小学生数学应用题解决的认知与元认知策略及其训练研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有关问题解决的心理学研究是近年来认知心理学研究的热点。然而,有关问题解决策略的研究却一直是一个研究得相对薄弱和不充分的领域。因此,本论文将小学生数学应用题解决过程中的认知策略和元认知策略及其教学训练作为主要课题,进行系统的实验研究。实验的具体目标是:第一,探索小学生解决应用题的认知和元认知策略的一般模式以及表征阶段的策略的特点;第二,探讨几种不同方式的认知策略训练和元认知策略训练的效果;第三, 自编一套用于诊断小学生数学应用题解决的元认知水平的有效的测量工具。以小学中高年级的学生为被试,以小学数学应用题为材料,进行了六个系列的研究。本研究的结果可以概括为以下三个方面:
     1、关于小学生数学应用题解决的认知与元认知策略
     本研究首先揭示了与小学生数学应用题解题成绩密切相关的一系列认知与元认知因素:问题情境的理解、问题表征、问题归类、结果估计、解题计划、对列式的自我评价。通过进一步的路径分析发现:首先是问题情境理解会影响问题表征、问题归类、解题计划和对列式的自我评价,而问题表征、问题归类、解题计划和对列式的自我评价进而又会直接影响解题成绩。问题情境理解、问题表征、问题归类、解题计划和对列式的自我评价是小学生在解决数学应用题过程中的不同阶段相继采取的一系列认知与元认知策略,它们共同构成了小学生解决数学应用题的整体策略。另外还发现,我国小学生对和差应用题的表征存在两种策略,即直译策略和问题模型策略。
     2、关于小学生数学应用题解决策略的训练
     首先,本研究发现,三种方式的解题策略训练,即问题情境理解训练、画图表征策略训练以及整体模型策略训练均能够显著提高小学生解决数学应用题的策略水平,进而显著提高小学生数学应用题解决的成绩。其次,三种方式的解题策略训练分别与元认知训练相结合,即问题情境理解训练与元认知训练相结合、画图表征策略训练与元认
    
    知训练相结合以及整体模型策略训练与元认知训练相结合均能够显著
    提高小学生数学应用题解决的成绩,但与单纯的问题情境理解训练组、
    画图表征策略训练组、整体模型策略训练组相比,与元认知训练相结
    合的策略训练组在数学应用题解决的成绩、策略水平以及元认知的总
    体水平的提高上没有更突出的效果。第三,策略训练的效果与学生原
    有的成绩地位有一定的关系,即策略训练与学生的原有成绩地位之间
    出现了若干显著的交互作用效应。其中,画图表征策略训练、整体模
    型策略训练以及它们分别与元认知训练的结合对于低分组的学生比对
    高分组的学生在某些方面有更好的训练效果。第四,策略训练的效果
    与应用题的类型有一定的关系,即策略训练与应用题的类型之间出现
    了若干显著的交互作用效应。其中,在行程应用题上,画图表征策略
    训练显著地提高了学生画图表征策略的水平,而在分数和工程应用题
    上的提高不显著;整体模型策略训练能够显著地提高小学生解决倍数
    应用题的整体策略水平以及解决工程应用题的整体策略水平和理解策
    略水平:整体模型策略训练与元认知训练的结合能够显著提高小学生
    解决工程应用题的整体策略水平和理解策略水平。从中可以发现在某
    些类型的应用题之间出现了一些训练的迁移效果。
     3、关于小学生数学应用题解决的元认知问卷
     本研究自编了小学生数学应用题解决元认知问卷。通过多种方法的
    检验表明,该问卷具有较好的内部一致性信度、分半信度、稳定性信
    度和区分度,具有良好的结构效度和效标关联效度。因此,小学生数
    学应用题解决元认知问卷是可靠的,并且是有效的,可以用来测量小
    学中高年级学生的数学应用题解决的元认知水平。
Nowadays problem-solving has been a heated topic of cognitive psychology. However, it is also a category with so many problems unsolved or unclear. Hence, the main purpose of this study was to investigate cognitive and metacognitive strategies, as well as correspondent trainings, in mathematical problem solving, confronting primary students when solving arithmetic word problems. The specific aims are, firstly, to observe cognitive and metacognitive strategies in general and representation strategies, secondly, to observe different effects resulting from applying different types of cognitive and metacognitive training, and thirdly, self-designed method was employed to evaluate metacognitive behaviors of primary students, which was hoped to provide insight into metacognitive aspects of mathematical problem solving. The subjects are middle and high-level graders in primary schools. Six experiments were conducted by taking arithmetic word problems as its material. The results of this study were as follows:
    ( 1 ) Cognitive and metacognitive strategies employed by students coping with mathematic problems. At the very beginning, it revealed that cognitive and metacognitive aspects were closely related to their achievements in arithmetic word problems. They were related to text comprehension, problem representation, problem categorization, result estimate, solution plan, procedure self-evaluation. If we went further, we could know that text comprehension would, in a way, influence
    
