on the loading wave is depended on the phasic difference when they meet. When the unloading wave and reflected wave at the fixed end action at the same time, the spatio-temporal evolution map of the whole phase transformation zone is represented by many discrete and closed zone.
     Numerical simulation study is conducted on the dynamic response of PPTC under step or rectangular pulse load. Different pattern and the evolution procedure of PTH and the dynamic behavior of PPTC under high but short pulse load is analysed. Under step load different patterns such as hinge zone at the root, single, double hinge and continuous hinge zone in the middle may form. After unloading PTH recovers and moves, PT zones redistribute along the beam and different evolution patterns form. Under high but short pulse load response of PPTC may be divided into four phases: propagation of flexural waves and formation of PTH during loading procedure, complex evolution of PTH after unloading, intensive whipping of the beam during swinging toward the maximal deflection, and to-and-fro movement around the root of the beam; the first three phases occupy relatively short time but the majority of energy is dissipated.
     Simulation result of the experiment shows that several impacts occur between the bullet and the PPTC at the early stage where the bullet kinetic energy decreases greatly; The occurrence of PT near the free end is caused by the reflection of flexural wave at the free end; The energy dispersion due to PT mainly occurs before the cantilever swing back to the equilibrium position for the first time. When the hardening modulus is added into the model simulation result is more approaching to the experimental result.
引文
[1]唐志平.冲击相变基础[M].合肥:中国科学技术大学研究生教材,1992.
    [2]Humbeeck J V.Non-medical application of shape memory alloys.Material Science and Engineering,1999,A273-275:134-48.
    [3]崔迪,李宏男,宋钢兵,形状记忆合金在土木工程中的研究与应用进展,防灾减灾工程学报,2005,25,86-94.
    [4]Paine J S,Rogers C A.Shape memory alloys for damage-resistant composite structures,in:G.L.Anderson,D.C.Lagoudas(Eds.),Active Materials and Smart Structures,SPIE,1994,2427,358-371.
    [5]Dolce M,Cardone D.Mechanical behaviour of Shape Memory Alloys for seismic applications-1,Martensite and Austenite NiTi bars subjected to torsion[J].International Journal of Mechanical Sciences,2001,43:2631-2656.
    [6]Indirli M,Castellano M G,Clemente P,et al.Demo-application of shape memory alloy devices:the rehabilitation of the S.Giorgio Church Bell-Tower[R].Proceedings of SPIE,2001,4330:262-272.
    [7]Krzysztof Wilde,Paolo Gardoni.Base isolation system with shape memory alloy device for elevated highway bridges[J].Engineering Structures,2000,22:222-229.
    [8]R.DesRoches,M.Delemont.Seismic retrofit of simply supported bridges using shape memory alloys[J].Engineering.Structures,2002:24:325-333.,2002.
    [9]Browne A,Johnson N and Kramarczyk M.Tunable,Healable vehicle impact devices.US2005104391.2005.
    [10]Bancroft D,Peterson E,Minshall S.Polymorphism of iron at high pressure[J].Journal of Applied Physics,1956,27(3):291-298.
    [11]Barker L M,Hollenbach R E.Shock wave study of the α←→ε phase transition in iron[J].Journal of Applied Physics,1974,45(11):4872-4887.
    [12]Loree T R,Fowler C M,Zukas E G,et al.Dynamic polymorphism of some binary iron alloys[J].Journal of Applied Physics,1966,37(4):1918-1927.
    [13]Loree T R,Warnes R H,Zukas E G,et al.Polymorphism of Shock Loaded Fe-Mn and Fe-Ni Alloys.Science,1966,153(3741):1277-1278.
    [14]Fowler C M,Minshall F S,Zukas E G.in Response of Meatals to High Velocity Deformation,P.G.Shewmon et al(eds.),Interscience,New York,1961,275.
    [15]Zukas E G,Fowler C M,Minshall F S,et al.Trans.MetaIl.Soc.A1ME(Am.Inst.Min.Metall.Pet.Eng.),1963,227:746
    [16] Erkman J 0. Smooth spalls and the polymorphism of iron[J]. Journal of Applied Physics,1961, 32(5): 939-944.
    [17] Gray III G T, Hayes D B, Hixson R S. Influence of shock-induced cx-e transition in Fe on its post-shock substructure evolution and mechanical behavior[J]. Journal de Physique IV France,2000,10,Pr9:755-760. J.Phys. IV France,2000.10 (9): 755-760
    [18] Vesser L R, Hixson R S, Vorthman J E, et al. Spall Strength and Shock Release Kinetics Following the Alpha-Epsilon Phase Transition in Iron[R]. Research Highlights. Physics Division Progress Report 1999-2000.
