多金属氧簇:变色—荧光开关性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
荧光开关在光学显示、信息存储、荧光成像、生物传感等领域的潜在应用,激发了众多学者的研究热情。多金属氧簇(多酸)具有酸性、发光、可逆的氧化还原及电致变色等优良特性,极大地促进了多酸在荧光开关领域的发展。在本文中我们基于多酸的电致变色及负电荷性,设计了一系列基于多酸的荧光开关。我们从分子内能量转移及分子间能量转移的红色荧光开关的电化学调控入手;从红光到绿光,再到绿光、蓝光相互转变的荧光开关的调控;最后对多酸基荧光开关在化学传感方面的应用进行了研究。围绕着以上研究思路得到了一系列荧光开关薄膜,而且还实现了多酸基荧光开关在化学传感方面的应用。
     本论文研究内容包括以下五个方面:1.我们利用交替沉积技术制备了聚电解质与铕多酸杂化红光薄膜。在外加氧化还原电位下,多酸薄膜呈现出可逆的电致变色性质;通过铕与还原态多酸分子内能量转移,首次实现了基于铕-多酸的电化学调控荧光开关。2.基于功能互补原理,我们将红光发射钌配合物与电致变色多酸通过交替沉积技术制备了杂化红光薄膜。在外加氧化还原电位下,薄膜呈现出可逆的电致变色现象;通过发光分子与还原态多酸分子间的能量转移,首次实现了基于多酸电致变色对红光组分荧光开关性质的电化学调控。3.我们通过交替沉积技术构筑了基于石墨烯负载荧光素与多酸的绿光薄膜。在外加氧化还原电位下,薄膜呈现出可逆的电致变色性质及电化学调控荧光开关效应,首次实现了基于多酸电致变色对绿光薄膜的荧光开关性能调控。4.我们利用质子传导性质的多酸、酸碱响应荧光分子及琼脂糖基质,制备了基于多酸的溶胶-凝胶自支持发光薄膜。在酸、碱刺激下,薄膜呈现出可逆的变色性质及蓝、绿光相互转变荧光开关效应。5.我们将电化学还原与化学氧化相结合,实现了铕多酸可逆的荧光开关效应。电化学还原的铕多酸处于荧光淬灭状态;在外加氧化剂下荧光恢复并伴随着荧光光谱的规律性变化,实现了还原态铕-多酸对氧化剂的定量检测。
     利用还原态多酸作为能量受体通过能量转移来设计荧光开关器件,将对多酸在光电功能领域的研究与发展具有重要的参考价值和指导意义。
Luminescent switching molecules usually display reversible light emitting andquenching under external stimuli such as light irradiation, electrochemical redox,thermally induced and chemical stimulation. The luminescent switching materials atthe "on" and "off" states are corresponding to the "0" and "1" of binary code. And theluminescent switching materials study is a hot topic for the development of materialsand attract more and more research interest for their potential application in theinformation storage, optical display devices and biosensors. Electrochemical asexternal stimulation displayed irreplaceable advantages due to the fast response, wellcontrollability, good reversibility and environment friendly. Up to now, themechanism of the luminescent switching usually realized by photo induced electrontransfer (PET), intramolecular charge transfer (ICT), the formation of excimer andfluorescence resonance energy transfer (FRET).
     Polyoxometalates (Abbr: POMs) are a class of inorganic metal-oxygen singlemolecular clusters with riched composition, diversity structure, uniform nanoscale size, which given the polyoxometalates optical, electrical and magnetic properties.And POMs exhabit potential application in catalysis, energy, medicine, biology andmaterials. Furthermore, the polyoxometalates displayed reversible redox property andphoto or electrochromic phenomenon under UV-Vis light irradiation or electra field.Especially, the rare earth containing polyoxometalates display red light emittingwhich greatly promoted the development of polyoxometalates in optical materialsfield due to their long lifetime, good monochromatic and large stokes shift. However,the polyoxometalates are poor in luminescent species and most of them concentratedin the europium containing polyoxometalates with red luminescence. In addition,polyoxometalates are usually not easy to process into devices by spin coating orvacuum coating technique due to their high boiling and melting point. Suchshortcomings are greatly limited the development of polyoxometalates in the field ofluminescent switching devices.