    
    problem representation, problem categorization, solution plan and procedure self-evaluation. Those strategies would, in turn, have a direct effect on the achievements of students. Self-evaluation of all those strategies mentioned above, which constituted metacognitive strategies for solving word problem as a whole, were a series of ones employed by students at different stages. In addition, we found that, the choice of using direct translation strategy or problem model strategy had every reason to distinguish successful and unsuccessful students. (2) Strategic training during problem solving. First of all, three different types of strategic training were found, namely text comprehension training, representation strategy training and whole model strategy training, which had been proved to enhance students' abilities of problem solving, and as a result to help improve their achievements. Secondly, these three different types of strategic training went, respectively, with metacognitive training, that is, text comprehension training combined with metacognitive training, representation strategy training combined with metacognitive training, and finally whole model strategy problem training combined with metacognitive training. By so doing, students made great progress in their achievements concerning problem solving. However, we should draw our attention to the fact that, those trainings combined with metacognitive training did not show greater progress comparing with the above three types which were conducted independently. Thirdly, the effects of strategic trainings were consistent with students' original achievements. That is to say, strategic trainings and their original achievements were correlated by having an interaction with each other. To put it more explicit, those who had had lower scores made more progress than those with
    
    higher scores in representation strategy training, whole model training and metacognitive training mixed with the above two. Fourthly, we also found that the effects of strategic training were in line with different types of word problem, i. e, either side had an obvious interaction with the other. Representation strategy training enhanced students' abilities of representation strategy when solving distance problem, but made no greater progress when solving fraction and project problem. On the other hand, whole model strategy training could greatly enhance students' abilities of whole model strategy when solving multiplication and project problem. At the same time, whole model strategy training, if combined with met
引文
1.白学军.智力心理学的研究进展.杭州:浙江人民出版社,1996
    2.曹才翰,章建跃.数学教育心理学.北京:北京师范大学出版社,1999
    3.陈琦,刘儒德.当代教育心理学.北京:北京师范大学出版社,1997
    4.陈益,解决人际问题的认知技能对4-5岁儿童同伴交往行为的影响的实验研究,心理科学,1996,(5):282-286
    5.陈英和,仲宁宁,耿柳娜.关于数学应用题心理表征策略的新理论.心理科学,2004,27(1):246-247
    6.董奇.关于学生学习自我监控的实验研究.北京师范大学学报(社科版),1995(1):84~90
    7.董奇.论元认知.北京师范大学学报(社科版),1989(1):45~52
    8.董奇.元认知与思维品质关系性质的相关、实验研究.北京师范大学学报(社科版),1990(5):51~58
    9.董奇,周勇,陈红兵.自我监控与智力.杭州:浙江人民出版社,1996
    10.段继扬,问题解决理论的演进,心理学探新,92,(1):15-19
    11.邓铸,余嘉元.问题解决中对问题的外部表征和内部表征.心理学动态,2001年3期,第193~200页。
    12.冯金华等,一种问题解决研究的新任务——五皇后问题,心理学动态,1996,4(2)
    13.冯忠良.结构——定向教学的理论与实践.北京:北京师范大学出版社,1992
    14.傅小兰.独立钻石棋问题解决中的知觉搜索深度.心理学报,1991年第4期,第387-393页。
    15.傅小兰.探索问题解决的奥秘:表征与策略.见:中国心理学会编:当代中国心理学.北京:人民教育出版社,2001年版,第37~42页。
    16.傅小兰,何海东.问题表征过程的一项研究.心理学报,1995(1):204~210
    17.高文.一般的问题解决模式.外国教育资料,1999(6):19~24
    18.管鹏.形成良好数学认知结构的认知心理学原理.教育理论与实践,
    
    1998(2):40~45
    19.郭成,元认知训练对不同认知风格小学生解应用题能力影响的实验研究,教学心理学研究,西南师范大学出版社,1998,288-320
    20.韩玉昌,任桂琴.小学一年级数学新教材插图效果的眼动研究.心理学报,2003,35(6):818-822
    21.黄巍.优差生解决有机合成的问题表征差异及其影响因素.心理科学,1994年第4期,第217-222页。
    22.纪桂萍,焦书兰,何海东.小学生数学问题解决与心理表征.心理发展与教育,1996(1):29-32
    23.李广洲,任红艳,余嘉元.高中学生计算类化学问题的表征及其与策略关系的研究.心理发展与教育,2001年第3期,第33~39页。
    24.李明振,数学问题解决策略及其训练研究,贵州师范大学学报(自然科学版),1998,16(2):72-76
    25.李维.认知心理学研究.上海:上海教育出版社,1997年版。
    26.李亦菲,朱新民.一种通用的口语报告编码方案.心理学动态,1998年第4期。
    27.李晓文,王莹.教学策略.北京:高等教育出版社,2000年版,第67~95页。
    28.李士奇.数学教育心理.上海:华东师范大学出版社,2001
    29.梁宁建等.问题解决策略的元认知研究.心理科学,2001(3):280~282
    30.廖伯琴,黄希庭.大学生解决物理问题的表征层次的实验研究.心理科学,1997年第6期,第494~498页。
    31.林志忠.后设认知策略对资优儿童科学解题能力影响之研究.台湾师范大学学报:科学教育类.1999,(1&2),61-81
    32.刘电芝.问题解决中的模式识别探析.华东师范大学学报(教育科学版),1996(2):79-82
    33.刘广珠.儿童解决算术应用题认知加工过程及比较图式形成的实验研究.心理发展与教育,1996(2):1-18
    34.刘广珠,小学生解决分数应用题认知加工过程的实验研究,心理发展与教育,1997(3):7-10
    
