含瓦斯煤变形破坏特征及渗透行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
瓦斯既是煤与瓦斯突出和瓦斯爆炸等煤矿灾害的主要诱因,同时又是一种不可再生的清洁能源,实现煤与瓦斯共采,不仅能提高煤矿安全生产水平,还将改善我国的能源结构,对保障我国的能源安全有重要意义。而我国煤层普遍具有高瓦斯、低渗透、强吸附的特点,其中煤层渗透率比美国低2~3个数量级,瓦斯抽采难度极大,对煤层进行人工增透成为实现煤与瓦斯共采的有效途径。因此,充分认识含瓦斯煤岩体变形破坏及其渗透性演化规律,定量描述煤层增透效果,对于实现煤与瓦斯共采具有极其重要的意义。本文针对含瓦斯煤变形破坏特征及其渗透行为,开展了实验室试验、理论分析和数值模拟研究。主要研究内容如下:
     (1)利用MTS815和高压瓦斯渗透试验系统分别对型煤和原煤试样进行了单轴、三轴压缩试验以及瓦斯渗透试验,发现原煤的单轴和三轴抗压强度分别为型煤的10.3倍和3.7倍,单轴和三轴弹性模量分别为型煤的75.1倍和12.7倍,型煤的塑性破坏形式和原煤的脆性破坏形式截然不同。型煤的初始渗透率是原煤的20倍,而破坏后型煤渗透率为原煤的90%。试验研究结果表明目前以型煤试验结果指导煤矿瓦斯抽采设计与施工极易造成重大安全隐患。
     (2)利用三轴压缩试验研究了不同瓦斯压力下原煤的力学性质,结果表明:随着瓦斯压力的增加,原煤刚度和强度逐渐降低,峰值破坏剧烈程度逐渐减弱,煤样逐渐由脆性劈裂破坏向延性剪切破坏转变。针对不同瓦斯压力下煤岩体损伤破坏特征,定义了煤岩体双标量损伤模型,同时考虑孔隙瓦斯压力和吸附膨胀应力作用,建立了新的含瓦斯煤弹性损伤本构模型。
     (3)利用三轴瓦斯渗透试验研究了原煤损伤破坏过程中的渗透特征,结果表明:随着瓦斯压力的增加,原煤渗透率逐渐减小;渗透率与体积应变呈良好的线性关系。基于平板裂隙流动方程建立了煤体渗透率与裂隙体积应变的关系,考虑了瓦斯压力和吸附瓦斯对裂隙体积应变的影响,并首次引入了表征裂隙面粗糙度和裂隙迂曲度对渗透率影响的比例系数,建立了新的渗透率演化模型。
     (4)基于所建立的损伤本构和渗透率演化模型,自行开发了相应的三维弹性损伤和渗透性耦合分析有限元程序,实现了对采动煤岩体的损伤及渗透率演化的定量描述。并以单一煤层开采为例,对不同瓦斯压力下采动煤岩体损伤和渗透率演化特征进行数值模拟。计算结果表明:随工作面从30m推进到150m,工作面前方煤体损伤范围也由5m增加到30m左右,损伤区内渗透率最大可增加2-3个量级,且相对于煤层瓦斯压力1MPa的计算结果,煤层瓦斯压力6MPa情况下工作面前方煤体损伤度最大增加19%,渗透率比率最大可增加85%。计算结果与工程实际基本吻合,可为煤矿瓦斯抽采设计提供科学指导。
Methane is not only the major cause of gas disasters, such as coal and gasoutburst, gas explosion, but also a clean, efficient and non-renewable energy. Thesimultaneous extraction of coal and gas can not only heighten the level of safeproduction of coal mine, and also improve the energy structure in China, which has aimportant significance for the energy security. However, the characteristics of coalseams in china generally are high gas content, low permeability and strongadsorptions, in which the permeability of the coal seams is2-3orders of magnitudelower than that in American. So the gas extraction is extremely difficult and themining-enhanced permeability of coal seams is an effective way to realizesimultaneous extraction of coal and gas. Therefore, it is so important for thesimultaneous extraction of coal and gas to fully understand the deformation, failureand permeability evolution law of gas-saturated coal and to describe the effect ofmining-enhanced permeability quantitatively. In order to study characteristics ofdeformation, failure and permeability evolution of gas-saturated coal, the laboratorytest, theoretical analysis and numerical simulation research were conducted. The maincontents are as follows.
     (1) By using MTS815and high pressure gas permeability test systems, theuniaxial, triaxial compression tests and gas permeability tests for raw coal andbriquette coal were carried out. The tests results show that the uniaxial compressionstrength and triaxial compression strength of the raw coal is respectively10.3timesand3.7times of the briquette. The elastic modulus of raw coal is respectively75.1times and12.7times of briquette coal in uniaxial and triaxial compression. The plasticfailure model of briquette coal is distinct from the brittle failure model of raw coal.The initial permeability of briquette is20times of raw coal, but after failure, thepermeability of briquette is about90%of the raw coal. Experimental research resultsshow that using the test results of briquette coal to guide the design and constructionof coal mine gas drainage is easy to cause significant safety risks.
     (2)With the use of triaxial compression test, mechanical properties of the rawcoal under different gas pressures were studied. Results show that as the gas pressureincreases, the strength and stiffness of the raw coal decrease gradually and the failureintensity at the peak stress weaken gradually, in addition, the failure modes of thesamples transform from brittle splitting failure into ductile shear failure. So, according to the damage and failure features of the coal and rock under different gas pressures, adouble-scale damage model was presented. Considering the pore gas pressure andadsorption expansion stresss, a new elastic damage constitutive equation forgas-saturated coal was established.
     (3)The permeation properties of raw coal during damage and failure wereresearched by gas permeability test under triaxial compression. The test results showthat the permeability of raw coal decreases with increasing gas pressure. Thepermeability and volumetric strain present well linear relationship. Based on flatfracture flow equations, relationship between fracture volumetric strain andpermeability was established. Considering the effects of gas pressure and adsorbedgas on fracture volumetric strain, and for the first time, by introducing a ratiocoefficient to characterize the effect of fracture surface roughness and fracturetortuosity on permeability, a new permeability evolution model was established.