     The fabrication of film is the foundation to realize the luminescent switchingdevices, layer by layer technique is the most commonly used method for thefabrication of polyoxometalate based film. Which provide a wide space due to thecontrollable on molecular level, flexibility of assembly process and rich materialsources. The preparation of luminescent film based on polyoxometalates usually adopttwo strategies:1) luminescent polyoxometalates and polyelectrolyte by alternatingdeposition;2) polyoxometalates and luminescent components by alternatingdeposition process. The multilayer film usually display reversible photo orelectrochromic properties, and the film change to blue under photo irradiation andelectrochemical reduction, and the reduced products are "heteropoly blue"corresponding to a broad absorption in the visible light region, which can be used asthe acceptor in energy transfer process.
     In this article, we design a series of luminescent switch by combining theelectrochromic property of polyoxometalates and luminescent property of luminescentcomponents by the synergies or energy transfer between the two components. Wefabricated the luminescent film by layer by layer self-assemble method or sol-gel technique, and then realize the luminescent switching by electrochemical or acid-basestimulation. Firstly, we realized the red luminescent switching by intramolecularenergy transfer and intermolecular energy transfer under the electrochemicalstimulation. We realized the red, green and blue-green light mutual transformationluminescent switching film, respectively. At finally, we realized the application ofluminescent switch in biosensor or chem-sensors based on luminescentpolyoxometalate. The research work included the following five parts:
     First, we designed a red light luminescent switch by intramolecular energytransfer under electra field, we selected the [(CH3)4N]2.5H7.5[Eu(GeW11O39)(H2O)2]24.5H2O (EuGeW11) as the luminescent switching molecule, the Eu3+servedas the donor and the electrochemically reduced GeW11acted as the acceptor in theenergy transfer process. We prepared [PEI/P2W18]7[PEI/EuGeW11]34hybrid films bylayer by layer technique and characterized by UV-Vis spectra, fluorescence spectra,CVs and XPS. The film displayed reversible electrochromic and electroswitchablefluorescence properties under electrochemical stimulation by combining the UV-Visspectrometer and fluorescence spectrometer with an electrochemical workstation. Atthe same time, we studied the electrochemical stability of the film, the current andabsorbance are no obvious changed after several cycles under double step potential.The luminescent intensity is also no obvious changed under reduction potential andoxidation potential for many cycles. We realized the luminescent switching based onelectrochromic polyoxometalate, this work display a significance to the application ofpolyoxometalate in luminescent switching materials.
     Second,we realized the electrochemical controlled luminescent switch byintermolecular energy transfer based on the principle of functional complementary,the reduced polyoxometalate served as the energy acceptor and the Ru(bby) acted asthe energy donor. Firstly, we fabricated the mutilayer films by layer by layer methodbased on red luminescent Ru(bby) and electrochromic polyoxometalate on the glasssubstrate. And characterized by UV-Vis, PL spectrum and CVs for the optical-electronactivity. When applied a reduction potential-0.9V, the film changed from transparent to blue corresponding to a wide absorption peak in the visible light region, and at thesame time the luminescent intensity decreased. When applied an oxidation potential0.9V, the absorbance decreased and the blue color disappeared, meanwhile thefluorescence recovered. And the response time is about120s in the reduction andoxidation process. We studied the stability of electrochemical property under doublesteps potential, the absorbance at627nm and redox current were no obviouslychanged after many cycles. And the fluorescence integrated area was no obviouslychanged both at "on" and "off" states after many cycles. At finally, we investigatedthe influence of electrochromic component K28Li5H7P8W48O18492H2O (P8W48) andRu(phen) with different ratio to the effect of luminescent switching. We integrated thepolyoxometalate and luminescent Ru(phen) into the film and realized the luminescentswitching property controlled by electrochemical redox for the first time. This workwill provide an important reference value for the expansion of polyoxometalatesbased luminescent switch.