    [19]Cristophe V, Gilles R. Study of spalling for high purity iron below and above shock induced α(?)ε phase transition[A]. Shock Compression of Condensed Matter[C]. eds Furnish M D,Gupta Y M, Forbes J W. New York: AIP Conference Proceedings, 2003.511-514.
    [20] Hwang C M, Meichle M, Salamon M B, Wayman C M. Transformation behaviour of a Ti_(50)Ni_(47)Fe_3 alloy I. Premartensitic phenomena and the incommensurate phase. Philosophical Magazine A, 1983, 47(1): 9-30.
    [21] Hwang C M, Meichle M, Salamon M B, Wayman C M. Transformation behaviour of a Ti_(50)Ni_(47)Fe_3 alloy II. Subsequent premartensitic behaviour and the commensurate phase. Philosophical Magazine A, 1983, 47(1): 31-62.
    [22] Hwang C M, Salamon M B, Wayman C M. Transformation behaviour of a Ti_(50)Ni_(47)Fe_3 alloy III. Martensitic transformation. Philosophical Magazine A, 1983, 47(2): 177-191.
    [23] Fukuda T, Saburi T, Doi K, Nenno S. Mater. Trans. JIM, 1992, 33: 271-277.
    [24] 杨杰,吴月华.形状记忆合金及其应用[M]. 合肥:中国科技大学出版社,1993.
    [25]Shaw J A, Kyriakides S. Thermomechanical aspects of NiTi. J. Mech. Phys. Solids, 1995,43(8): 1243-1281.
    [26] Sittner P, Landa M, Lukas P, et al. R-phase transformation phenomena in thermomechanically loaded NiTi polycrystals. Mechanics of Materials, 2006,38: 475-492.
    [27] Wolons D, Gandhi F, Malovrh B. Experimental investigation of the pseudoelastic hysteresis damping characteristics of shape memory alloy wires. Journal of Intelligent Material Systems and Structures, 1998,9: 116-126.
    [28] Liu Y, Xie Z, Humbeeck J V. Cyclic deformation of NiTi shape memory alloys. Materials Science and Engineering, 1999, A273-275: 673-678.
    [29] Sehitoglu H, Anderson R, Karaman I, Gall K, Chumlyakov Y. Cyclic deformation behavior of single crystal NiTi. Materials Science and Engineering, 2001, A314: 67-74.
    [30] Dolce M, Cardone D. Mechanical behavior of shape memory alloys for seismic applications 2. Austenite NiTi wires subjected to tension. International Journal of Mechanical Sciences,2001, 43:2657-2677.
    [31]Nemat-Nasser S,Guo W G.Superelastic and cyclic response of NiTi SMA at various strain rates and temperatures.Mechanics of Materials,2006,38:463-474.
    [32]Plietsch R,Ehrlich K.Strength differential effect in pseudoelastic NiTi shape memory alloys.Acta mater.,1997,45(6):2417-2424.
    [33]Orgéas L,Favier D.Stress-induced martensitic transformation of a NiTi alloy in isothermal shear,tension and compression.Acta mater.,1998,46(15):5579-5591.
    [34]Liu Y,Xie Z,Van Humbeeck J,Delaey L.Asymmetry of stress-strain curves under tension and compression for NiTi shape mamory alloys.Acta mater.,1998,46(12):4325-4338.
    [35]Gall K,Sehitoglu H,Chumlyakov Y,Kireeva I,Maier H.Trans.ASME JEMT,1999,121:19-27.
    [36]Gall K,Sehitoglu H,Chumlyakov Y,Kireeva I,Maier H.Trans.ASME JEMT,1999,121:28-37.
    [37]Gall K,Sehitoglu H,Chumlyakov Y I,Kireeva I V.Tension-compression asymmetry of the stress-strain response in aged single crystal and polycrystalline NiTi.Acta mater.,1999,47(4):1203-1217.
    [38]Huseyin Sehitoglu,Robert Anderson,Ibrahim Karaman,Ken Gall,Yuriy Chumlyakov.Cyclic deformation behavior of single crystal NiTi.Materials Science and Engineering,2001,A314:67-74.
    [39]Gall K,Sehitoglu H.The role of texture in tension-compression asymmetry in polycrystalline NiTi.International Journal of Plasticity,1999,15:69-92.
    [40]Gall K,Sehitoglu H,Anderson R,Karaman I,Chumlyakov Y I,Kireeva I V.On the mechanical behavior of single crystal NiTi shape memory alloys and related polycrystalline phenomenon.Materials Science and Engineering,2001,A317:85-92.