     (4)Based on the established damage constitutive model and permeabilityevolution model, a3D finite element analysis program coupling the elastic damageand permeability was developed. Using this program, the quantitative description ofthe damage and permeability evolution law of the mining coal and rock was achieved.Take a single coal seam mining for example, a numerical simulation was performed,in which the damage characteristics and permeability evolution law of the mining coaland rock were studied under different gas pressures. The results show that as theworking face moves forward from30meters to150meters, the damage regionextends from5meters to30meters accordingly, and the permeability in the damageregion may increase likely by2-3orders of magnitude. Besides, compared with thecase under a1MPa gas pressure, a6MPa gas pressure may lead to a damage increaseby19%and a permeability ratio increase by85%in front of the working face.Calculation results coincide basically with the engineering practice and can be used asa scientific guidance for coal mine gas extraction design.
引文
[1] Cheng Y P, Wang L, Zhang X L. Environmental impact of coal mine methane emissions andresponding strategies in China[J]. International Journal of Greenhouse Gas Control,2011,5(1):157-166.
    [2]虎维岳.深部煤炭资源及其开发技术条件研究现状与发展趋势[C].虎维岳,何满潮.深部煤炭资源及开发地质条件研究现状与发展趋势.北京:煤炭工业出版社,2008,1-25.
    [3] Karacan C, Ruiz F A, Cotè M, et al. Coal mine methane: a review of capture and utilizationpractices with benefits to mining safety and to greenhouse gas reduction[J]. InternationalJournal of CoalGeology,2011,86(2):121-156.
    [4]胡千庭,蒋时才,苏文叔.我国煤矿瓦斯灾害防治对策[J].矿业安全与环保,2000,27(1):1-4.
    [5]王家臣.煤与瓦斯共采需解决的关键理论问题与研究现状[J].煤炭工程,2011,1:1-3.
    [6]靳钟铭,赵阳升,贺军,章梦涛.含瓦斯煤层力学特性的实验研究[J].岩石力学与工程学报,1991,10(3):271-280.
    [7]傅雪海,秦勇,姜波,王文峰.多相介质煤岩体力学实验研究[J].高校地质学报,2002,8(4):446-452.
    [8]梁冰,章梦涛,潘一山,王泳嘉.瓦斯对煤的力学性质及力学响应影响的试验研究[J].岩土工程学报,1995,17(5):12-18.
    [9]尹光志,王振,张东明.有效围压为零条件下瓦斯对煤体力学性质影响的实验[J].重庆大学学报,2010,33(11):129-133.
    [10]游木润.甲烷对煤的变形特征和应力特征的影响[D].北京:中国矿业学院,1984.
    [11] Aziz N I, Ming-Li W. The effect of sorbed gas on the strength of coal–an experimentalstudy[J]. Geotechnical and Geological Engineering,1999,17(3):387-402.
    [12]姚宇平.含瓦斯煤的力学性质[D].北京:中国矿业学院,1987.
    [13]姚宇平,周世宁.含瓦斯煤的力学性质[J].中国矿业大学学报,1988,1:1-7.
    [14]姚宇平.吸附瓦斯对煤的变形及强度的影响[J].煤矿安全,1988,12:37-41.
    [15] Viete D R, Ranjith P G. The effect of CO2on the geomechanical and permeability behaviourof brown coal: Implications for coal seam CO2sequestration[J]. International journal of coalgeology,2006,66(3):204-216.
    [16] Viete D R, Ranjith P G. The mechanical behaviour of coal with respect to CO2sequestrationin deep coal seams[J]. Fuel,2007,86(17):2667-2671.
    [17] Ates Y, Barron K. The effect of gas sorption on the strength of coal[J]. Mining science andtechnology,1988,6(3):291-300.
    [18]许江,鲜学福,杜云贵,等.含瓦斯煤的力学特性的实验分析[J].重庆大学学报,1993,16(5):42-47.
    [19]林伯泉.含瓦斯煤体变形和渗透特性的实验研究[D].北京:中国矿业学院,1986.
    [20]林柏泉,周世宁.含瓦斯煤体变形规律的实验研究[J].中国矿业大学学报,1986,3:9-16.
    [21]刘延保,曹树刚,李勇,等.煤体吸附瓦斯膨胀变形效应的试验研究[J].岩石力学与工程学报,2010,29(12):2484-2491.
    [22] Karacan C.Heterogeneous sorption and swelling in a confined and stressed coal duringCO2injection[J]. Energy and Fuels,2003,17(6):1595-1608.
    [23] Karacan C, Mitchell G D. Behavior and effect of different coal microlithotypes during gastransport for carbon dioxide sequestration into coal seams[J]. International Journal of CoalGeology,2003,4:201-217.
    [24] Karacan C. Swelling-induced volumetric strains internal to a stressed coal associated withCO2sorption[J]. International Journal of Coal Geology,2007,72(3-4):209-220.
    [25] Sakurovs R. Relationships between CO2sorption capacity by coals as measured at low andhigh pressure andtheir swelling[J]. International Journal of Coal Geology,2012,90-91:156-161.
    [26] Day S, FryR, Sakurovs R. Swelling of Australian coals in supercritical CO2[J]. InternationalJournal of Coal Geology,2008,74:41-52.
    [27] Day S, Fry R, SakurovsR. Swelling of moist coal in carbon dioxide and methane[J].International Journal of Coal Geology,2011,86:197-203.
    [28] Pone J D N, Hile M, Halleck P M, et al. Three-dimensional carbon dioxide-induced straindistribution within a confined bituminous coal[J]. International Journal of CoalGeology,2009,77(1):103-108.
