考虑地基与结构相互作用的上承式钢管混凝土拱桥地震响应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大跨度钢管混凝土拱桥由于具有设计施工方便、经济美观等优点,应用越来越多。对于大跨度钢管混凝土拱桥地震响应的研究,目前大多数都是采用基底固结的假定,未考虑地基—结构相互作用对桥梁地震响应的影响;少数文章考虑了地基—结构相互作用,但对边界条件的处理都取得非常简化;《公路工程抗震设计规范》对于地基—结构相互作用的规定,也仅限于考虑地基变形对桥梁结构周期的影响。为了研究考虑地基—结构相互作用的大跨度钢管混凝土拱桥地震响应,本文研究了线性及非线性粘弹性人工边界,并对线性与非线性情况下粘弹性人工边界地震波动输入方法进行了研究;本文以粘弹性人工边界模拟远场地基的辐射阻尼与恢复性能,截取有效的地基计算域,以支井河特大桥——跨径为430m的上承式钢管混凝土拱桥为工程背景,建立了包括上部桥梁与下部地基的整体分析模型,在考虑地基—结构相互作用影响下对上承式大跨度钢管混凝土拱桥进行了线性与非线性地震响应研究。本文所作的主要工作如下:
     1、三维非线性粘弹性人工边界研究
     目前的粘弹性人工边界研究集中于远场介质为完全线弹性波动的情况,为了得到适于非线性分析的粘弹性人工边界,本文将远场介质假设为粘弹性材料,基于弹性波理论与粘弹性理论构造了用于模拟远场地基非线性效应的三维粘弹性人工边界。数值计算结果表明,若将半无限连续介质截断,在截断处法向及切向人工边界上施加本文得到的非线性粘弹性人工边界,可使人工边界上力和位移的条件与原波场相同,能够模拟波动自计算域向远场粘弹性介质的传播。
     2、三维线性及非线性粘弹性人工边界地震波动输入研究
     正确的地震波动输入是分析地基—结构动力相互作用的前提,本文对三维线性及非线性粘弹性人工边界地震波动输入方法进行了研究,得到了为实现地震波动输入施加在粘弹性人工边界上等效荷载F_B(t)的表达式,使等效荷载F_B(t)可以用输入地震波的位移(u)及速度((?))来完全表达,易于实现地震波动的输入。
     3、钢管混凝土构件受力性能数值研究
     分别根据三维实体有限元法和纤维单元法的钢管混凝土材料应力—应变关系得到了适于圆截面梁单元的材料应力—应变关系,数值算例证明采用由纤维单元法得到的钢管混凝土应力—应变关系应用于梁单元能取得理想的数值计算结果,并用梁单元法对钢管混凝土构件的荷载—位移滞回曲线进行了计算,取得了理想的结果。
     4、考虑地基—结构相互作用影响的上承式大跨度钢管混凝土拱桥地震响应研究
     以支井河特大桥为工程背景,分别以线性和非线性粘弹性人工边界模拟远场地基的辐射阻尼及弹性恢复性能,在考虑地基—结构相互作用的情况下对上承式大跨度钢管混凝土拱桥进行了线性、非线性地震响应分析。分析结果表明,在强度满足条件下桥基混凝土的标号没必要取太高,桥基混凝土弹模过大对上部桥梁结构地震响应有不利影响;当桥基建在坚硬的基岩上时,考虑地基—结构相互作用后桥梁地震反应内力与桥基固结时的结果相比降低,这种情况下基底固结计算结果偏安全;当桥基建在较软的基岩上时,考虑地基—结构相互作用后桥梁关键截面的内力大于桥基固结时的地震响应结果,证明基岩较软时,地基—结构相互作用对上部桥梁地震响应有可能产生不利影响,对于大跨度钢管混凝土拱桥在复杂地基条件下的抗震分析应视特殊情况作具体分析;地基—结构相互作用对上部桥梁地震响应的影响随着基岩弹模的降低而增大;横桥向的地震动输入时地基—结构相互作用对桥梁地震响应的影响大于纵向、竖向地震动输入时。本文还在考虑地基—结构相互作用条件下研究了行波效应对大跨度钢管混凝土拱桥地震响应的影响,也得出了一些有益于工程的结论,对加深大跨度钢管混凝土拱桥抗震性能的认识将提供帮助。
The long-span concrete filled steel tube(CFST) arch bridge has been widely used as its advantages such as convenient construction,low cost and beautiful appearance.Now the seismic response studies of long-span CFST arch bridge mostly are based on the assumption that the arch foot is fixed without considering the foundation-structure interaction.There are a few papers on long-span CFST arch bridge seismic response considering the foundation-structure interaction,but the boundaries in these papers are very simple.The regulations on the foundation-structure interaction in the Code for Seismic Design of Highway Engineering are just about the influences of foundation deformation on the bridge period.In this paper the linear and nonlinear three dimensional viscoelastic artificial boundary and the seismic wave input methods with three dimensional viscoelastic artificial boundary were studied.The viscoelastic artificial boundary was constructed to simulate radiation damping and the elasticity recovery capacity of the medium at the far field.The full model including the bridge and foundation was made to study the seismic response of long-span CFST arch bridge with considering the foundation-structure interaction.The project background is the Zhijing River extra large bridge—deck arch bridge with 430m span.The works done in this paper are as follows:
     1.The research on three dimensional nonlinear viscoelastic artificial boundary