    [41]Lim T J,McDowell D L.Cyclic thermomechanical behavior of a polycrystalline pseudoelastic shape memory alloy.Journal of the Mechanics and Physics of Solids,2002,50:651-676.
    [42]Qidwai M A,Lagoudas D C.On thermomechanics and transformation surfaces of polycrystalline NiTi shape memory alloy material.International Journal of Plasticity,2000,16:1309-1343.
    [43]郭扬波,唐志平徐松林.一种考虑静水压力和偏应力共同作用的相变临界准则.固体力学学报,2004,25(4):417-422.
    [44]Liu Y,Li Y L,Ramesh K T,Van Humbeeck J.High strain rate deformation of martensitic NiTi shape memory alloy.Scripta Materialia,1999,41(1):89-95.
    [45]施绍裘,陈江瑛,董新龙等.钛镍形状记忆合金冲击变形后形状记忆效应的研究.爆炸与冲击,2001,21(3):168-172.
    [46]郭扬波,唐志平,戴翔宇.TiNi合金的压缩形状记忆行为研究.爆炸与冲击,2003,23(增刊):103-104.
    [47]Chen W W,Wu Q P,Kang J H,Winfree N A.Compressive superelastic behavior of a NiTi shape memory alloy at strain rates of 0.001-750s-1.International Journal of Solids and Structures,2001,38:8989-8998.
    [48]朱珏,张明华,董新龙,等.TiNi合金率相关的动态超弹性行为.爆炸与冲击,2003,23(增刊):81-82.
    [49]郭扬波,刘方平,戴翔宇,等.TiNi合金的动态伪弹性行为和率相关相变本构模型.爆炸与冲击,2003,23(2):105-110.
    [50]Thakur A M,Thadhani N N,Schwarz R B.Martensitic transformation in NiTi alloys induced by tensile stress pulses.Shock Compression of Condensed Matter-1989,ed.By S.C.Schmidt et al,Elsevier,New York,1990,139-142.
    [51]Thakur A M,Thadhani N N,Schwarz R B.Shock-induced martensitic transformations in near-equiatomic NiTi alloys.Metallurgical and Materials Transactions A,1997,28:1445-1455.
    [52]Escobar J C,Clifton R J,Yang S Y.Stress-wave-induced martensitic phase transformations in NiTi.Shock Compression of Condensed Matter-1999,ed.By M.D.Furnish,L.C.Chhabildas and R.S.Hixson,American Institute of Physics,Woodbury,New York,2000,267-270.
    [53]Millett J C F,Bourne N K.The shock-induced mechanical response of the shape memory alloy,NiTi.Materials Science and Engineering A,2004,378:138-142.
    [54]郭扬波.TiNi合金的冲击相变特性和相变本构研究[D].合肥:中国科学技术大学博士学位论文,2005:30-51.
    [55]Birman,V.Review of mechanics of shape memory alloy structures.Applied Mechanics Reviews,1997,50(11):629-645.
    [56]Lagoudas D C,Chen Y C,Ravi-Chandar K.Fabrication,Modeling and Characterization of Porous Shape Memory Alloys.Sponsored by Office of Naval Research:April 24,2001.
    [57]Sun Q P,Li Z Q.Phase transformation in superelastic NiTi polycrystalline micro-tubes under tension and torsion-from localization to homogeneous deformation.International Journal of Solids and Structures,2002,39:3797-3809.
    [58]Li Z Q,Sun Q P.The initiation and growth of macroscopic martensite band in nano-grained NiTi microtube under tension.International Journal of Plasticity,2002,18:1481-1498.
    [59]Sun Q P,Feng P.Experimental investigation on macroscopic domain formation and evolution in polycrystalline NiTi microtubing under mechanical force.Journal of the Mechanics and Physics of Solids,2006,54:1568-1603.
    [60]Seelecke S. Modeling the dynamic behavior of shape memory alloys. International Journal of Non-Linear Mechanics, 2002, 37: 1363-1374.
    
    [61] Nemat-Nasser S, Choi J Y, Isaacs J B, et al. Experimental Observation of High-rate Buckling of Thin Cylindrical Shape-memory Shells. Smart Structures and Materials: Active Materials:Behavior and Mechanics, Edited by William D. Armstrong, Proceedings of SPIE, 2005, 5761:347-354.