    [29] Pone J D N, Halleck P M, Mathews J P.3D characterization of coal strains induced bycompression, carbon dioxide sorption, and desorption at in-situ stress conditions[J].International Journal of Coal Geology,2010,82(3):262-268.
    [30]王登科,刘建,尹光志,等.三轴压缩下含瓦斯煤样蠕变特性试验研究[J].岩石力学与工程学报,2010,29(2):349-357.
    [31]黄启翔,尹光志,姜永东.地应力场中煤岩卸围压过程力学特性试验研究及瓦斯渗透特性分析[J].岩石力学与工程学报,2010,29(8):1639-1648.
    [32]蒋长宝,尹光志,黄启翔,等.含瓦斯煤岩卸围压变形特征及瓦斯渗流试验[J].煤炭学报,2011,36(5):802-807.
    [33]尹光志,蒋长宝,王维忠,等.不同卸围压速度对含瓦斯煤岩力学和瓦斯渗流特性影响试验研究[J].岩石力学与工程学报,2011,30(1):68-77.
    [34]尹光志,王浩,张东明.含瓦斯煤卸围压蠕变试验及其理论模型研究[J].煤炭学报,2011,36(12):1963-1967.
    [35]彭守建,许江,尹光志,等.煤岩破断与瓦斯运移耦合作用机理的试验研究[J].煤炭学报,2011,36(12):2024-2028.
    [36]李小双,尹光志,赵洪宝,等.含瓦斯突出煤三轴压缩下力学性质试验研究[J].岩石力学与工程学报,2010,29(S1):3350-3358
    [37]王家臣,邵太升,赵洪宝.瓦斯对突出煤力学特性影响试验研究[J].采矿与安全工程学报,2011,28(3):391-394.
    [38]赵洪宝,李振华,仲淑姮,罗烨.单轴压缩状态下含瓦斯煤岩力学特性试验研究[J].采矿与安全工程学报,2010,27(1):131-134.
    [39]赵洪宝,尹光志.含瓦斯煤声发射特性试验及损伤方程研究[J].岩土力学,2011,32(3):667-671.
    [40]赵洪宝,王家臣.卸围压时含瓦斯煤力学性质演化规律试验研究[J].岩土力学,2011,32(S1):270-274.
    [41] Ranjith P G, Jasinge D, Choi S K, et al. The effect of CO2saturation on mechanicalproperties of Australian black coal using acoustic emission[J]. Fuel,2010,89(8):2110-2117.
    [42]刘延保,曹树刚,李勇,等.含瓦斯煤体破坏过程中AE序列关联维数演化分析[J].重庆大学学报,2012,35(3):108-114.
    [43]许江,张丹丹,彭守建,等.温度对含瓦斯煤力学性质影响的试验研究[J].岩石力学与工程学报,2011,30(S1):2730-2735.
    [44]赵阳升,胡耀青.孔隙瓦斯作用下煤体有效应力规律的实验研究[J].岩土工程学报,1995,17(3):26-31.
    [45]孙培德,鲜学福,钱耀敏.煤体有效应力规律的实验研究[J].矿业安全与环,1999,2:16-18.
    [46]卢平,沈兆武.含瓦斯煤的有效应力与力学变形破坏特性[J].中国科学技术大学学报,2001,31(6):687-693.
    [47] George J D, Barakat M A. The change in effective stress associated with shrinkage from gasdesorption in coal[J]. International Journal of Coal Geology,2001,45(2):105-113.
    [48]吴世跃,赵文,郭勇义.煤岩体吸附膨胀变形与吸附热力学的参数关系[J].东北大学学报:自然科学版,2005,26(7):683-686.
    [49]吴世跃,赵文.含吸附煤层气煤的有效应力分析[J].岩石力学与工程学报,2005,24(10):1674-1678.
    [50]李祥春,郭勇义,吴世跃,聂百胜.煤体有效应力与膨胀应力之间关系的分析[J].辽宁工程技术大学学报,2007,26(4):535-537.
    [51] Pan Z, Connell L D. A theoretical model forgas adsorption-induced coal swelling[J].International Journal of Coal Geology,2007,69(4):243-252.
    [52] Pan Z, Connell L D. Modelling of anisotropic coal swelling and its impact on permeabilitybehaviour for primary and enhanced coalbed methane recovery[J]. International Journal ofCoal Geology,2011,85(3):257-267.
    [53]祝捷,姜耀东,赵毅鑫,赵文菲.考虑吸附作用的各向异性煤体有效应力[J].中国矿业大学学报,2010,39(5):699-704.
    [54]祝捷,姜耀东,赵毅鑫.考虑吸附作用的含气煤本构关系[J].岩石力学与工程学报,2009,28(S2):3296-3301.
    [55]陶云奇,许江,彭守建,袁梅.含瓦斯煤孔隙率和有效应力影响因素试验研究[J].岩土力学,2010,31(11):3417-3422.
    [56]陶云奇.含瓦斯煤THM耦合模型及煤与瓦斯突出模拟研究[J].重庆:重庆大学,2009.
    [57] Liu S, Harpalani S. Determination of the Effective Stress Law for Deformation in CoalbedMethane Reservoirs[J]. Rock Mechanics and Rock Engineering,2013:1-12.
    [58] Shi J Q, Durucan S. Drawdown induced changes in permeability of coalbeds: A newinterpretation of the reservoir response to primary recovery[J]. Transport in porous media,2004,56(1):1-16.
    [59] Connell L D, Lu M, Pan Z. An analytical coal permeability model for tri-axial strain andstress conditions[J]. International Journal of Coal Geology,2010,84(2):103-114.
    [60] Bustin R M, Cui X, Chikatamarla L. Impacts of volumetric strain on CO2sequestration incoals and enhanced CH4recovery[J]. AAPG bulletin,2008,92(1):15-29.
    [61] An F, Cheng Y, Wang L, et al. A numerical model for outburst including the effect ofadsorbed gas on coal deformation and mechanical properties[J]. Computers and Geotechnics,2013,54:222-231.