     Third,we incorporated the electrochromic polyoxometalate K12.5Nal.5[NaP5W30O110]15H2O (P5W30), green light emitting fluorescein and graphen oxide hybridsF@GO into the film by layer by layer method. Three films {[(PEI/P5W30)m/(PEI/PSS/PEI/GO@F)]n(PEI/P5W30)m}(m=1,3,5; n=15,17,18) have been fabricatedand characterized by UV-Vis spectrum, PL spectrum, CVs, AFM, SEM and CFM. Westudied the electrochromic and luminescent switching properties by combining theUV-Vis spectrometer and PL spectrometer with electrochemistry station, the filmdisplayed reversible electrochromic and luminescent switching behaviors under redoxpotential. For the further research, the luminescent quenching degree increased as theratio increasing of P5W30on the films,11%,51%and88%, respectively. Theelectrochromic and luminescent switching properties were no obviously changedunder reduction and oxidation potential. The electrochromic property of the film wasgreatly improved by the introduction of graphene oxide into the film. The absorbanceat627nm and current was no obviously changed after150cycles. We realized a greenluminescent switching device based on polyoxometalate regulated by electrochemical stimulation for the first time, this work extend the color of luminescent switching andwill have important influence for the muticolor responsive luminescent switchingmaterials based on polyoxometalates.
     Fourth, we realized the blue and green light mutual transformation luminescentswitch based on polyoxometalate, agarose and sodium fluorescein films underacid-base stimulation. Firstly, we fabricated the hybrid self-supporting luminescentfilms by combining the sol-gel technique and casting method, and the size of thefilms can be controlled by the concentration and volume of the casting solution or thearea of the substrates. The composition and structure of film have been characterizedby UV-Vis spectrometer, PL spectrometer, IR spectrum. And the morphologies werecharacterized by the SEM, TEM and CFM images. When the films were immersed inthe HCl atmosphere, the absorbance at500nm blue shifted to440nm, the color of thefilm changed from yellow to green. At the same time, the luminescent spectrum at530nm blue shifted to480nm, the light emitting of the films changed from green to blue.On contrary, when the films were immersed into NH3atmosphere, the absorbance at530nm increased and the color of the films changed from green to brown; meanwhile,the film displayed green light emitting under UV light irradiation. The film displayedblue/green light reversible transformation under the acid/base stimulation. We studiedthe acid/base response stability by IR spectrum. The gaschromic and luminescentswitching properties were no obviously changed after several cycles when alternatelyimmersed in HCl and NH3vapor. In this work, we realized a blue/green lightluminescent switching by the acid/base stimulation based on polyoxometalateself-supporting film, and displayed a potential application in optical materials and thefiled of chem-sensors.
     Fifth, we designed a chem-sensor for the detection of H2O2by combining theelectrochemical reduction with chemical oxidation based on EuGuW11. The EuGeW11solution represented a red light emitting at open circuit state; when applied reductionpotential-0.9V, the color of the solution changed from colorless to blue andcorresponding to the absorbance at400-800nm increased; at the same time the fluorescence of the solution quenched. And the absorbance at627nm linearlyincreased as the concentration of H2O2increasing, the linear range is0-0.135mMwith a detection limit0.16μM. When added H2O2into the reduced solution, theluminescent intensity at617nm linearly increased as the concentration of H2O2, andthe linear range is0-0.15mM with a detection limit0.68μM. This work provided anew route for the potential application in chem or bio-sensors based onpolyoxometalates luminescent switch.
     In conclusion, we realized a series luminescent switches by intra orintermolecular synergistic effect and principle of energy transfer based on functionalcomplementarity. Firstly, we achieved a electroswitchable red fluorescence byintramolecular energy transfer; we achieved a red light luminescent switch controlledby electrochemical redox based on intermolecular energy transfer; we achieved agreen light luminescent switch by electrochemical regulation; then we achieved ablue-green light emitting mutual transformation luminescent switch under acid-basestimulation; at finally we realized the application of luminescent switch in the filed ofchemical detection. These luminescent switch exhibit a potential application in theluminescent switching devices, optical display devices, chem or biosensors.