    
    [62] Amini M R, Nemat-Nasser S. Dynamic Buckling and Recovery of Thin Cylindrical Shape Memory Shells. Smart Structures and Materials: Active Materials: Behavior and Mechanics, Edited by William D. Armstrong, Proceedings of SPIE, 2005,5761:450-453.
    [63] Berg B T. Thermomechanics of shape memory alloy rods. Ph.D Thesis, University of Minnesota, 1994.
    [64] Berg B T. Bending of superelastic wires 1 - Experimental aspects. J. Appl. Mech.,1995, 62(2):459-465.
    
    [65]Rejzner J, Lexcellent C, Raniecki B. Pseudoelastic behaviour of shape memory alloy beams under pure bending: experiments and modeling. International Journal of Mechanical Sciences,2002, 44:665-686.
    [66] Rahman M A, Qiu J, Tani J. Buckling and Postbuckling Characteristics of the Superelastic SMA Columns. International Journal of Solids and Structures, 2001, 38: 9253-9265.
    [67] Atanakovic T, Achenbach M. Moment curvature relations for a pseudoelastic beam.Continuum Mechanics and Thermodynanics, 1989,1:73-80.
    [68] Auricchio F, Sacco E. A superelastic shape memory alloy beam. Journal of Intelligent Material Systems and Structures ,1997, 8:489-501.
    
    [69] Auricchio F, Sacco E. A one-dimensional model for superelastic shape-memory alloys with different elastic properties between austenite and martensite. International Journal of Non-Linear Mechanics, 1997,32(6): 1101-14.
    
    [70] Auricchio F, Sacco E. A temperature-dependent beam for shape-memory alloys: constitutive modelling, finite-element implementation and numerical simulations. Comput. Methods Appl.Mech. Engrg., 1999, 174: 171-190.
    
    [71] Auricchio F, Sacco E. Thermo-mechanical modelling of a superelastic shape-memory wire under cyclic stretching-bending loadings. International journal of Solids and Structures. 2001,38:6123-6145.
    [72]Purohit PK, Bhattacharya K. On beams made of phase-transforming materials. International Journal of Solids and Structures, 2002,39(13-14):3907-3929.
    
    [73] Raniecki B, Rejzner J, Lexcellent C. Anatomization of hysteresis loops in pure bending of ideal pseudoelastic SMA beams. International Journal of Mechanical Sciences, 2001, 43: 1339-1368.
    [74]Ip K H.Energy dissipation in shape memory alloy wires under cyclic bending[J].Smart Mater.Struct,2000(9):653-659.
    [75]彭刚,李黎,唐家祥.形状记忆合金受弯杆的力学性能分析.武汉大学学报,2004,37(4):59-64.
    [76]Liew K M,Ren J,Kitipornchai S.Analysis of the pseudoelastic behavior of a SMA beam by the element-free Galerkin method.Engineering Analysis with Boundary Elements,2004,28:497-507.
    [77]Buratti G.Stresses and deflections in a pseudo-elastic beam under cyclic loads.Continuum Mech.Thermodyn.,2005,17:149-157.
    [78]Collet M,Foltete E,Lexcellent C.Analysis of the behavior of a Shape Memory Alloy beam under dynamical loading.European Journal of Mechanics,A/Solids,2001,20(4):615-630.
    [79]Hashemi S M T,Khadem S E.Modeling and analysis of the vibration behavior of a shape memory alloy beam.International Journal of Mechanical Sciences,2006,48:44-52.
    [80]Zurek A K,Hixson R S,Anderson W W,Vorthman J E,Gray Ⅲ G T,Tonks D L.J.Phys.Ⅳ,2000,10:677-682.
    [81]Guo Y B,Tang Z P,Zhang X H,et al.Phase transition Taylor test.Impact Loading of Lightweight Structures.Vol.WIT Transactions on Engineering Science Volume 49,pp.241-255.2005
    [82]唐志平,卢艰春,张兴华.TiNi相变悬臂梁的横向冲击特性实验研究.爆炸与冲击,2007,27(4):289-295.
    [83]赵亚溥,方竞,余同希.结构塑性动力响应实验研究的简要综述.力学进展,1997,27(3):326-341
    [84]Florence A L,Firth R D.Rigid-plastic beams under uniformly distributed impulses.ASMB J Appl Mech,1965,32:481-488.
    [85]Shim V P W,Toh S L,Quah S E.Impact-induced flexural waves in a Timoshenko beam-Shearographic detection and analysis.Exp.Mech.,1994,34(4):340-348.
    [86]Yu J L,Jones N.Further experimental investigations on the failure of clamped beams under impact loads.International Journal of Solids and Structures.1991,27:1113-1137.