    [62] Wang J G, Kabir A, Liu J, et al. Effects of non-Darcy flow on the performance of coal seamgas wells[J]. International Journal of Coal Geology,2012,93:62-74.
    [63] Wang J G, Liu J, Kabir A. Combined effects of directional compaction, non-Darcy flow andanisotropic swelling on coal seam gas extraction[J]. International Journal of Coal Geology,2013,109:1-14.
    [64] Wang G X, Wang Z T, RudolphV, et al. An analytical model of the mechanical properties ofbulk coal under confined stress[J]. Fuel,2007,86(12):1873-1884.
    [65] Wang G X, Massarotto P, Rudolph V. An improved permeability model of coal for coalbedmethane recovery and CO2geosequestration[J]. International Journal of Coal Geology,2009,77(1):127-136.
    [66] Gu F,Chalaturnyk R J.Numerical simulation of stress and strain due to gas sorption/desorption and their effects on in situ permeability of coalbeds[J]. Journal of CanadianPetroleum Technology,2006,45(10):52-62.
    [67] Gu F,Chalaturnyk R J. Permeability and porosity models considering anisotropy anddiscontinuity of coalbeds and application in coupled simulation[J]. Journal of PetroleumScience and Engineering,2010,74:113-131.
    [68] Gu F.Reservoir and geomechanical coupled simulation of CO2sequestration and enhancedcoalbed methane recovery[D].Canada:The University of Alberta,2009.
    [69]白冰,李小春,刘延锋,等. CO2-ECBM中气固作用对煤体应力和强度的影响分析[J].岩土力学,2007,28(4):823-826.
    [70]梁冰,章梦涛,王泳嘉.含瓦斯煤的内时本构模型[J].岩土力学,1995,16(3):22-28.
    [71]梁冰,王泳嘉,章梦涛.含瓦斯煤的内时本构关系及其参数的实验研究[J].固体力学学报,1996,17(3):229-234.
    [72]李忠华,公衍梅,梁冰.深部含瓦斯煤内时本构方程体积响应[J].辽宁工程技术大学学报,2007,26(6):845-846.
    [73]陈占清,刘树才,赵玉成.含瓦斯煤的破坏和流动法则[J].应用力学学报,2010,27(2):269-273.
    [74]张我华.煤/瓦斯突出过程中煤介质局部化破坏的损伤机理[J].岩土工程学报,1999,21(6):731-736.
    [75]尹光志,王登科,张东明,等.基于内时理论的含瓦斯煤岩损伤本构模型研究[J].岩土力学,2009,30(4):885-889.
    [76]尹光志,王登科.含瓦斯煤岩耦合弹塑性损伤本构模型研究[J].岩石力学与工程学报,2009,28(5):993-999.
    [77]王登科,尹光志,刘建,等.三轴压缩下含瓦斯煤岩弹塑性损伤耦合本构模型[J].岩土工程学报,2010,32(1):55-60.
    [78]尹光志,王登科,张东明,等.含瓦斯煤岩三维蠕变特性及蠕变模型研究[J].岩石力学与工程学报,27(S1):2631-2636.
    [79]王维忠,尹光志,赵洪宝,等.含瓦斯煤岩三轴蠕变特性及本构关系[J].重庆大学学报,2009,32(2):197-201.
    [80] Fatt I,Davis DH. Reduction in Permeability With Overburden Pressure[J]. Journal ofPetroleum Technology,1952,4(12):1-16.
    [81] Brace W F,Walsh J B,Frangos W T.Permeability of granite under high pressure[J]. Journal ofGeophysical Resarch,1968,73(6):2225-2236.
    [82] Brace W F.A note on permeability change in geologic materials due to stress[J].Pure andApplied Geophysics,1978,116:627-633.
    [83]郑少河,赵阳升,段康廉.三维应力作用下天然裂隙渗流规律的实验研究[J].岩石力学与工程学报,1999,18(2):133-136.
    [84] Walsh J B.Effect of pore pressure and confining pressure on fracture permeability[J].International Journal of Rock Mechanics and Mining Sciences and GeomechanicsAbstracts,1981,18(5):429-435.
    [85]胡大伟,周辉,谢守益,等.峰后大理岩非线性渗流特征及机制研究[J].岩石力学与工程学报,2009,28(3):451-458.
    [86]林柏泉,周世宁.煤样瓦斯渗透率的实验研究[J].中国矿业学院学报,1987,1:21-28.
    [87]罗新荣.煤层瓦斯运移物理模拟与理论分析[J].中国矿业大学学报,1991,20(3):55-61.
    [88]赵洪宝,尹光志,李小双.突出煤渗透特性与应力耦合试验研究[J].岩石力学与工程学报,2009,28(S2):3357-3362.
    [89] Harpalani S.Gas flow through stressed coal[D].America: University of California, Berkeley,1985.
    [90] Durucan S,Edwards J S.The effects of stress and fracturing on permeability of coal [J].Mining Science and Technology,1986,3(3):205-216.
    [91] Gray I.Reservoir engineering in coal seams: Part1-The physical process of gas storage andmovement in coal seams[J]. SPE Reservoir Engineering,1987,2(1):28-34.
    [92] Puri R,Seidle J.Measurement of stress dependent permeability in coals and its influence oncoalbed methane production[C].Proceedings of the1991Coalbed Methane Symposium,1991,415-424.
    [93]彭守建,许江,陶云奇,等.煤样渗透率对有效应力敏感性实验分析[J].重庆大学学报,2009,32(3):303-307.
    [94]杨胜来,崔飞飞,杨思松,等.煤层气渗流特征实验研究[J].中国煤层气,2005,2(1):36-39.
    [95] David C, Wong T F, Zhu W, et al. Laboratory measurement of compaction-inducedpermeability change in porous rocks: Implications for the generation and maintenance of porepressure excess in the crust[J]. Pure and Applied Geophysics,1994,143(1-3):425-456.