    
    35.刘儒德.在CAI下即时提示解题过程对小学三年级学生建构两步应用题整体结构的影响.心理发展与教育,1997(2):18-23
    36.刘霞,潘晓良.不确定性问题解决策略研究及存在的问题分析.心理科学,1997年第1期,第36~39页。
    37.刘霞,潘晓良.模拟互变问题解决认知策略的实验研究.心理科学,1997年4期,第314~317页。
    38.刘晓红,左梦兰.7-15岁儿童解决问题应用规则的实验.心理发展与教育,1997(2):13-17
    39.刘育明,有关思维和问题解决技能的培养与训练的研究简介
    40.陆昌勤,周谦.问题解决的实验性研究——解代数应用题的认知结构.心理科学,1998年第3期,第262~263页。
    41.路海东,教育心理学,长春,东北师大出版社,2002:126
    42.路海东,董妍.小学生表征数学应用题策略的研究.心理发展与教育,2003(1):60-63
    43.梁宁建.问题解决产生式规则解决物理学问题研究.心理科学,1995年第2期,第89~93页。
    44.廖伯琴,黄希庭,大学生解决物理问题的表征层次的实验研究,心理科学,1997,20(4):494-498
    45.廖运章,数学应用问题解决心理机制的调查与认知分析,数学教育学报,2001,10(1):72-74
    46.莫雷,刘丽虹.样例表面内容对问题解决类比迁移过程的影响.心理学报,1999(3):313~321
    47.莫雷,唐雪峰.表面概貌对原理运用的影响的实验研究.心理学报,2000(4):399~408
    48.莫雷,吴思娜.不同概化的问题原型对问题归类和解决的影响.心理学报,2001,33(5):416-424
    49.牛卫华,张梅玲,学困生和优秀生解应用题策略的对比研究,心理科学,1998,21(6):566-567
    50.皮连生.智育心理学.北京:人民教育出版社,1996
    51.曲衍立,张梅玲.类比迁移研究综述.心理学动态.2000(2):50~55
    
    
    52.邵瑞珍等.教育心理学.上海:上海教育出版社,1997
    53.邵志芳.思维心理学.上海:华东师范大学出版社,2001年版。
    54.邵志芳,问题解决中的人工问题的设计,心理科学,1996,19(1):55-56
    55.施良方.学习论——学习心理学的理论与原理.北京:人民教育出版社,1992
    56.施铁如.解代数应用题的认知模式.心理学报,1985(3):296~303
    57.孙联荣,小学数学问题解决策略的研究,上海教育科研,2000,(10):51-53
    58.童世斌,解答数学应用题思维策略的元认知训练,教学心理学研究,西南师大出版社,1998,352-372
    59.童世斌,张庆林.问题解决中的元认知研究.心理学动态,1997(1):36~39
    60.汪安圣.思维心理学.上海:华东师范大学出版社,1992年版。
    61.汪玲 郭德俊.,元认知的本质与要素,心理学报.,2000,32(4):458-463
    62.王东辉,傅小兰.换位棋问题规则的表征与解题正确率问关系的研究.心理科学,1997年6期。
    63.王甦,汪安圣,认知心理学,北京,北京大学出版社,1992:277
    64.沃建中,小学数学教学心理学,北京教育出版社,2001,162-171
    65.沃建中.智力研究的实验方法.杭州:浙江人民出版社,1996
    66.吴立岗.教学的原理、模式和活动.南宁:广西教育出版社,1998
    67.吴庆麟.教育心理学.北京:人民教育出版社,1999
    68.辛自强,俞国良.问题解决中策略的变化:一项微观发生研究.心理学报,2003,35(6):786-795
    69.邢强,张金桥.国外复杂问题解决研究综述.心理学动态,2001年第1期,第12~18页。
    70.徐斌艳.数学教育展望.上海:华东师范大学出版社,2001
    71.许远理,李亦菲,朱新明.评价问题难度的一种新方法:认知负荷测量模型.心理学动态,1998年第2期,第1~7页。
    72.杨宁.元认知研究的理论意义.心理学报,1995(3):322~327
    73.杨卫星等.不同认知风格学习的问题共性意识水平对解题迁移的影响.心理发展与教育,2000(2):17~21
    