    [87]张铁光,赵隆茂,梁成等.端部受冲击作用的悬臂曲梁的实验研究.固体力学学报,1989,1:24-33.
    [88]杨桂通.结构在冲击载荷作用下的实验研究.力学学报,1990,22(3):374-379
    [89]李庆明,赵隆茂.固支浅圆拱在子弹撞击下的实验研究.爆炸与冲击,1991,11(3):238-243.
    [90]Shu D,Stronge W J,Yu TX.Oblique impact at the tip of a cantilever.Int.J.Impact Engng,1992,7:37-47.
    [91]Parkes E W.The permanent deformation of a cantilever struck transversely at its tip.Proc R Soc.Series A,1955,228:462.
    [92]王仁.在冲击载荷作用下结构塑性分析近况.中国力学学会第一次极限分析及塑性理论学术讨论会论文选集.北京:科学出版社.1965.1-22.
    [93]王礼立.应力波基础[M].北京:国防工业出版社,2005.
    [94]Kolsky H.Stress Wave in Solids.Oxford:Clarendous Press,1953.(中译本:固体中的应力波.王仁等译.科学出版社,1958)
    [95]Duwez P E,Clark D S,Bohnenhlust H F.The behavior of long beams under impact loading.J.Appl.Mech.1950,17(1):27-44.
    [96]Lee EH,Symonds P S.Large plastic deformations of beam under transverse impact[J].Journal of Applied Mechanics,1952,19:308-314.
    [97]Florence A L,Firth R D.Rigid-plastic beams under uniformly distributed impulses.Journal of Applied Mechanics,1965,32:481-488.
    [98]Symonds P S,Fleming W T.Parkes revisited:On rigid-plastic and elastic-plastic dynamic structural analysis.International Journal of Impact Engineering.1984,2(11):1-36.
    [99]Stronge W J,Shioya T.Impact and bending of a rigid-plastic fan blade.Journal of Applied Mechanics,1984,51(3):501-504.
    [100]Jones N.Structural impact[M].Cambridge,New York:Cambridge University Press,1989.(中译本:结构冲击.蒋平译.成都:四川教育出版社,1994)
    [101]余同希,W.J.斯壮.塑性结构的动力学模型[M].北京:北京大学出版社,2002.
    [102]杨桂通,熊祝华.塑性动力学[M].北京:高等教育出版社,2000.
    [103]Yu T X,Yang J L,Reid S R.Interaction between reflected elastic flexural waves and a plastic 'hinge' in the dynamic response of pulse loaded beams.International Journal of Impact Engineering,1997,19(5):457-475.
    [104]Yu T X,Yang J L,Reid S R,et al.Dynamic behaviour of elastic-plastic free-free beams subjected to impulsive loading.International Journal of Solids and Structures,1996,33(18):2659-2680.
    [105]Reid S R,Gui X G.On the elastic-plastic deformation of cantilever beams subjected to tip impact[J].Int.J.Impact Engng.,1987:2,109-127.
    [106]Yu J L,Jones N.Numerical simulation of impact loaded steel beams and the failure criteria.International Journal of Solids and Structures,1997,34(30):3977-4004.
    [107]Karagiozov D,Alves M,Jones N.Inertia effects in axisymmetrically deformed cylindrical shells under axial impact.International Journal of Impact Engineering,2000,24:1083-1115.
    [108]Karagiozov D,Jones N.Dynamic effects on buckling and energy absorption of cylindrical shells under axial impact.Thin-Walled Structures,2001,39:583-610.
    [109]Karagiozov D,Jones N.Influence of stress waves on the dynamic progressive and dynamic plastic buckling of cylindrical shells.International Journal of Solids and structures,2001,38:6723-6749.
    [110]Karagiozov D.Dynamic buckling of elastic - plastic square tubes under axial impact-Ⅰ:stress wave propagation phenomenon.International Journal of Impact Engineering,2004,30:143-166.
    [111]Karagiozov D,Jones N.Dynamic buckling of elastic - plastic square tubes under axial impact-Ⅱ:structural response.International Journal of Impact Engineering,2004,30:167-192.
    [112]Karagiozov D,Nurick G N,Yuen S C K.Energy absorption of aluminium alloy circular and square tubes under an axial explosive load.Thin-Walled Structures,2005,43:956-982.
    [113]Shaw J A.Simulations of localized thermo-mechanical behavior in a NiTi shape memory alloy.International Journal of Plasticity,2000,16:541-562.