    [96]彭永伟,齐庆新,邓志刚,等.考虑尺度效应的煤样渗透率对围压敏感性试验研究[J].煤炭学报,2008,33(5):509-513.
    [97]尹光志,李小双,赵洪宝,等.瓦斯压力对突出煤瓦斯渗流影响试验研究[J].岩石力学与工程学报,2009,28(4):697-702.
    [98]黄启翔.瓦斯压力对煤岩材料全应力-应变过程瓦斯渗透特性的影响[J].材料导报:研究篇,2010,24(8):80-83.
    [99]曹树刚,郭平,李勇,等.瓦斯压力对原煤渗透特性的影响[J].煤炭学报,2010,35(4):595-599.
    [100]袁梅,李波波,许江,等.不同瓦斯压力条件下含瓦斯煤的渗透特性试验研究[J].煤矿安全,2011,42(3):1-4.
    [101]赵阳升,胡耀青,杨栋,等.三维应力下吸附作用对煤岩体气体渗流规律影响的实验研究[J].岩石力学与工程学报,1999,18(6):651-653.
    [102] Harpalani S. Impact of CO2injection on flow behavior of coalbed methane reservoirs[J].Transport in porous media,2010,82(1):141-156.
    [103] Robertson E P. Measurement and modeling of sorption-induced strain and permeabilitychanges in coal[M]. United States. Department of Energy,2005.
    [104] Singh K. Establishing Permeability Trends for Illinois Coals[D].America: SouthernIllinois University, Carbondale,2008.
    [105] Mitra A. laboratory investigation of coal permeability under replicated in situ stressregime[D]. America: Southern Illinois University, Carbondale,2010.
    [106] Shi J Q, Durucan S. A model for changes in coalbed permeability during primary andenhanced methane recovery[J]. SPE Reservoir Evaluation&Engineering,2005,8(4):291-299.
    [107] Somerton W H, S ylemezo lu I M, Dudley R C.Effect of stress on permeability of Coal[J].International Journal of Rock Mechanics Mining Science and GeologicalAbstracts,1975,12(5-6):129-145.
    [108] Harpalani S,Schraufnagel R A. Shrinkage of coal matrix with release of gas and its impacton permeability of coal[J].Fuel,1990,69:551-556.
    [109] Harpalani S,Chen G.Effect of gas production on porosity and permeability of coal[C].Proceedings of the Symposium of Coalbed Methane,1992,67-73.
    [110] Harpalani S,Chen G.Estimation of changes in fracture porosity of coal with gas emission[J].Fuel,1995,74(10):1491-1498.
    [111] Harpalani S,Chen G.Influence of gas production induced volumetric strain on permeabilityof coal[J]. Geotechnical and Geological Engineering,1997,15:303-325.
    [112] Seidle J P,Huitt L G.Experimental measurement of coal matrix shrinkage due togasdesorption and implications for cleat permeability increases[C]. Proceedings of theInternational Meeting onPetroleum Engineering,1995,575-582.
    [113]隆清明,赵旭生,孙东玲,等.吸附作用对煤的渗透率影响规律实验研究[J].煤炭学报,2008,33(9):1030-1034.
    [114]唐巨鹏,潘一山,李成全,等.有效应力对煤层气解吸渗流影响试验研究[J].岩石力学与工程学报,2006,25(8):1563-1568.
    [115] He M C, Wang C G, Feng J L, et al. Experimental investigations on gas desorption andtransport in stressed coal under isothermal conditions[J]. International Journal of CoalGeology,2010,83(4):377-386.
    [116] Pan Z, Connell L D, Camilleri M. Laboratory characterisation of coal reservoir permeabilityfor primary and enhanced coalbed methane recovery[J]. International Journal of CoalGeology,2010,82(3):252-261.
    [117] Pan Z, Connell L D, Camilleri M, et al. Effects ofmatrix moisture on gas diffusion and flowin coal[J]. Fuel,2010,89(11):3207-3217.
    [118] Wang S, Elsworth D, Liu J. Permeability evolution in fractured coal: the roles of fracturegeometry and water-content[J]. International Journal of Coal Geology,2011,87(1):13-25.
    [119] Yin G, Jiang C, Xu J, et al. An Experimental Study on the Effects of Water Content onCoalbed Gas Permeability in Ground Stress Fields[J]. Transport in porous media,2012,94(1):87-99.
    [120]张晓莹.三维应力对煤层气-水两相渗流特性影响实验研究[J].水资源与水工程学报,2011,22(3):55-57.
    [121]李世平,李玉寿,吴振业.岩石全应力应变过程对应的渗透率-应变方程[J].岩土工程学报,1995,17(2):13-19.
    [122]王金安,彭苏萍,孟召平.岩石三轴全应力应变过程中的渗透规律[J].北京科技大学学报,2001,23(6):489-491.
    [123] Wang J A,Park H D. Fluid permeability of sedimentary rocks in a complete stress–strainprocess[J]. Engineering Geology,2002,63:291-300.
    [124]卢平,沈兆武,朱贵旺,等.岩样应力应变全程中的渗透性表征与试验研究[J].中国科学技大学学报,2002,32(6):678-684.
    [125]孙国文,黄滚,陈素娟,等.三维应力场中煤渗透特性试验[J].矿业安全与环保,2011,38(5):22-24.
    [126] Heiland J,Raab S.Experimental investigation of the influence of differential stress onpermeability of a lower permian (rotliegend) sandstone deformed in the brittle deformationfield[J]. Physics and Chemistry of the Earth(A),2001,26(1-2):33-38.
    [127] Ngwenya B T, Kwon O, Elphick S C, et al. Permeability evolution during progressivedevelopment of deformation bands in porous sandstones[J]. Journal of Geophysical Research:Solid Earth (1978–2012),2003,108(B7):2343-2356.