     Now the viscoelastic artificial boundary is mostly studied on linear and elastic far field media.In this paper with taking the assumption that the far field medium is viscoelastic material,the three dimensional nonlinear viscoelastic artificial boundary was deduced through the elastic wave theory and viscoelastic theory.The numerical calculation results show that the conditions of force and displacement at artificial boundary are the same with those of original viscoelastic medium when the original viscoelastic medium at far field was cut and replaced with nonlinear viscoelastic artificial boundary deduced from this paper.The three dimensional nonlinear viscoelastic artificial boundary deduced from this paper can simulate the wave propagation from the computing field to the far field viscoelastic medium.
     2.The research on seismic wave input methods with three dimensional linear and nonlinear viscoelastic artificial boundary
     The precise seismic wave input is the premise to solve foundation-structure interaction problems.In this paper the seismic wave input methods with three dimensional linear and nonlinear viscoelastic artificial boundary were studied.The force F_B(t) applied on the viscoelastic artificial boundary to implement the seismic wave input can be expressed with the displacement(u) and velocity((?)) of input seismic wave which makes the seismic wave easy to input.
     3.The numerical study on CFST components mechanical behavior
     The CFST stress-strain relation suitable for beam element was deduced from three dimensional finite element method and fiber element method respectively.The numerical calculation results show that precise results can be gotten when the CFST stress-strain relation from fiber element method was used in bean element.The load-displacement hysteretic curve of CFST component was calculated with beam element.
     4.The research on seismic response of long-span CFST deck arch bridge with considering the foundation-structure interaction
     Taking the Zhijing River extra large bridge as project background,simulating radiation damping and the elasticity recovery capacity of the media at the far field with three dimensional linear and nonlinear viscoelastic artificial boundary,the linear and nonlinear seismic responses of long-span CFST deck arch bridge were studied with considering the foundation-structure interaction.The studied results show that there is bad influence on bridge seismic response if the elastic modulus of bridge foundation concrete is too large.When the bedrock is hard,the seismic response internal forces at bridge arch rib when considering the foundation-structure interaction are less than those of fixed arch foot,which shows that fixed arch foot assumption is safe in this case.When the bedrock is soft,the seismic response internal forces at bridge arch rib when considering the foundation-structure interaction are greater than those of fixed arch foot,which shows that foundation-structure interaction has bad influence on the bridge seismic response in this case.The influences of foundation-structure interaction on bridge seismic response increase with the decrease of bedrock elastic modulus.The influences of foundation-structure interaction on bridge seismic response with transverse seismic wave input are greater than those with longitudinal and vertical seismic wave inputs.In this paper the influence of traveling wave effect on bridge seismic response was also studied with considering the foundation-structure interaction which will help to know the aseismic capacity of long-span CFST arch bridge.