    [114]Li Q,Seelecke S,Kohl M,etal.Thermo-mechanical finite element analysis of a shape memory alloy cantilever beam.Smart Structures and Materials 2006:Modeling,Signal Processing,and Control,edited by Douglas K.Lindner,Proc.Of SPIE Vol.6166,61661Z,(2006)
    [115]Achenbach M.and Muller I.Simulation of material behavior of alloys with shape memory,Arch Mech,1985,37:573-585.
    [116]Seelecke S and Muller I,Shape memory alloy actuators in smart structures-modeling and simulation.ASME Applied Mechanics Reviews,2004,57:23-46.
    [117]杜晓伟.SMA线性化模型及塑料拉伸曲线CAE计算模型研究[D].上海:上海交通大学博士学位论文,2004.
    [118]Brinson L C.One-dimensional constitutive behavior of shape memory alloys:thermomechanical derivation with non-constant material functions and redefined martensite internal variable.J.Intelligent Mat.Syst.Struct.,1993,4:229-242.
    [119]Lagoudas D C,Bo Z,Qidwai M A.A unified thermodynamic constitutive model for SMA and finite element analysis of active metal matrix composites.Mechanics of Advanced Materials and Structures,1996,3(2):153-179.
    [120]Qidwai M A,Entchev P B,Lagoudas D C,etal.Modeling of the thermomechanical behavior of porous shape memory alloys.International Journal of Solids and Structures,2001,38:8653-8671.
    [121]Auricchio F,Taylor R L.Shape-memory alloys:modelling and numerical simulations of the finite-strain superelastic behavior.Comput.Methods Appl.Mech.Engrg.1997,143: 175-194.
    
    [122] Auricchio F, Taylor R L, Lubliner J. Shape-memory alloys: macromodelling and numerical simulations of the superelastic behavior. Comput. Methods Appl. Mech. Engrg. ,1997,146: 281-312.
    [1]张万甲.钽-钨合金动态响应特性研究,爆炸与冲击,[J].爆炸与冲击,2000,20(1):45-51.
    [2]Barker L M,Hollenbach R E.Shock wave study of the α←→ε phase transition in iron[J].Journal of Applied Physics,1974,45(11):4872-4887.
    [3]Duvall G E,Graham R A.Phase transitions under shock-wave loading[J].Reviews of Modern Physics,1977,49,(3):523-579.
    [4]Bourne N,Millett J.Contrasting the shock properties of iron and a steel[J].Scripta Materialia,2000,43(6):541-546.
    [5]Loree T R,Fowler C M,Zukas E G,et al.Dynamic polymorphism of some binary iron alloys[J].Journal of Applied Physics,1966,37(4):1918-1927.
    [6]Fowler C M,Minshall F S,Zukas E G.A Metallurgical Method for Simplifying the Determination of Hugoniot Curves for Iron Alloys in the Two-Wave Region[A].Response of Metals to High Velocity Deformation[C].New York:Interscience,1961.275-299.
    [7]Gust W H,Royce E B.Shock-Induced Phase-Transition Pressure inFe-Cr and Fe-Cr-Ni Alloys[J].Journal of Applied Physics,1970,41(6):2443-2446.
    [8]Cristophe V,Gilles R.Study of spalling for high purity iron below and above shock induced α←→ε phase transition[A].Shock Compression of Condensed Matter[C].eds Furnish M D,Gupta Y M,Forbes J W.New York:AIP Conference Proceedings,2003.511-514.
    [9]Gray Ⅲ G T,Hayes D B,Hixson R S.Influence of shock-induced α←→ε transition in Fe on its post-shock substructure evolution and mechanical behavior[J].Journal de Physique ⅣFrance,2000,10,Pr9:755-760.J.Phys.Ⅳ France,2000.10(9):755-760
    [10]Vesser L R,Hixson R S,Vorthman J E,et al.Spall Strength and Shock Release Kinetics Following the Alpha-Epsilon Phase Transition in Iron[R].Research Highlights.Physics Division Progress Report 1999-2000.
    [11]Erkman J O.Smooth spalls and the polymorphism of iron[J].Journal of Applied Physics,1961,32(5):939-944.
    [12]Shaw J A,Kyriakides S.Thermomechanical aspects of NiTi.J.Mech.Phys.Solids,1995,43(8):1243-1281.
    [13]Sehitoglu H,Karaman I,Anderson R,Zhang X,Gall K,Maier H J,Chumlyakov Y.Compressive response of NiTi single crystals.Acta mater.,2000,48:3311-3326.