    
    74.杨卫星,张梅玲.平面几何解题过程中加工水平对迁移的影响.心理学报,2000(3):282~286
    75.杨治良.基础实验心理学.兰州:甘肃人民出版社,1989
    76.姚飞、张大均,应用题结构分析训练对提高小学生解题能力的实验研究,心理学报,1999,31(1)53-58
    77.姚梅林.当代迁移研究的趋向.心理发展与教育,2000(3):55~58
    78.游旭群.心理表征对正投影问题解决及轴测投影图再认水平的影响.心理科学,1997,20(4)329-322
    79.余嘉元.运用部分记分模型研究不同解题策略问题.心理科学,1998年第4期,第358~360页。
    80.于萍,左梦兰.三——六年级小学生数学能力及认知结构的发展.心理发展与教育,1996(3):30-36
    81.喻平.数学问题解决的实证研究述评.数学教育学报,2002(1):16~20
    82.喻平.现代心理学关于解决数学应用题的研究述评.上海师大学报(教育版),2000(1):49~52
    83.张春莉.数学问题解决过程的内在心理机制.华东师范大学学报(教科版),1998(2):55~63
    84.张春莉,样例和练习在促进解题迁移能力中的作用,心理学报,2001,33(2):170-175
    85.张奠宙,数学教育研究导引,南京,江苏教育出版社,1998,第二版,10
    86.张华,庞丽娟,陶沙,陈瑶,董奇.儿童早期数学认知能力的结构及其特点.心理学报,2003,35(6):810-817
    87.张建伟,陈琦.认知结构的测查方法.教育研究与实验,2001(1):46~49
    88.张建伟,陈琦.简论建构性学习和教学.教育研究,1999(5):56~60
    89.张建伟.基于问题解决的知识建构.教育研究,2000(1):58~62
    90.章建跃,林崇德.中学生数学学科自我监控能力的发展.中国教育学刊,2000(4):46~49
    91.张建跃,朱文芳著,中学数学教学心理学,北京教育出版社,2001,245
    92.张庆林.当代认知心理学在教学中的应用.重庆:西南师范大学出版社,
    
    1993
    93.张庆林,管鹏.小学生表征应用题的元认知分析.心理发展与教育,1997(3):11~14
    94.张庆林,黄蓓.解决学科问题的有效思维策略雏议.课程·教材·教法,1994(8):15~18
    95.张庆林,肖崇好.顿悟与问题表征的转变.心理学报,1996年第1期,第30~37页。
    96.张庆林.怎样学习知识才有利于提高问题解决能力.中国教育学刊,1992年第3期,第16~18页。
    97.张卫.问题解决中的内隐认知.心理学动态,1999年第2期,第7~12页。
    98.郑毓信,梁贯成.认知科学、建构主义与数学教育.上海:上海教育出版社,1998
    99.周新林,张梅玲.部总知识在解决加减文字题中的作用.心理学报,2003,35(5):649-655
    100.周新林,张梅玲.解答加减文字题中情境复杂性对问题难度的影响.心理学报,2003,35(2):195-200
    101.周新林,张梅玲.加减文字题解决研究概述.心理科学进展,2003,11(6):642-650
    102.朱德全.数学问题解决的表征及元认知开发.教育研究,1997(3):50~54
    103.朱德全.数学问题系统的构建与解决程式.中国教育学刊,1999(5):41~44
    104.朱新明.解决几何问题的思维过程.心理学报,1985(1):9~18
    105.朱智贤,林崇德著,思维发展心理学,北京,北京师范大学出版社,1986:208-212
    106.[美]安德森.彭聃龄等译.认知心理学.长春:吉林教育出版社,1989
    107.[美]奥苏伯尔等.佘星南,宋钧译.教育心理学.北京:人民教育出版社,1994
    108.[美]波利亚.李心灿等译.数学与猜想.北京:科学出版社,1985
    109.[美]波利亚.刘远图,秦璋译.数学的发现.北京:科学出版社,1987
    110.[美]波利亚.阎育苏译.怎样解题.北京:科学出版社,1982
    
    
    111.[美]加涅.皮连生等译.学习的条件和教学论.上海:华东师范大学出版社,1999
    112.[美]John B.Best.黄希庭等译.认知心理学.北京:中国轻工业出版社,2000
    113.[美]罗伯特·格拉塞.杨琦译.教学心理学的进展.北京:华夏出版社,1989
    114.[美]司马贺.荆其诚,张原粲译.人类的认知:思维的信息加工理论.北京:科学出版社,1986
    115.[美]西蒙.认知科学的一些最新进展.心理学报,1991(2):153~157
    116.[瑞士]皮亚杰.发生认识论原理.北京:商务印书馆,1989
    117. Alan A. Hartley & Joan Wilson Anderson. Instruction, induction, generation, and evaluation of strategies for solving search problems. Journal of Gerontology, 1986(5): 650~q558
    118. Alessandro Antonietti, Sabrina Ignazi&Patrizia Perego: Metacognitive Knowledge about Problem-solving methods
    119. Alessandro Antonietti, Sabrina Ignazi and Patrizia Perego. Metacognitive knowledge about problem-solving methods. Contemporary Educational Psychology, 2000(1): 1~15
    120. Alice F.Artzt and Eleanor Armour-Thomas,Development Of a Cognitive-Mathematical Problem Solving in Small Groups,Cognition and Instruction, 1992,9(2): 137-175
    121. Alice F.Artzt, Eleanor Armour-Thomas. Development of Cognitive-Metacognitive Framework for Protocol Analysis of Mathematical Problem Solving in Small Groups. Cognition and Instruction, 1992,9(2): 137-175
    122. Alison King, Effects of training in strategic questioning on children's problem-solving performance,Journal of educational psychology, 1991,83(3):307-317
    123. Anand, P. G., et al. Vsing computer-assisted instruction to personalize arithmetic materials for elementary school children. Journal of Educational
    