    [128] Kwon O, Ngwenya B T, Main I G, et al. Permeability evolution during deformation ofsiliciclastic sandstones from Moab, Utah[C].Sorkhabi R.,Tsuji Y.,editors.Faults,fluidflow,and petroleum traps: AAPGMemoir85,2005,219-236.
    [129]孙培德.变形过程中煤样渗透率变化规律的实验研究[J].岩石力学与工程学报,2001,20(S):1801-1804.
    [130]尹光志,李晓泉,赵洪宝,等.地应力对突出煤瓦斯渗流影响试验研究[J].岩石力学与工程学报,2008,27(12):2557-2561.
    [131]尹光志,李广治,赵洪宝,等.煤岩全应力-应变过程中瓦斯流动特性试验研究[J].岩石力学与工程学报,2010,29(1):170-175.
    [132]尹光志,黄启翔,张东明,等.地应力场中含瓦斯煤岩变形破坏过程中瓦斯渗透特性的试验研究[J].岩石力学与工程学报,2010,29(2):336-343.
    [133]尹光志,蒋长宝,李晓泉,等.突出煤和非突出煤全应力-应变瓦斯渗流试验研究[J].岩土力学,2011,32(6):1614-1619.
    [134]曹树刚,李勇,郭平,等.型煤与原煤全应力-应变过程渗流特性对比研究[J].岩石力学与工程学报,2010,29(5):899-906.
    [135]李祥春,聂百胜,刘芳彬,等.三轴应力作用下煤体渗流规律实验[J].天然气工业,2010,30(6):19-21.
    [136] Zeng K, Xu J, HeP, et al. Experimental study on permeability of coal sample subjected totriaxial stresses[J]. Procedia Engineering,2011,26:1051-1057.
    [137]盛国君,尹志军,王春光.应力路径对煤岩渗透率影响实验研究[J].金属矿山,2011,6:29-31.
    [138] Zhu W.L.,Wong T.F..The transition from brittle faulting to cataclastic flow: Permeabilityevolution[J]. Journal of Geophysical research,1997,102(B2):3027-3041.
    [139] Zhu W.L., Montesi L.G.J.,Wong T.F..Shear-enhanced compaction and permeabilityreduction: Triaxial extension tests on porous sandstone[J]. Mechanics ofMaterials,1997,25:199-214.
    [140] Ferfera F M R, Sarda J P, Bouteca M, et al. Experimental study of monophasic permeabilitychanges under various stress paths[J]. International Journal of Rock Mechanics and MiningSciences,1997,34(3):413-413.
    [141]祝捷,姜耀东,赵毅鑫,等.加卸荷同时作用下煤样渗透性的试验研究[J].煤炭学报,2010,35(S):76-80.
    [142]李宏艳,齐庆新,梁冰,等.煤岩渗透率演化规律及多尺度效应分析[J].岩石力学与工程学报,2010,29(6):1192-1197.
    [143]李晓泉,尹光志,蔡波.循环载荷下突出煤样的变形和渗透特性试验研究[J].岩石力学与工程学报,2010,29(S2):3498-3504.
    [144]李晓泉,尹光志.不同性质煤的微观特性及渗透特性对比试验研究[J].岩石力学与工程学报,2011,30(3):500-507.
    [145]许江,彭守建,陶云奇,等.蠕变对含瓦斯煤渗透率影响的试验分析[J].岩石力学与工程学报,2009,28(11):2273-2279.
    [146] Zoback M D,Byerlee J S.The effect of microcrack dilatancy on the permeability of westerlygranite[J]. Journal of Geophysical research,1975,80(5):752-755.
    [147] Suzuki K, Oda M, YamazakiM, et al. Permeability changes in granite with crack growthduring immersion in hot water[J]. International Journal of Rock Mechanics and MiningSciences,1998,35(7):907-921.
    [148] Oda M,Takemura T,Aoki T.Damage growth and permeability change in triaxial compressiontests of Inada granite[J]. Mechanics of Materials,2002,34:313-331.
    [149] Schulze O,Popp T,Kern H.Development of damage and permeability in deforming rocksalt[J]. Engineering Geology,2001,61:163-180.
    [150] Chae B G, Jeong G C, Kim H J, et al. Changes of permeability characteristics dependent ondamage process in granites[J]. Geosciences Journal,2005,9(4):339-346.
    [151]王广荣,薛东杰,郜海莲,等.煤岩全应力-应变过程中渗透特性的研究[J].煤炭学报,2012,37(1):107-112.
    [152]许江,张丹丹,彭守建,等.三轴应力条件下温度对原煤渗流特性影响的实验研究[J].岩石力学与工程学报,2011,30(9):1848-1854.
    [153]张广洋,胡耀华,姜德义,等.煤的渗透性实验研究[J].贵州工学院学报,1995,24(4):65-68.
    [154]程瑞端,陈海焱,鲜学福,等.温度对煤样渗透系数影响的实验研究[J].煤炭工程师,1998,1:13-16.
    [155]杨新乐,张永利,李成全,等.考虑温度影响下煤层气解吸渗流规律试验研究[J].岩土工程学报,2008,30(12):1811-1814.
    [156]李志强,鲜学福,隆清明.不同温度应力条件下煤体渗透率实验研究[J].中国矿业大学学报,2009,523-527.
    [157]王宏图,李晓红,鲜学福,等.地电场作用下煤中甲烷气体渗流性质的实验研究[J].岩石力学与工程学报,2004,23(2):303-306.
    [158]王恩元,张力,何学秋,等.煤体瓦斯渗透性的电场响应研究[J].中国矿业大学学报,2004,33(1):62-65.
    [159]刘保县,熊德国,鲜学福.电场对煤瓦斯吸附渗流特性的影响[J].重庆大学学报(自然科学版),2006,83-85.
    [160]李晓红,冯明涛,周东平,等.空化水射流声震效应强化煤层瓦斯解吸渗流的实验[J].重庆大学学报,2011,34(4):1-5.