    [14]Sehitoglu H,Jun J,Zhang X,et al.Shape memory and pseudoelastic behavior of 51.5%Ni-Ti single crystals in solutionized and overaged state[J].Acta mater.2001,49:3609-3620
    [15]Sehitoglu H,Anderson R,Karaman I,Gall K,Chumlyakov Y.Cyclic deformation behavior of single crystal NiTi.Materials Science and Engineering,2001,A314:67-74.
    [16]Dolce M.,Cardone D.Mechanical behaviour of shape memory alloys for seismic applications:2.Austenite NiTi wires subjected to tension.International Journal of Mechanical Sciences,2001,43:2657-2677
    [17]McNaney J M,Imbeni V,Jung Y,et al.An experimental study of the superelastic effect in a shape-memory Nitinol alloy under biaxial loading.Mechanics of Materials,2003,35:969-986.
    [18]Nemat-Nasser S,Guo W G.Superelastic and cyclic response of NiTi SMA at various strain rates and temperatures.Mechanics of Materials 38(2006)463-474
    [19]Plietsch R,Ehrlich K.Strength differential effect in pseudoelastic NiTi shape memory alloys.Acta mater.,1997,45(6):2417-2424.
    [20]Liu Y,Xie Z,Van Humbeeck J,Delaey L.Asymmetry of stress-strain curves under tension and compression for NiTi shape mamory alloys.Acta mater.,1998,46(12):4325-4338.
    [21]Orgéas L,Favier D.Stress-induced martensitic transformation of a NiTi alloy in isothermal shear,tension and compression.Acta mater.,1998,46(15):5579-5591.
    [22]Gall K,Sehitoglu H,Chumlyakov Y I,et al.Tension-Compression Asymmetry of the stress-strain response in Aged Single crystal and Polycrystalline NiTi.Acta mater.,1999,47(4):1203-1217.
    [23]Liu Y,Li Y L,Ramesh K T,Van Humbeeck J.High strain rate deformation of martensitic NiTi shape memory alloy.Scripta Materialia,1999,41(1):89-95.
    [24]施绍裘,陈江瑛,董新龙等.钛镍形状记忆合金冲击变形后形状记忆效应的研究.爆炸与冲击,2001,21(3):168-172.
    [25]Chen W W,Wu Q P,Kang J H,Winfree N A.Compressive superelastic behavior of a NiTi shape memory alloy at strain rates of 0.001-750s-1.International Journal of Solids and Structures,2001,38:8989-8998.
    [26]朱珏,张明华,董新龙,王礼立.TiNi合金率相关的动态超弹性行为.爆炸与冲击,2003,23(增刊):81-82.
    [27]郭扬波,唐志平,戴翔宇.TiNi合金的压缩形状记忆行为研究.爆炸与冲击,2003,23(增刊):103-104.
    [28]Thakur A M,Thadhani N N,Schwarz R B.Martensitic transformation in NiTi alloys induced by tensile stress pulses.Shock Compression of Condensed Matter-1989,ed.By S.C.Schmidt et al,Elsevier,New York,1990,139-142.
    [29]Thakur A M,Thadhani N N,Schwarz R B.Shock-induced martensitic transformations in near-equiatomic NiTi alloys.Metallurgical and Materials Transactions A,1997,28: 1445-1455.
    [30]Escobar J C,Clifton R J,Yang S Y.Stress-wave-induced martensitic phase transformations in NiTi.Shock Compression of Condensed Matter-1999,ed.By M.D.Furnish,L.C.Chhabildas and R.S.Hixson,American Institute of Physics,Woodbury,New York,2000,267-270.
    [31]Millett J C F,Bourne N K.The shock-induced mechanical response of the shape memory alloy,NiTi.Materials Science and Engineering A,2004,378:138-142.
    [32]郭扬波.TiNi合金的冲击相变特性和相变本构研究[D].合肥:中国科学技术大学博士学位论文,2005:30-51.
    [33]杨杰,吴月华.形状记忆合金及其应用[M].合肥:中国科技大学出版社,1993.
    [34]Sittner P,Landa M,Lukas P,et al.R-phase transformation phenomena in thermomechanically loaded NiTi polycrystals.Mechanics of Materials,2006,38:475-492.
    [1]Berg B T.Thermomechanics of shape memory alloy rods.Ph.D Thesis,University of Minnesota,1994.
    [2]Berg B T.Bending of superelastic wires 1 - Experimental aspects.J.Appl.Mech.,1995,62(2):459-465.
    [3]Rejzner J,Lexcellent C,Raniecki B.Pseudoelastic behaviour of shape memory alloy beams under pure bending:experiments and modeling.International Journal of Mechanical Sciences,2002,44:665-686.