    Psychology, 1987, (2):72~78
    124. Anke W. Bl(?)te, Eeke Van der Burg & Anton S. Klein. Students' flexibility in solving tow-digit addition and subtraction problems: Instruction effects. Journal of Experimental Psychology, 2001 (3): 627~638
    125. Anderson, J. R. Problem solving and learning. American Psychologist, 1993, 48:35~44
    126. Ann M. Gallagher, Richard De Lisi and Patricia C. Hoist, Ann V. McGillicuddy-De Lisi, Mary Morely and Cara Cahalan. Gender Differences in Advanced Mathematical Problem Solving. Journal of Experimental Child Psychology, 2000(7): 165~190
    127. Anne Bovenmyer Lewis. Training students to represent arithmetic word problems. Journal of Educational Psychology, 1989(4): 521~532
    128. Bernardo, A. B. I. Problem-specific information and development of problem-Type schemata. Journal of Experimantal Psychology: Learning, Memory, and Cognition, 1994(2): 379~395
    129. Blessing, S. B., & Ross, B. H. Content effects in problem categorization and problem solving. Journal of Experimental Psychology: Learning, Memory, and Cognition, 1996, Vol 22(3), 792~810.
    130. Bracha Kramarski, Zemira R. Mevarech, Adiva Lieberman, Effects of Multilevel Versus Unilevel Metacognitive Training On Mathematical Reasoning, the Journal of Ecucational Research, 2001, 94(5): 292-300
    131. Bransford, J. D., et al. Teaching thinking and problem solving. Asmerican Psychologist, 1986(10): 1078~1088
    132. Brent D.Slife, Jane Weiss, and Thomas Bell, Separability of Metacognition and Cognition: Problem solving in learning disabled and regular students, Journal of Educational psychology, 1985, 77(4):437-445
    133. Brent D. Slife,Charles A.Weaver, Ⅲ. Depression,Cognitive Skill, and Metacognitive Skill in Problem Solving.Cognition and Emotion,1992,6(1),1-22
    134. Brigid Barron .Problem Solving in Video-Based Microworlds:Collaborative
    
    and Individual Outcomes of High-Achieving Sixth-Grade Students. Journal of Educational Psychology,2000,vol 92(2),391-398
    135. Chi, M. T. H., et al. Self-explanations: How students study and use example in learning to solve problems. Cognitive Science, 1989, 13: 145~182
    136. Chi, M. T. H., et al. Eliciting self-explanations improves understanding. Cognitive Science, 1994, 18: 439~477
    137. Conney, J. B., et al. Individual differences in memory for mathematical story problems: memory span and problem perception. Journal of Educational Psychology, 1990, 82(3): 570~577
    138. Cooper, G. A. & Sweller, J. Effects of Schema acquisition and rule automation on mathematical problem-solving tranfer. Journal of Educational Psychology, 1987, 73: 347~362
    139. Cummins, D. D. Role of analogical reasoning in the induction of problem categories. Journal of Experimental Psychology: Learning, Memory, and Cognition, 1992, Vol 18(5), 1103~1124.
    140. Daniela Lucangeli, Patrizio E. Tressoldi, and Michela Cendron. Cognitive and Metacognitive Abilities Involved in The Solution of Mathematical Word Problems: Validation of A Comprehensive Model .Contemporary Educational psychology, 1998;23(2):257-275
    141. Daniel L. Schwartz. The Emergence of Abstract Representations in Dyad Problem Solving. The Journal of the Learning Sciences, 1995(1): 321~354
    142. David C. Geary. Sex Differences in Mathematical Abilities: Commentary on the Math-Fact Retrieval Hypothesis. Contemporary Educational Psychology, 1999(4): 267~274
    143. David C. Ceary. Commentary Sex Differences in Mathematical abilities: Commentary on the math-fact retrieval hypothesis. Contemporary Educational Psychology, 1999; 24(2):267-274
    144. David C. Geary, Mary K. Hoard, and Carmen O. Hamson. Numerical and Arithmetical Cognition: Patterns of Functions and Deficits in Children at Risk for a Mathematical Disability. Journal of Experimental Child
    