引文
[1]JTJ004-89,公路工程抗震设计规范[S].北京:人民交通出版社,2000.
    [2]赵灿晖,周志祥.大跨度钢管混凝土拱桥非线性地震响应分析[J].重庆建筑大学学报,2006,28(2):47-51.
    [3]尧国皇.钢管混凝土构件在复杂受力状态下的工作机理研究[D].福州大学,2006,4.
    [4]崔军.大跨度钢管混凝土拱桥受力性能分析[D].杭州:浙江大学,2003,5.
    [5]赵灿晖.大跨度钢管混凝土拱桥的地震响应研究[D].成都:西南交通大学,2001,9.
    [6]谢开仲,秦荣,李秀梅等.钢管混凝土拱桥的材料非线性地震反应分析[J].世界地震工程,2005,21(3):40-44.
    [7]谢开仲.大跨度钢管混凝土拱桥非线性地震反应分析与研究[D].南宁:广西大学,2005,4.
    [8]王连华.大跨度钢管混凝土拱桥的动力学研究[D].长沙:湖南大学,2005,1.
    [9]徐艳.钢管混凝土拱桥的动力稳定性能研究[D].上海:同济大学,2004,9.
    [10]熊峰.钢管混凝土拱桥抗震性能研究[D].成都:四川大学,2001,10.
    [11]张明亮.中承式钢管混凝土拱桥动力特性分析[D].哈尔滨:东北林业大学,2006,6.
    [12]郭科.大跨度钢管混凝土拱桥地震反应分析[D].长沙:长沙理工大学,2005,4.
    [13]赵雅丽.大跨度钢管混凝土拱桥的地震响应分析[D].杭州:浙江大学,2005,3.
    [14]沈聚敏,周锡元,高小旺.抗震工程学[M].北京:中国建筑工业出版社,2000,227-229.
    [15]陈波.土—桩基—结构动力相互作用体系的模拟及分析[D].上海:同济大学,2002,7.
    [16]刘立平.水平地震作用下桩—土—结构弹塑性动力相互作用分析[D].重庆:重庆大学,2004,6.
    [17]林皋.土—结构动力相互作用[J].世界地震工程.1991(1),4-21.
    [18]熊建国.土—结构动力相互作用问题的新进展(Ⅰ)[J].世界地震工程,1992(3):22-29
    [19]熊建国.土—结构动力相互作用问题的新进展(Ⅱ)[J].世界地震工程,1992(4):17-25
    [20]梁青槐.土—结构动力相互作用数值分析方法的评述[J].北方交通大学学报,1997,21(6):690-694
    [21]窦立军,杨柏坡,刘光和.土—结构动力相互作用几个实际应用问题[J].世界地震工程,1999(15):62-68.
    [22]李辉.土—结动力相互作用[D].重庆:重庆建筑大学,1999.
    [23]陈跃庆,吕西林,李培振等.分层土—基础—高层框架结构相互作用体系振动台模型试验研究[J].地震工程与工程振动,2001,21(3):104-112.
    [24]吕西林,陈跃庆.高层建筑结构—地基动力相互作用效果的振动合试验对比研究[J].地震工程与工程振动,2002,22(2):42-48.
    [25]吕西林,陈跃庆,陈波等.结构—地基动力相互作用体系振动台模型试验研究[J].地震工程与工程振动,2000,20(4):20-29.
    [26]吕西林,张之颖,曹文清.土—结构相互作用体系合成模态阻尼比的振动台模型试验研究[J].力学季刊,2003,24(1):75-80.