引文
[1] Feynman, R. There's Plenty of Room at the Bottom. American Physical Society,1959.
    [2]田禾等,分子器件与机器-纳米世界的概念与前景,华东理工大学出版社2009。
    [3] Feringa, B.; Molecular Switch, Wiley-VCH Weinheim,2001.
    [4] Holten, D.; Bocian, D.; Lindsey, J.Acc.Chem.Res.2002,35,57.
    [5] Yokoyama, Y. Chem. Rev.2000,100,1717; Berkovic, G.; Krongauz, V.; Weiss, V.Chem. Rev.2000,100,1741.
    [6] Mutai, T.; Satou, H.; Araki, K. Nature Materials.2005,4,685; Sagara, Y.; Kato, T.Nature Chemistry.2009,1,605.
    [7] Feringa, B.; Delden, R.; Koumura, N.; Geertsema, E. Chem. Rev.2000,100,1789;Browne, W.; Feringa, B. Chiroptical Molecular Switch, Wiley-VCH,2011.
    [8] Myers, E. Science.1999,285,867; Hur, N.; Park, S.; Sharma, P.; Ahn, J.; Guha, S.;Cheong, S. Nature.2004,429,392.
    [9] Armistead, W.; Stookey, S. Science,1964,144,150; Dotsenko, A.; Tsekhomsky, V.Physics and chemistry of photochromic glasses. CRC Press,1998.
    [10] Yao, J.; Hashimoto, K.; Fujishima, A. Nature.1992,355,624; He, T.; Yao, J.Prog. Mater. Sci.2006,51,810.
    [11] Dürr, H.; Laurent, H. Photochromism Molecules and systems. Elsvier BV,2003;Tamai, N.; Miyasaka, H. Chem. Rev.2000,100,1875.
    [12] Kumar, G.; Neckers, D. Chem. Rev. l989,89,1915.
    [13] Crano, J.; Guglielmetti, Organic photochromic and thermochromic compounds.Kluwer Academic/Plenun Publishers,1999; Berkovic, G.; Krongauz, V.; Weiss, V.Chem. Rev.2000,100,1741.
    [14] Irie, M. Chem. Rev.2000,100,1685.
    [15] Deb, S. Sol Energy Mater Sol Cells.1995,39,191; Mortimer, R. Chem. Soc. Rev.1997,26,147.
    [16] Granqvist, G. Handbook of inorganic electrochromic materials. Elsevier scienceB. V.2002; Seike, T.; Nagai, J. Sol Energy Mater.1991,22,107.
    [17] Duek, E.; Depaoli, M.; Mastragostino, M. Adv. Mater.1992,4,287; Delong-champ, D.; Hammond, P. Adv. Funct. Mater.2004,14,224.
    [18] Ko, H.; Kim, S.; Lee, H.; Moon, B. Adv. Funct. Mater.2005,15,905; Mortimer,R.; Dyer, A.; Reynolds, J. Dispays.2006,27,2.
    [19] Green, J.; Faulkner, L. J. Am. Chem. Soc.1983,105,2950.
    [20] Mortimer, R. Electrochim. Acta.1999,44,2971; Argun, A.; Cirpan, A.; Reynolds,J. Adv. Mater.2003,15,1338.
    [21] Joseph R. Lakowicz. Principles of fluorescence spectroscopy, Springer Science+Business Media,2006.
    [22] Silve, A.; Fox, D.; Moody, T.; Weir, S. Trends in Biotechnology.2001,19,29;Silva, A.; McClenaghan, N. Chem. Eur. J.2004,10,574.
    [23] Zelphati, O.; Szoka, F. Science.1996,93,11493; Pearce, D.; Walkup, G.;Imeriali, B. Bioorg. Med. Chem. Lett.1998,8,1963.
    [24] Grabowski, Z.; Rotkiewicz. K. Chem. Rev.2003,103,3899.