    Psychology, 1999(3): 213~239
    145. Diane J. Briars and Jill H. Larkin. An Integrated Model of Skill in Solving Elementary Word Problems. Cognition and Instruction, 1984(8)
    146. Dsvod S. Crystal & Hsrold W. Stevenson. Mothers' perceptions of children's problems with mathematics: A cross-national comparison. Journal of Educational Psychology, 1991(3): 372~376
    147. Edward S. Johnson. Sex Difference in Problem Solving. Journal of Educational Psychology, 1984,vol 76(6), 1359-1371
    148. Elizabeth Owen & John Sweller. What do students learn while solving mathematics problems? Journal of Educational Psychology, 1985(3): 272~284
    149. Elizabeth P. Kirk and Mark H .Ashcraft: telling stories: the perils and promise of using verbal reports to study math strategies journal of experiment psychology: learnings memory and cognition 2001,vol,27,no. 1,157-175
    150. Elsbeth Stem. Spontaneous use of conceptual mathematical knowledge in elementary school children. Contemporary Educational Psychology, 1992(170: 266~277
    151. Erin Phelps,William Damon. Problem Solving With Equals:Peer Collaboration as a Context for Learing Mathematics and Spatial Concepts. Journal of Educational Psychology, 1989,vol 81(4),639-646
    152. Fred G. W. C. Paas. Training Strategies for Attaining Transfer of Problem-Solving Skill in Statistics: A Cognitive-Load Approach. Journal of Educational Psychology, 1992(4): 429~434
    153. Gary D. Phye. Inductive Problem Solving: Schema Inducement and Memory-Based Transfer. Journal of Educational Psychology, 1990(4): 826~831
    154. Gary D.Phye. Problem-Solving Instruction and Problem-Solving Transfer:The Correspondence Issue. Journal of Educational Psychology,2001,vol 93(3),571-578
    
    
    155. Graham Cooper & John Seller. Effects of schema acquisition and rule automation on mathematical problem-solving transfer. Journal of Educational Psychology, 1987(4): 347~362
    156. Gary D. Priye, Inductive Problem Solving: schena Inducement and Memory-Based Transfer, Journal of Educational Psychology, 1990, 82(4): 826-831
    157. Goldsmith, T. E., et al. Assessing Structural knowledge. Journal of Educational Psychology, 1991, 83:88~96
    158. Gordon B. Willis and Karen C. Fuson, Teaching Children to use Schematic Drawings to Solve Addition and Subtraction Word Problems. Journal of Educational Psychology 1988, 80(2): 192-20
    159. Harriet J. Vermeer, Monique Baekaerts, and Gerard Seegers. Motivational and Gender Differences: Sixth-Grade Students' Mathematical Problem-Solving Behavior. Journal of Educational Psychology, 2000(4): 308~315
    160. Hathematical J. bermeer, Monique Boekaerts and Gerard Seegers: motivational and gender differences: six-grade student's mathematical problem-solving behavior, journal of educational psychology 2000, vol, 92, no.2 308-315
    161. Hegarty, M., Mayer, R. E., & Monk, C. A. Comprehension of arithmetic word problems: A comparison of successful and unsuccessful problem solvers. Journal of Educational Psychology, 1995, Vol 87(1), 18~32.
    162. H. Lee Swanson and Carole Sachse-Lee, Mathematical Problem Solving and Working Memory in Children With Learning Disabilities: Both Executive and Phonological Processes are Important. Journal of Experimental Child Psychology, 2001,79, 294-321
    163. H. Lee Swanson. Influence of Metacognitive Knowledge and Aptitude on Problem Solving. Journal of Educational Psychology, 1990(2): 306~314
    164. James M. Royer, Loel N. Tronsky, and Yan Chart, Stanley J.Jackson and Horace Marchant, Ⅲ. Math-Fact Retrieval as the Cognitive Mechanism
    
    Underlying Gender Differences in Math Test Perpformance. Contemporary Educational Psychology,1999(6): 181~266
    165. James N. MacGregor; Thomas C. Ormerod and Edward P. Chronidcle, Information Processing and Insight: A Process Model of Perforemance on The Nine-dot and Lated Problem, Journal of Experemental Psychology: Learning, Memory, and Cognition, 2001,27(1): 176-201
    166. Jamie I. D. Campbell & Qilin Xue. Cognitive arithmetic across cultures. Journal of Experimental Psychology: General, 2001 (2): 299~315
    167. Joan I. Heller & F. Reif. Prescribing effective human problem-solving process: Problem description in physics. Cognition and Instruction, 1984(2): 245~296
    168. Joan Littlefield ,John J.Rieser .Semantic Features of Similarity and Children's Strategies for Identifying Relevant Information in Mathematical Story Problems. Cognition and Instruction, 1993 ,vol 11(2), 133-188
    169. John Sweller. Cognitive Technology :Some Procedures for Facilitating Learning and Problem Solving in Mathematics and Science. Journal of Educational Psychology, 1989,vol 81(4),457-466
    170. Jonathan Smilansky. Problem solving and the quality of invention: An empirical investigation. Journal of Educational Psychology, 1984(3): 377~386
    171. Judy A. Barton. Problem-solving strategies in learning disabled and normal boys: Developmental and instructional effects. Journal of Educational Psychology, 1988(2): 184~191
    172. Katherine H.Canlbi ,Robert A.Reeve ,Philippa E.Pattison. The Role of Conceptual Understanding in Children's Addition Prlblem Solving .Development Psychology, 1998,vol34(5),882-891
    173. K. Denise Muth. Solving Arithmetic Word Problem: Role of Reading and Computational Skills. Journal of Educational Psychology, 1984(2): 205~210
    174. K. Lynn Taylor and Jean-Paul Dionne. Accessing Problem-Solving Strategy Knowledge: The Complementary Use of Concurrent Verbal Protocols and
    