    [4]Lagoudas D C,Chen Y C,Ravi-Chandar K.Fabrication,Modeling and Characterization of Porous Shape Memory Alloys.Sponsored by Office of Naval Research:April 24,2001
    [5]Rahman M A,Qiu J,Tani J.Buckling and Postbuckling Characteristics of the Superelastic SMA Columns.International Journal of Solids and Structures,2001,38:9253-9265.
    [6]Collet M,Foltete E,Lexcellent C.Analysis of the behavior of a Shape Memory Alloy beam under dynamical loading.European Journal of Mechanics,A/Solids,2001,20(4):615-630.
    [7]Nemat-Nasser S,Choi J Y,Isaacs J B,etal.Experimental Observation of High-rate Buckling of Thin Cylindrical Shape-memory Shells.Smart Structures and Materials:Active Materials:Behavior and Mechanics,Edited by William D.Armstrong,Proceedings of SPIE,2005,5761:347-354.
    [8]Guo,Yangbo;Tang,Zhiping;Zhang,Xinghua;Xu,Songlin.Phase transition Taylor test.Impact Loading of Lightweight Structures.Vol.WIT Transactions on Engineering Science,2005,49:241-255.
    [9]唐志平,卢艰春,张兴华.TiNi相变悬臂梁的横向冲击特性实验研究.爆炸与冲击,2007,27(4):289-295.
    [10]王礼立.应力波基础[M].北京:国防工业出版社,2005.
    [11]卢艰春.TiNi合金结构抗冲击性能研究[D].合肥:中国科学技术大学硕士学位论文,2006:38-45.
    [1]Auricchio F,Sacco E.A superelastic shape memory alloy beam.Journal of Intelligent Material Systems and Structures,1997,8:489-501.
    [2]Auricchio F,Sacco E.A temperature-dependent beam for shape-memory alloys:constitutive modelling,finite-element implementation and numerical simulations.Comput.Methods Appl.Mech.Engrg.,1999,174:171-190.
    [3]彭刚,李黎,唐家祥.形状记忆合金受弯杆的力学性能分析.武汉大学学报,2004,37(4):59-64.
    [4]Raniecki B,Rejzner J,Lexcellent C.Anatomization of hysteresis loops in pure bending of ideal pseudoelastic SMA beams.International Journal of Mechanical Sciences,2001,43:1339-1368.
    [5]Bruno O,Vaynblat D.Two-wave structures in shock-induced martensitic phase transitions.Mathematical and Computer Modelling 2001,34(12-13),p.1261-1271
    [6]Dai X Y,Tang Z P,Xu S L,et al.Propagation of macroscopic phase boundaries under impact loading.International Journal of Impact Engineering,2004,30:385-401.
    [1]Dai X Y,Tang Z P,Xu S L,et al.Propagation of macroscopic phase boundaries under impact loading.International Journal of Impact Engineering,2004,30:385-401.
    [2]Duwez P E,Clark D S,Bohnenhlust H F.The behavior of long beam under impact loading.J.Appl.Mech.1950,17(1):27-45.
    [3]王礼立.应力波基础[M].北京:国防工业出版社,2005.
    [4]Auricchio F,Taylor R L.Shape-memory alloys:modelling and numerical simulations of the finite-strain superelastic behavior.Comput.Methods Appl.Mech.Engrg.1997,143:175-195.
    [5]Auricchio F,Taylor R L,Lubliner J.Shape-memory alloys:macromodelling and numerical simulations of the superelastic behavior.Comput.Methods Appl.Mech.Engrg.,1997,146:281-312.
    [6]Yu T X,Yang J L,Reid S R.Interaction between reflected elastic flexural waves and a plastic 'hinge' in the dynamic response of pulse loaded beam.International Journal of Impact Engineering,1997,19(5-6):457-475.
    [7]余同希,W.L斯壮.塑性结构的动力学模型[M].北京:北京大学出版社,2002.
    [8]卢艰春.TiNi合金结构抗冲击性能研究[D].合肥:中国科学技术大学硕士学位论文,2006:14-21.
    [9]徐薇薇,唐志平,张兴华.有限杆中不可逆相边界的传播规律及其应用.高压物理学报,2006,20(4):365-371.
    [1]Liew K M,Ren J,Kitipornchai S.Analysis of the pseudoelastic behavior of a SMA beam by the element-free Galerkin method.Engineering Analysis with Boundary Elements,2004,28:497-507.
    [2]Buratti G.Stresses and deflections in a pseudo-elastic beam under cyclic loads.Continuum Mech.Thermodyn.,2005,17:149-157.