    [25] Suzuki, Y.; Morozumi, T.; Nakamura, H. J. Phys. Chem. B.1998,102,7910.
    [26] Browne, W.; Pollard, M.; Lange, Ben.; Meetsma, A.; Feringa, B. J. Am. Chem.Soc.2006,128,12412.
    [27] Zhang, G.; Lu, J.; Sabat, M.; Fraser, C. J. Am. Chem. Soc.2010,132,2160.
    [28] Li, H.; Zhang, X.; Chi, Z.; Xu, B.; Zhou, W.; Liu, S.; Zhang, Y.; Xu, J. Org. Lett.2011,13,556.
    [29] Sagara, Y.; Kato, T. Nat. Chem.2009,1,605.
    [30] Dou, C.; Han, L.; Zhao, S.; Zhang, H.; Wang, Y. J. Phys. Chem. Lett.2011,2,666.
    [31] Raymo, F.; Tomasulo, M. Chem. Soc. Rev.2005,34,327.
    [32] Tsuchiya, S. J. Am. Chem. Soc.1999,121,48.
    [33] Fukaminato, T.; Sasaki, T.; Kawai, T.; Tamai, N.; Irie, M. J. Am. Chem. Soc.2004,126,14843.
    [34] Lim, S.; An, B.; Jung, S.; Chung, M.; Park, S. Angew. Chem. Int. Ed.2004,43,6346.
    [35] Tian, H.; Yang, S. Chem. Soc. Rev.2004,33,85.
    [36] Archut, A.; Azzellini, G.; Balzani, V.; Cola, L.; F, Vogtle. J. Am. Chem. Soc.1998,120,12187.
    [37] Myles., A.; Branda, N. J. Am. Chem. Soc.2001,123,177.
    [38] Raymo, F.; Giordani, S. J. Am. Chem. Soc.2004,124,2002.
    [39]王恩波,胡长文,许林,多酸化学导论,化学工业出版社,1998.
    [40]王恩波,李阳光,鹿颖,王新龙,多酸化学概论,东北师范大学出版社,2009.
    [41] Long, D.; Streb, C.; Song, Y.; Mitchell, S.; Cronin, L. J. Am. Chem. Soc.2008,130,1830.
    [42] Bassil, B.; Dickman, M.; R mer, M.; Kammer, B.; Kortz, U. Angew. Chem. Int.Ed.2007,46,6192.
    [43] Müller, A.; Beckman, E.; B gge, H.; Schmidtmann, M.; Dress, A. Angew. Chem.Int. Ed.2002,41,1162.
    [44] Müller, A.; Rohlfing, R.; D ring, J.; Penk, M. Angew. Chem. Int. Ed.1991,30,588.
    [45] Bontchev, R.; Nyman, M. Angew. Chem. Int. Ed.2006,45,6670.
    [46] Ohlin, C.; Villa, E.; Fettinger, J.; Gasey, W. Angew. Chem. Int. Ed.2008,47,5634.
    [47] Xu, B.; Peng, Z.; Wei, Y.; Powell, D. Chem. Commum.2003,3,2562.
    [48] Favette, S.; Hasenknoph, B.; Vaissermann, J.; Gouzerh, P.; Poux, C. Chem.Commun.2003,3,2664; Pradeep, C.; Long, D.; Cronin, L.; Song, Y.; Cronin, L.Angew. Chem. Int. Ed.2008,47,4388.
    [49] Bar, I.; Neumann, R. Chem. Commun.2003,3,2690.
    [50] Kortz, U.; Marquer, C.; Thouvenot, R.; Nierlich, M. Inorg.Chem.2003,42,1158.
    [51] Breen, J.; Schmitt, W. Angew. Chem. Int. Ed.2008,47,6904.
    [52] Li, Q.; Wei, Y.; Hao, J.; Zhu. Y.; Wang, L. J. Am. Chem. Soc.2007,129,5810.