    Retrospective Debriefing. Journal of Educational Psychology, 2000(3): 413~425
    175. Kenichi Machida & Jerry Carlson. Effects of verbal mediation strategy on cognitive processes in mathematics learning. Journal of Educational Psychology, 1984(6): 1382~1385
    176. Kevin B.Zook ,Francis J.Di Vesta.Effects of Oven Controlled Verbalization and Goal-Specific Search on Acquisition of Procedural Knowledge in Problem Solving. Journal of Educational Psychology,1989,vol 81 (2),220-225
    177. K.Lynn Taylor, Jean-Paul Dionne.Accessing Problem-Solving Strategy Knowledge:The Complementary Use of Concurrent Verbal Protocols and Retrospective Debriefing. Journal of Educational Psychology,2000,vol 92(3),413-425
    178. Larkin, JiMc Dermitt, J. Simon, D. P; &Simon, H, A, Expert and Novice performance in solving physics problems. Science, 1980,208,1335-1342
    179. Lewis, A. B. Training students to representation arithmetic word problem. Journal of Educational Psychology, 1989, 81(4): 521~531
    180. Lieven Verschaffel,Erik De Corte,Ann Pauwels.Solving Compare Problems: An Eye Movement Test of Lewis and Mayer's Consistency Hypothesis. Journal of Educational Psychology, 1992,vol 84(1),85-94
    181. Lovett, M. C. & Anderson, J. R. Effects of solving related proofs on memory and transfer in geometry problem solving. Journal of Experimental psychology: Learning, Memory, and Cognition, 1994(2): 366~378
    182. Lucangeli, D., Tressoldi, P. E., & Cendron, M. Cognitive and Metacognitive Abilities Involved in the Solution of Mathematical Word Problems: Validation of a Comprehensive Model. Contemporary Educational Psychology, 1998, 23, 257~275.
    183. Margaret T. Tudor. Expert and novice differences in strategies to problem solve an environmental issue. Contemporary Educational Psychology, 1992(17): 329~339
    
    
    184. Mary Hegarty ,Richard E. Mayer, and Christopher A. Monk: comprehension of arithmetic word problems: a comparison of successful and unsuccessful problem solvers journal of educational psychology 1995,vol,87,no. 1,18-32
    185. Mary Hegarty and Maria Kozhevnikov, Types of Visual-Spatial Representations and Mathematical problem solving. Journal of Educational Psychology, 1999,91(4): 684-689.
    186. Mayer, R. E. Educational Psychology: A cognitive approach. Little Brown, 1987
    187. Melanie Cary and Richard A. Carlson. External Support and the Development of Problem-Solving Routines. Journal of Experimental Psychology: Learning, Memory, and Cognition, 1999(4): 1053~1070
    188. Mel L. Snyder, Arthur Frankel. Egotism Versus Learned Helplessness as an Explanation for the Unsolvable Problem Effect: Comment on Kofta and Sedek (1989). Journal of Experimental Psychology: General. 1989(4): 409~412
    189. Michael J. Lawson & Mohan Chirmappan. Generative activity during geometry problem solving: Comparison of the performance of high-achieving and low-achieving high school students. Cognition and Instruction, 1994,12(1): 61~93
    190. Michael J. Lawson & Mohan Chinnappan. Knowlegde connectedness in geometry problem solving. Journal for Research in Mathematics Education, 2000(1): 26~43
    191. Michelene T.H. Chi, Miriam Bassok, Matthew W. Lewis, Peter Reimann & Robert Glaser. Self-explanations: How students study and use examples in learning to solve problems. Cognitive Science, 1998(13): 145~182
    192. Mika Naito and Hisayoshi Miura, Japanese Children's Numerical Competenies: Age-and Schooling-Related Influences on the Development of Number Concepts and Addition Skills,Developnental Psychology,2001,37(2):217-230
    193. Nancy C. Jordan & Laurie B. Hanich. Mathematical thinking in
    
    second-grade children with different forms of LD. Journal of Learning Disability, 2000(6): 567~578
    194. Nirmala Rao, Barbara E.Moely, John Sachs. Motivational Beliefs,Study Strategies,and Mathematics Attainment in High-and Low-Achieving Chinese Secondary School Students.Contemporary Educational Psychology,2000(25),287-316
    195. Novick, L. R., & Holyoak, K. J. Mathematical problem solving by analogy. Journal of Experimental Psychology: Learning, Memory and Cognition, 1991(7): 398~415
    196. Pass, F. G., et al. Variability of Worked example and transfer of geometrical problem-solving skills: a congnitive-load approach. Journal of Educational Psychology, 1994 86(1): 122~133
    197. Paul E.Johnson, Stefano.Graziobi, Karim Jamal, R.Glen Berryman, Detecting Deception: adversarial problem solving in a low base-rate world, Cognitive Science, 2001, 25:355-392
    198. Philippa Pattison and Norma Grieve. Do Spatial Skills Contribute to Sex Differences in Different Types of Mathematical Problems? Journal of Educational Psychology, 1984(4): 678~689
    199. Reed, S. K., Bolstad, C. A. Use of examples and procedures in problem solving. Journal of Experimental Psychology: Learning, Memory, and Cognition, 1991, Vol 17(4), 753~766.
    200. Reed, S. K., et al. Selecting examples for solving word problems. Journal of Educational Psychology, 1994, 86(3): 380~388
    201. Reed, S. K. Constraints on the abstraction of Solutions. Journal of Educational Psychology, 1989, 81(4): 532~540
    202. Reed, S. K., et al. Usefulness of analogous solutions for solving algebra word problem. Journal of Experimental psychology: Learning, Memory, and Cognition, 1985, 11: 106~125
    203. Reed, S. K. Astracture-mapping model for word problems. Journal of Experimental Psychology: Learning Memory, and Congitio, 1987,
    