    [27]徐志英,施善云.土与地下结构动力相互作用的大型振动台试验与计算[J].岩土工程学报,1993,15(4):1-7.
    [28]陈国兴,王志华,宰金现.土与结构动力相互作用体系振动台模型试验研究[J].世界地震工程,2002,18(4):47-54.
    [29]凌贤长,王东升.液化场地桩—土—桥梁结构动力相互作用振动台试验研究进展[J].地震工程与工程振动,2002,22(4):53-59.
    [30]陈波,吕西林,李培振等.用ANSYS模拟结构—地基动力相互作用振动台试验的建模方法[J].地震工程与工程振动,2002,22(1):126-131.
    [31]陈跃庆,吕西林,侯建国等.有建筑物存在的软土地基液化模拟地震振动台试验研究[J].武汉大学学报(工学版),2003,36(1):59-85.
    [32]Hadjian A.H.,Tseng W.S.,Chang C.Y.et al,谢君斐译.罗东(台湾)土—结构相互作用大比例模型试验的启示(Ⅰ)[J].世界地震工程,1993(3):41-52.
    [33]Hadjian A.H.,Tseng W.S.,Chang C.Y.et al,谢君斐译.罗东(台湾)土—结构相互作用大比例模型试验的启示(Ⅱ)[J].世界地震工程,1993(4),49-59.
    [34]王松涛,曹资.现代抗震设计方法[M].北京:中国建筑工业出版社,1997,6.
    [35]Kashima,Toshihide,Izuru Okawa et al.Characteristics of Strong Earthquake Motions Observed at Hachinohe City Hall[C].12th World Conference on Earthquake Engineering (12WCEE).New Zealand:New Zealand Society of Earthquake Engineering,2000:1053-1062.
    [36]Cardenas M.,Bard P.Y.,Gueguen P.et al.Soil-structure interaction in Mexico city[C].12th World Conference on Earthquake Engineering(12WCEE).New Zealand:New Zealand Society of Earthquake Engineering,2000:1113-1126.
    [37]Ohtsuki A.Analytical and centrifuge studies of pile groups in liquefiable soil before and after site remediation[J].Earthquake Engineering & Structure Dynamics,1998,27(9):1-14.
    [38]Higuchi S.et al.Seismic Performance of LNG Storage Tank Foundations During the very Large Earthquake[C].12th World Conference on Earthquake Engineering(12WCEE).New Zealand:New Zealand Society of Earthquake Engineering,2000:103-116.
    [39]Sato M.Reproduction of a large-scale 1G test on unsaturated sand deposits and pile foundations using centrifuge modeling,[C].12th World Conference on Earthquake Engineering(12WCEE).New Zealand:New Zealand Society of Earthquake Engineering,2000:2093-2107.
    [40]宫必宁,赵大鹏,地下结构与土动力相互作用试验研究[J].三峡大学学报(自然科学版),2002,24(6):493-497.
    [41]楼梦麟,王文剑,马恒春等.土—桩—结构相互作用体系的振动台模型试验[J].同济大学学报,2001,29(7):763-768.
    [42]韦晓,范力础,王军杰.考虑桩—土—桥梁结构相互作用振动台试验研究[J].土木工程学报,2002,35(4):91-97.
    [43]伍小平,砂土—桩—结构相互作用振动台试验研究[D].上海:同济大学,2002,9.
    [44]凌贤长,王东升,王志强等.液化场地桩—土—桥梁结构动力相互作用大型振动台模型试验研究[J].土木工程学报,2004,32(11):67-72,84.
    [45]李培振.结构—地基动力相互作用体系的振动台试验及计算模拟分析[D].上海:同济大学,2002,9.
    [46]陈跃庆.不同土性的SSI体系振动台试验研究[D].上海:同济大学,2003,11.
    [47]梁丰.结构—地基动力相互作用体系振动台试验与研究[D].上海:同济大学,2004,2.