    [161] Durucan S, Edwards J S. The effects of stress and fracturing on permeability of coal[J].Mining Science and Technology,1986,3(3):205-216.
    [162] Tang C A, Tham L G, Lee P K K, et al. Coupled analysis of flow, stress and damage (FSD)in rock failure[J]. International Journal of Rock Mechanics and Mining Sciences,2002,39(4):477-489.
    [163]杨天鸿,屠晓利,於斌,等.岩石破裂与渗流耦合过程细观力学模型[J].固体力学学报,2005,26(3):333-337.e in deep coal seam[J]. International Journal of Coal Geology,2011,86(4):357-366.
    [165]张健,汪志明.煤层应力对裂隙渗透率的影响[J].中国石油大学学报(自然科学版),2008,32(6):92-95.
    [166] Arson C, Pereira J M. Influence of damage onpore size distribution and permeability ofrocks[J]. International Journal for Numerical and Analytical Methods in Geomechanics,2013,37:810-831.
    [167] Pereira J M, Arson C. Retention and permeability properties of damaged porous rocks[J].Computers and Geotechnics,2013,48:272-282.
    [168]李培超,孔祥言,卢德唐.饱和多孔介质流固耦合渗流的数学模型[J].水动力学研究与进展(A),2003,18(4):419-426.
    [169]冉启全,李士伦.流固耦合油藏数值模拟中物性参数动态模型研究[J].石油勘探与开发,1997,24(3):61-65.
    [170]李祥春,郭勇义,吴世跃.煤吸附膨胀变形与孔隙率、渗透率关系的分析[J].太原理工大学学报,2005,36(3):264-266.
    [171]陶云奇,许江,程明俊,等.含瓦斯煤渗透率理论分析与试验研究[J].岩石力学与工程学报,2009,28(S2):3363-3370.
    [172]付玉,郭肖,贾英,等.煤基质收缩对裂隙渗透率影响的新数学模型[J].天然气工业,2005,25(2):143-145.
    [173]周军平,鲜学福,姜永东,等.考虑有效应力和煤基质收缩效应的渗透率模型[J].西南石油大学学报(自然科学版),2009,31(1):4-8.
    [174]周军平,鲜学福,姜永东,等.考虑基质收缩效应的煤层气应力场-渗流场耦合作用分析[J].岩土力学,2010,31(7):2317-2323.
    [175]姜德义,张广洋,胡耀华,等.有效应力对煤层气渗透率影响的研究[J].重庆大学学报(自然科学版),1997,20(5):22-25.
    [176]张我华,薛新华.孔隙介质的渗透特性初探[J].岩土力学,2009,30(5):1357-1361.
    [177]周辉,邵建富,冯夏庭.岩石细观统计渗流模型研究(Ⅰ):理论模型[J].岩土力学,2004,25(2):169-173.
    [178]周辉,邵建富,冯夏庭,等.岩石细观统计渗流模型研究(Ⅱ):实例分析[J].岩土力学,2006,27(1):123-126.
    [179] Reiss L H. The reservoir engineering aspects of fractured formations[M]. France:EditionsTechnip,1980.
    [180] Seidle J P, Jeansonne M W,Erickson D J, et al. Application of Matchstick Geometry to StressDependent Permeability in Coals[C]. The SPE Rocky Mountain Regional Meeting.Texas:Society of Petroleum Engineers,1992.
    [181] Levine J R. Model study of the influence of matrix shrinkage on absolute permeability ofcoal bed reservoirs[J]. Geological Society, London, Special Publications,1996,109(1):197-212.
    [182] Palmer I, Mansoori J.How permeability depends on stress and pore pressure in coalbeds: anew model[C]. SPE Reservoir Evaluation and Engineering,1998,539-544.
    [183] Shi J Q, Durucan S. Drawdown induced changes in permeability of coalbeds: A newinterpretation of the reservoir response to primary recovery[J]. Transport in PorousMedia,2004,56:1-16.
    [184] Cui X,Bustin R M. Volumetric strain associated with methane desorption and its impact oncoalbed gas productionfrom deep coal seams[J].American Association of PetroleumGeologists bulletin,2005,89(9):1181-1202.
    [185] Ma Q,Harpalani S,Liu SM. A simplified permeability model for coalbed methane reservoirsbased on matchstick strain and constant volume theory[J]. International Journal of CoalGeology,2011,85:43-48.
    [186] Zhang H B,Liu J S,Elsworth D. How sorption-induced matrix deformation affects gas flowin coal seams: A new FE model[J].International Journal of Rock Mechanics and MiningSciences,2008,45:1226-1236.
    [187] Connell L D,Detournay C.Coupled flow and geomechanical processes during enhanced coalseam methane recovery through CO2sequestration[J]. International Journal of Coal Geology,2009,77:222-233.
    [188] Connell L D,Lu M,Pan Z.An analytical coal permeability model for tri-axial strain andstress conditions[J]. International Journal of Coal Geology,2010,84:103-114.
    [189] Connell L D. Coupled flow and geomechanical processes during gas production from coalseams[J].International Journal of Coal Geology,2009,79:18-28.
    [190]杨栋,赵阳升,胡耀青,等.三维应力作用下单一裂缝中气体渗流规律的理论与实验研究[J].岩石力学与工程学报,2005,24(6):999-1003.
    [191]周建军,周辉,邵建富.脆性岩石各向异性损伤和渗流耦合细观模型[J].岩石力学与工程学报,2007,26(2):368-373.
    [192]胡大伟,朱其志,周辉,等.脆性岩石各向异性损伤和渗透性演化规律研究[J].岩石力学与工程学报,2008,27(9):1822-1827.
    [193] Jiang T, Shao J F, Xu W Y,et al. Experimental investigation and micromechanical analysisof damage and permeability variation in brittle rocks[J]. International Journal of RockMechanics and Mining Sciences,2010,47(5):703-713.
    [194] Lu Y L, Elsworth D, Wang L G. Microcrack-based coupled damage and flow modeling offracturing evolution in permeable brittle rocks[J]. Computers and Geotechnics,2013,49:226-244.