    13(1):124~139
    204. Renae Low and Ray Over. Gender Differences in Solution of Algebraic Word Problems Containing Irrelevant Information. Journal of Educational Psychology, 1993(2): 331~339
    205. Richard Catrambone, Keith J. Holyoak. Overcoming Contextual Limitations on Problem-Solving Transfer. Journal of Experimental Psychology, 1989(6): 1147~1156
    206. Richard E. Mayer, Hidetsugu Tajika, Caryn Stanley. Mathematical Problem Solving in Japan and the United States: A Controlled Comparison. Journal of Educational Psychology, 1991(4): 69~72
    207. Robert Helwig, Marick A. Rozek-Tedeseo, Greald Tindal, Bill Heath and Patricia J. Almond. Reading as an Access to Mathematics Problem Solving on Multiple-Choice Tests for Sixth-Grade Students. The Journal of Education Research, 1999(2): 113~125
    208. Rolf Ploetzner, Eric Fehse ,Cornelia Kneser, Hans Spada. Learning to Relate Qualitative and Quantitative Problem Reprensentations in a Model-Based Setting for Collaborative Problem Solving. The Journal of The Learning Sciences,1999,vo18(2),177-214
    209. Ross, B. H., & Patrick, T. K. Generalizing from the use of earlier example in problem solving. Journal of Experimental Psychology: Learning, Memory, and Cognition, 1990, 16(1): 42~55
    210. Ross, B. H., & Kilbane, M. C. Effect of principle explanation and superficial similarity on analogical mapping in problem solving. Journal of Experimental Psychology: Learning, Memory, and Cognition, 1997, 23(2): 427~440
    211. Ross, B. H., & Kennedy, P. Generalizing from the use of earlier examples in problem solving. Journal of Experimental Psychology: Learning, Memory, and Cognition, 1990, Vol 16(1), 42~55.
    212. Sarah Theule Lubienski. Problem solving as a means toward mathematics for all: An exploratory look through a class lens. Journal for Research in
    
    Mathematics Education, 2000(4): 454~482
    213. Slava Kalyuga, Paul Chandler & Juhani Tuovinen & John Sweller. When problem solving is superior to studying worked examples. Journal of Educational Psychology, 2001 (3): 579~588
    214. Stephen J. Payne, Juliet Richardson & Andrew Howes. Strategic use of familiarity in display-based problem solving. Journal of Experimental Psychology, 2000(6): 1685~1701
    215. Steven M. Smith & Steven E. Blankenship. Incubation and the persistence of fixation in problem solving. American Journal of Psychology,1991(1): 61~87
    216. Steven W. Cornelius & Avshalom Caspi. Everyday problem solving in adulthood and old age. Psychology and Aging, 1987(2): 144~153
    217. Sweller, J. Cognitive technology: some procedures for faciliating learning and problem solving in mathematics and science. Journal of Educational Psychology, 1989(4): 457~466
    218. Swanson, H. L. Influence of metacognitive knowledge and aptitude on problem solving. Journal of Educational Psychology, 1990(2): 306~314
    219. Sydney S. Zentall. Fact-retrieval automatization and math problem solving by learning disabled, attention-disordered, and normal adolescents. Journal of Educational Psychology, 1990(4): 856~865
    220. Tom Lowrie, Russell Kay. Relationship Between Visual and Nonvisual Solution Methods and Difficulty in Elementary Mathematics. The Journal of Educational Research, 1994; 94(4): 248-255
    221. Tom Lowrie, Russell Kay. Relationship Between Visual and Nonvisual Solution Methods and Difficulty in Elementary Mathematics. The Journal of Educational Research,2001,81(4):521-531.
    222. William D. Rohwer, Jr. and John W. Thomas. The Role of Autonomous Problem-Solving Activities in Learning to Program. Journal of Educational Psychology, 1989(4): 584~593
    223. Zemira R.Mevarech. Effects of Metacognitive Training Embedded in
    
    CooperativSettings on Mathematical Problem Solving. The Journal of Educational Research, 1999,vol 92(4),195-205
    224. Zhe Chen & Marvin W. Daehler. External and internal instantiation of abstract information facilitates transfer in insight problem solving. Contemporary Educational Psychology, 2000(25): 423~449