    [48]Penzien J.,Scheffey C.and Parmelee R.Seismic analysis of bridges on long piles[J].Journal of Engineering Mechanics Division,1964,90(3):223-254.
    [49]蒯行成,任毕乔.求解地基—结构系统运动方程的基本频率法[J].湖南大学学报,1998,25(6):81-85.
    [50]Wolf J.P.吴世明译.土—结构动力相互作用[M].北京:地震出版社,1989:15-32.
    [51]廖振鹏.近场波动的数值模拟[J].力学进展,1997,27(2):193-216.
    [52]傅铁铭.场地反应和土—结构相互作用研究的边界元法[J].世界地震工程,1993,13(3):26-33.
    [53]冯仰德,汪越胜,章梓茂.考虑单侧接触结构—介质动力相互作用的边界元分析[J].重庆建筑大学学报,2000,22(6):12-15.
    [54]赵崇斌,张楚汉,张光斗.用无穷元模拟半无限平面弹性地基[J].清华大学学报,186,26(3):51-64.
    [55]M.Nuray Aydinoglu.Consistent Formulation of Direct and Substructure Methods in nonlinear Soil-Structure Interaction[J].Soil Dynamics and Earthquake Engineering,1993,12(7):403-410
    [56]宋二祥.无限地基数值模拟的传输边界[J].工程力学,1997,增刊:613-619.
    [57]Deeks A J,Randolph M F.Axisymmetric time-domain transmitting boundaries[J].Journal of Engineering Mechanics Division,1994,120(1):25-42
    [58]曹晓岩,李晓莉,李立新等.桩—土—结构相互作用地震反应分析[J].世界地震工程,2004,20(1):90-94.
    [59]陈素文,严士超.结构—桩—土的地震反应分析[J].工业建筑,2000,30(2):44-46
    [60]王振宁.大型地基—结构系统动力反应计算理论及其应用研究[D].北京:清华大学,2002,10.
    [61]Wilson E L.A method of analysis for the evaluation of foundation-structure interaction[C].Proc,4th World Conf.Earthquake Engineering,Santiago,Chile,1969,3:87-150.
    [62]Lysmer J,Kulemeyer R L.Finite dynamic model for infinite media[J].Journal of Engineering Mechanics Division,1969,95(4):859-877.
    [63]Kausel E.Local transmitting boundaries[J].Journal of Engineering Mechanics Division,1988,114(6):1011-1027
    [64]WOLF J.P.A comparison of time-domain transmitting boundaries[J].Earthquake Engineering and Structure Dynamics,1986,14(4):655-673.
    [65]刘晶渡,吕彦东.地基—结构动力相互作用问题分析的一种直接方法.土木工程学报,1998,31(3):55-64.
    [66]Clayton R,Engquist B.Absorbing boundary conditions for acoustic and elastic wave equations[J].Bulletin of the Seismological Society of America,1977,67(6):1529-1540.
    [67]Lysmer J,Wass G.Shear waves in plane infinite structures[J].Journal of Engineering Mechanics Division,1972,98(1):85-105
    [68]Moriyama K G,et al.Soil-structure interaction analysis by using cloning algorithm[C].Proc.of 9th world Conf.Earthquake Engineering,Tokyo,Japan,1988,3:349-354
    [69]Smith W.D.A non-reflecting plane boundary for wave propagation problems[J].Journal of Computational Physics.1974,15(3):492-503.
    [70]Kunar R.R.and Marti J.A Non-reflecting Boundary for Explicit Calculations[J].Computational Methods for Infinite Domain Media-Structure Interaction,1981,46(3),183-204.
    [71]Cundall P A.Solution of infinite dynamic problems by finite modeling in time domain[C].Proc.2nd Int.Conf.Appl.Num.Modeling,Madrid,Spain,1978.
    [72]赵密.粘弹性人工边界及其与透射人工边界的比较研究[D].北京:北京工业大学,2004.