    [53] Bereyt, S.; Piligkos, S.; Hasenknopf, B.; Gouzerh, P.; Lacote, E.; Thorimbert, S. J.Am. Chem. Soc.2005,127,6788; Bar, I.; Ettedgui, J.; Konstantinoski, L.; Kogan,V.; Neumann, R. Inorg. Chem.2007,46,5798.
    [54] Artero, V.; Proust, A.; Herson, P.; Villain, F.; Moulin, C.; Gouzerh, P. J. Am.Chem. Soc.2003,125,11156; Bi, L.; Kortz, U.; Dickman, M.; Keita, B.; Nadjo,L. Inorg. Chem.2005,44,7485; Sakai, Y.; Shinohara, A.; Hayashi, K.; Noymiya,K. Eur. J. Inorg. Chem.2006,2006,163.
    [55] Kortz, U.; Savelieff, M.; Ghali, L.; Maalouf, S.; Sinno, D. Angew. Chem. Int. Ed.2002,41,4070.
    [56] An, H.; Wang, E.; Xiao, D.; Li, Y.; Su, Z.; Xu, L. Angew. Chem. Int. Ed.2006,45,904.
    [57] Kuang, X.; Wu, X.; Yu, R.; Donahue, J.; Huang, J.; Lu, C.; Nat. Chem.2010,2,461; Zheng, S.; Zhang, J.; Yang, G. Angew. Chem. Int. Ed.2008,47,3999; Tan,H.; Li, Y.; Zhang, Z.; Qin, C.; Wang, X.; Wang, E.; Su, Z. J. Am. Chem. Soc.2007,129,10066; Sun,C.; Liu,S.; Liang, D.; Shao, K.; Ren, Y.; Su, Z. J. Am.Chem. Soc.2009,131,1883.
    [58] Yamase, T. Chem. Rev.1998,98,307.
    [59] Ritchie, C.; Moore, E.; Speldrich, M.; K gerler, P.; Boskovic, C. Angew. Chem.2010,122,7868.
    [60] Hungerford, G.; Hussain, Firasat, Hussain.; Patzke, G.; Green, M. Phys. Chem.Chem. Phys.2010,12,7266.
    [61] Chen, L.; Jiang, F.; Lin, Z.; Zhou, Y.; Yue, C.; Hong, M. J. Am. Chem. Soc.2005,127,8588.
    [62] Yin, P.; Wu, P.; Xiao, Z.; Li, D.; Bitterlich, E.; Zhang, J.; Cheng, P.; Vezenov, D.;Liu, T.; Wei, Y. Angew. Chem. Int. Ed.2011,123,2569.
    [63]王秀丽,赵岷,多酸电化学导论,中国环境科学出版社,2006。
    [64] Maeda, K.; Katano, H.; Osakai, T.; Himeno, S.; Saito, A. J. Electroanal. Chem.1995,389,167.
    [65] Zhang, J.; Bond, A. Inorg. Chem.2004,43,8263.
    [66] Balula, M.; Gamelas, J.; Carapuca, H,; Cavaleiro, A.; Schlindwein, W. Eur. J.Inorg. Chem.2004,2004,619.
    [67] Keita, B.; Mialane, P.; Secheresse, F.; Oliveira, P.; Nadjo, L. Electrochem. Comm.2007,9,164.
    [68] Nicoara, A.; Patrut, A.; Margineanu, D, Muller, A. Electrochem. Comm.2003,5,511.
    [69] Keita, B.; Lu, Y.; Nadjo, L.; Contant, R. Electrochem. Comm.2000,2,720.
    [70] Talham, D. Chem. Rew.2004,104,5479.
    [71] Clemente-Le n, M.; Mingotaud, C.; Agricole, B.; G mez-Garc a, C.; Coronado,E.; Delhaès, P. Angew. Chem. In. Ed.1997,36,1114; Coronado, E.; Mingotaud,C. Adv. Mater.1999,11,869. Clemente-le n, M.; Coronado, E.; Delhaès, P.;G mez-Carc a, C.; Mingotaud, C. Adv. Mater.2001,13,574.