    [195] Souley M, Homand F, Pepa S, et al. Damage-induced permeability changes in granite: acase example at the URL in Canada[J].International Journal of Rock Mechanics and MiningSciences,2001,38:297-310.
    [196] Shao J F, Zhou H, Chau K T. Coupling between anisotropic damage and permeabilityvariation in brittle rocks[J].International Journal for Numerical and Analytical Methods inGeomechanics,2005,29:1231-1247.
    [197] Maleki K,Pouya A. Numerical simulation of damage-Permeability relationship in brittlegeomaterials[J]. Computers and Geotechnics,2010,37:619-628.
    [198] Liu J, Chen Z, Elsworth D, et al. Linking gas-sorption induced changes in coal permeabilityto directional strains through a modulus reduction ratio[J]. International Journal of CoalGeology,2010,83(1):21-30.
    [199] Izadi G, Wang S, Elsworth D, et al. Permeability evolution of fluid-infiltrated coalcontaining discrete fractures[J]. International Journal of Coal Geology,2011,85(2):202-211.
    [200] Yuan S C,Harrison J P. Development of a hydro-mechanical local degradation approach andits application to modellingfluid flow during progressive fracturing of heterogeneousrocks[J]. International Journal of Rock Mechanics and Mining Sciences,2005,42:961-984.
    [201]程国明,吴健,王思敬.综放开采顶煤瓦斯渗透性研究[J].湘潭矿业学院学报,2002,17(4):1-4.
    [202]程国明,黄侃,王思敬.综放开采顶煤裂隙及其对渗透性研究的意义[J].煤田地质与勘探,2002,30(6):19-21.
    [203]梁宁慧,刘新荣,艾万民,等.裂隙岩体卸荷渗透规律试验研究[J].土木工程学报,2011,44(1):88-92.
    [204] Wei Z J,Zhang D X.Coupled fluid-flow and geomechanics for triple-porosity/dual-permeability modeling of coalbed methane recovery[J]. International Journal of RockMechanics and Mining Sciences,2010,47:1242-1253.
    [205] Wu Y, Liu J, Chen Z, et al. A dual poroelastic model for CO2-enhanced coalbed methanerecovery[J]. International Journal of Coal Geology,2011,86:177-189.
    [206] Wu Y, Liu J, Elsworth D, etal. Evolution of coal permeability: Contribution ofheterogeneous swelling processes[J]. International Journal of Coal Geology,2011,88:152-162.
    [207]尹光志,王登科,张东明,王维忠.两种含瓦斯煤样变形特性与抗压强度的实验分析[J].岩石力学与工程学报,2009,28(2):410-417.
    [208]中华人民共和国行业标准编写组.GB/T23561.1-2009煤与岩石物理力学性质测定方法第1部分:采样一般规定[S].北京:中国标准出版社,2009.
    [209]周世宁,林柏泉.煤层瓦斯赋存与流动理论[M].北京:煤炭工业出版社,1997.
    [210]刘光启,马连湘,邢志有.化工物性算图手册[M].北京:化学工业出版社,2002.
    [211]李晓泉.含瓦斯煤力学特性及煤与瓦斯延期突出机理研究[D].重庆:重庆大学,2010.
    [212] Stanton R, Flores R, Warwick P D, et al. Coalbed sequestration of carbon dioxide[C]. In:1stNational Conference on Carbon Sequestration, Washington, USA,2001.
    [213] Gruszkiewicz M S, Naney M T, Blencoe J G, et al. Adsorption kinetics of CO2, CH4, andtheir equimolar mixture on coal from the Black Warrior Basin, West-Central Alabama [J].International Journal of Coal Geology,2009,77(7):23-33.
    [214]张群,崔永君,钟玲文,等.煤吸附甲烷的温度-压力综合吸附模型[J].煤炭学报,2008,33(11):1272-1278.
    [215]张天军,许鸿杰,李树刚,等.温度对煤吸附性能的影响[J].煤炭学报,2009,34(6):802-805.
    [216]胡新亮,马胜利,高景春,等.相对定位方法在非完整岩体声发射定位中的应用[J].岩石力学与工程学报,2004,23(2):277–283.
    [217] GEIGER L. Probability method for the determination of earthquake epicenters from thearrival time only[J]. Bulletin of St. Louis University,1912,8(1):60-71.
    [218]刘建坡,王洪勇,杨宇江,等.不同岩石声发射定位算法及其实验研究[J].东北大学学报(自然科学版),2009,30(8):1193-1196.
    [219] Martin C D.The strength of massive Lac du Bonnet granite around underground openings[D]. Canada: University of Manitoba,1993.
    [220] Inglis C E.Stresses in a plate due to the presence of cracks and sharp corners[J].Transactions of the Institute of Naval Architects,1913,55:219-241.
    [221]谢和平.岩石混凝土损伤力学[M].徐州:中国矿业出版社,1990.
    [222]高蕴昕,郑泉水,余寿文.各向同性弹性损伤的双标量描述[J].力学学报,1995,28(5):542-549.
    [223] Tang C Y, Shen W, Peng L H, et al. Characterization of Isotropic Damage Using DoubleScalar Variables[J]. International Journal of Damage Mechanics,2002,11(3):3-25.
    [224]王勖成.有限单元法[M].北京:清华大学出版社,2003.
    [225] Honarpour M M, Mahmood S M. Relative permeability measurement: an overview[J].Journal of Petroleum Technology,1988,40(8):963-966.
    [226]李相臣,康毅力.煤层气储层微观结构特征及研究方法进展[J].中国煤层气,2010,7(2):13-17.
    [227] Laubach S E, Marrett R A, Olson J E, etal. Characteristics and origins of coal cleat: areview[J]. International Journal of Coal Geology,1998,35:175–207.
    [228]周维垣.高等岩石力学[M].北京:水利电力出版社,1990.