    [73]Liao Zhenpeng,Yang Baipo and Yuan Yifan.Feedback Effects of Low-rise Building on Vertical Earthquake Ground Motion and Application of Transmitting Boundaries for Transient Wave Analysis[R].Beijing:Institute of Engineering Mechanics,Academia Sinica,Research Report.1978.
    [74]廖振鹏,杨柏坡,袁一凡.暂态弹性波分析中人工边界的研究[J].地震工程与工程振动1982,2(1):1-11.
    [75]廖振鹏,黄孔亮,杨柏坡等.暂态波透射边界[J].中国科学A,1984,27(6):556-564.
    [76]杜修力.局部解耦的时域波分析方法[J].世界地震工程,2000,16(3):22-26.
    [77]范立础.桥梁抗震[M].上海:同济大学出版社,2001:23-35.
    [78]范立础,胡世德,叶爱君.大跨度桥梁抗震设计[M].北京:人民交通出版社,2004:16-17.
    [79]胡世德,范立础.江阴长江公路大桥纵向地震反应分析[J].同济大学学报,1994,22(4):433-438.
    [80]郑史雄,周述华,丁桂保.大跨度钢管混凝土拱桥的地震反应性能[J].西南交通大学学报,1999,34(3):320-324.
    [81]钟万勰,林家浩等.大跨度桥梁分析方法的一些进展[J].大连理工大学学报,2000,40(2:127-133.
    [82]林家浩,钟万勰.大跨度结构抗震计算的随机振动方法[J].建筑结构学报,2000,21(1):29-35.
    [83]刘洪兵,朱晞.大跨度斜拉桥多支承激励地震响应分析[J].土木工程学报,2001,34(6):38-44.
    [84]赵灿辉.大跨度桥梁地震响应分析中的非一致地震激励模型[J].西南交通大学学报,2002,37(3):236-240.
    [85]郑家树.大跨度钢管混凝土拱桥非线性地震反应分析[D].成都:西南交通大学,2000,2.
    [86]潘旦光,楼梦麟,范立础.多点输入下大跨度结构地震反应分析研究现状[J].同济大学学报,2001,29(10):1213-1219.
    [87]李涛.大跨度钢管混凝土拱桥的抗震分析[J].公路,1996(1):1-13.
    [88]李涛,阎贵平,李腾云等.上承式大跨度钢管混凝土拱桥的地震反应分析[J].北京交通大学学报,2005,29(1):4-8.
    [89]颜东煌,赖敏芝,张克波等.茅草街大桥基于ANSYS的空间计算模型[J].长沙交通学院学报,2003,19(2):6-10.
    [90]韩艳,陈政消.茅草街大桥动力特性有限元模拟与分析[J].公路,2003(3):66-69.
    [91]刘玉擎,郭彦林.钢管拱桥在大地震作用下的非线性反应分析[J].地震工程与工程振动,2003,23(1):44-49.
    [92]苏虹,胡世德.钢管混凝土拱桥的地震响应分析方法[J].同济大学学报,2003,31(4):404-407.
    [93]胡世德,苏虹,王君杰.钢管混凝土拱桥的三维弹塑性地震反应理论分析[J].中国公路学报,2004,17(1):57-61.
    [94]谢开仲,秦荣,林海瑛.大跨度CFST拱桥地震反应分析方法研究[J].武汉理工大学学报,2005,29(5):700-703.
    [95]谢开仲,秦荣,王建军.大跨度钢管混凝土拱桥地震反应分析[J].中南公路工程,2005,30(2):15-19.
    [96]王浩,杨玉冬,李爱群等.土桩结构相互作用对大跨度CFST拱桥地震反应的影响[J].东南大学学报,2005,35(3)433-437.
    [97]韩林海.钢管混凝土结构——理论与实践[M].北京:科学出版社,2004,16-393.
    [98]刘威.钢管混凝土局部受压时的工作机理研究[D].福州:福州大学,2005,4.
    [99]刘晶波,王振宁,杜修力等.波动问题中的三维时域粘弹性人工边界[J].工程力学,2005,22(6):46-51.
    [100]王振宁,刘晶波.成层地基非线形波动问题人工边界与波动输入研究[J].岩石力学与工程学报,2004,23(7):1169-1173.
    [101]周光泉.刘孝敏.粘弹性理论[M].合肥:中国科学技术大学出版社,1996:16-78.
    [102]M.Novak,T.Nogami and F.Aboui-Ella.Dynamic Soil Reactions for Plane Strain Case[J].Journal of the Engineering Mechanics Division,1978,104(4):953-959.
    [103]M.Novak.Vertical Vibration of Floating Piles[J].Journal of the Engineering Mechanics Division,1977,103(1):153-168.
    [104]M.Novak and H.Mitwally.Transmiting Boundary for Axisymmetrical Dilation Problems[J].Journal of the Engineering Mechanics Division,1988,114(1):181-187.
    [105]Aki K,Richards P G.Quantitative seismology theory and methods[M].W.H.Freeman and Company,1980.
    [106]廖振鹏.工程波动理论导论[M].北京:科学出版社,2003:1-203.
    [107]张相庭.结构振动力学[M].上海:同济大学出版社,2005:16-123.
    [108]王勖成,劭敏.有限单元法基本原理和数值方法[M].北京:清华大学出版社,2002:23-165.
    [109]钟善桐.钢管混凝士力学[M].大连:大连理工大学出版社,1996:17-152..
    [110]胡泉秀,熊峰,吴卫.混凝土的三维本构关系[J].四川建筑科学研究,2003,29(1):68-71
    [111]陈宝春,陈友杰,王来永等.钢管混凝土偏心受压应力—应变关系模型研究[J].中国公路学报,2004,17(1):24-28.
    [112]沈聚敏、王传志、江见鲸.钢筋混凝土有限元与板壳极限分析[M].北京:清华大学出版社,1993:12-135..
    [113]吴莹,赵永刚,李世荣.拉压弹性模量不等材料杆的纯弯曲及偏心压缩[J].甘肃工业大学学报,2001,27(1):101-105.
    [114]马俊,盛洪飞,孙航.钢管混凝土拱肋滞回性能非线性有限元分析[J].公路交通科技,2006,23(8):84-88,92.
    [115]韩林海.钢管混凝土结构[M].北京:科学出版社,2000:249-252.
    [116]尹浩辉,吴滨生.丫髻沙大桥主拱拱肋钢管混凝土的灌注与线形控制[J].桥梁建设,2000(4):49-51.
    [117]张建民,郑皆连,肖汝诚.巫峡长江大桥施工加载过程计算[J].同济大学学报(自然科学版),2004,32(11):1413-1417.
    [118]周国良,崔成臣,刘必灯等.汶川8.0级地震中几座近断层桥梁失效模式的初步探讨[J].震灾防御技术,2008,3(4):370-378.
    [119]丁秀丽.三峡船闸高边坡岩体开挖卸荷变形及流变分析[J].长江科学院院报,1995,12(4):37-43,63.
    [120]刘保国,孙钧.岩体粘弹性本构模型辨识的一种方法[J].工程力学,1999,16(1):18-25.
    [121]刘世君,徐卫亚,邵建富.岩石粘弹性模型辨识及参数反演[J].水利学报,2002(6):101-105.
    [122]P.Leger,I.M.Ide et al.Multiple-support seismic analysis of large structures[J].Compute &structure,1990,36(6):1153-1158.
    [123]ALY.S.Nazmy.Effect of ground motion variability on the response of cable-stayed bridge[J].Soil Dynamics and Earthquake Engineering,1990,21(1):1-20.
    [124]J.L.BOGDANOFF,J.E.GOLDBERG and A.J.SCHIFF.The effect of ground transmission time on the response of long structures[J].Bulletin of the Seismological Society of America,1965,55(3):627-640.