    [72] Kurth, D.; Lehmann, P.; Volkmer, D.; C lfen, H.; Koop, M.; Müller, A.; Chesne,A. Chem. Eur. J.2000,6,385; Volkmer, D.; Chesne, A.; Kurth, D.; Schnablegger,H.; Lehmann, P.; Koop, M.; Müller, A. J. Am. Chem. Soc.2000,122,1995.
    [73] Decher, G.; Hong, J. Ber.Bunsenges.Phys.Chem.1991,95,1430; Decher, G.Science.1997,277,1232; Laschewsky, A. Literature compilation: Molecularself-assembly of polyelectrolytes. University of Potsdam, Germany,2006.
    [74] Kuhn, A.; Anson, F. Langmuir.1996,12,5481.
    [75] Moriguchi, I.; Fendler, J. Chem. Mater.1998,10,2205.
    [76] Caruso, F.; Kurth, D.; Volkmer, D.; Koop, M.; Müller, A. Langmuir.1998,14,3462.
    [77] Kurth, D.; Volkmer, D.; Ruttorf, M.; Richter, B.; Müller, A. Chem. Mater.2000,12,2829.
    [78] Liu, S.; Kurth, D.; Bredenk tter, B.; Volkmer, D. J. Am. Chem. Soc.2002,124,12279.
    [79] Liu, S.; Kurth, D.; M hwald, H, Volkmer, D. Adv. Mater.2002,14,225.
    [80] Cheng, Long.; Niu, L.; Gong, J.; Dong, S. Chem. Mater.1999,11,1465.
    [81] Jiang, M.; Wang, E.; Kang, Z.; Lian, S.; Wu, A.; Li, Z. J. Mater. Chem.2003,13,647.
    [82] Ma, H.; Peng, J.; Han, Z.; Feng, Y.; Wang, E. Thin Solid Films.2004,446,161.
    [83] Wang, Y.; Wang, X.; Hu, C. J. Colloid Interface Sci.2002,249,307.
    [84] Gao, G.; Xu, L.; Wang, W.; An, W.; Qiu, Y. J. Mater. Chem.2004,14,2024.
    [85] Li, C.; Halloran, K.; Ma, H.; Shi, S. J. Phys, Chem. B.2009,113,8043.
    [86]董绍俊等,化学修饰电极,科学出版社,1996.
    [87] Keita, B.; Nadjo, L.; Electroanal. Chem.1987,227,265.
    [88] Fabre, B.; Bidan, G.; Lapkowski, M. J. Am. Chem. Soc.1994,116,1509; Otero,T.; Cheng, S.; Alonso, D.; Huerta, F. J. Phys. Chem. B.2000,104,10528.
    [89] Feng, W.; Zhang, T.; Lu, Ran, Bai, Y.; Li, T.; Zhao, Y.; Yao, J. Mater. Lett.2002,54,309.
    [90] Bu, W.; Li, H.; Sun, H.; Yin, S.; Wu, L. J. Am. Chem. Soc.2005,127,8016.
    [91] Zhang, X.; Shan, B.; Bai, Z.; You, X.; Duan, C. Chem. Mater.1997,9,2687.
    [92] Zhang, T.; Feng, W.; Bao, C.; Li, T.; Zhao, Y.; Yao, J. Mar. Chem. Phy.2002,78,380.
    [93] Wang, Y.; Wang, X.; Hu, C.; Shi, C. J. Mater. Chem.2002,12,703.
    [94] Xu, L.; Zhang, H.; Wang, E.; Kurth, D.; Li, Z. J. Mater. Chem.2002,12,654.
    [95] Wang, J.; Wang, H.; Fu, L.; Liu, F.; Zhang, H. Thin Solid Films.2002,415,242;J. Lumin.2003,101,63.
    [96] Xu, J.; Zhao, S.; Han, Z.; Wang, X.; Song, Y. Chem. Eur. J.2011,17,10365.
    [97] Ma, H.; Dong, T.; Wang, F.; Zhang, W.; Zhou, B. Electrochim. Acta.2006,51,4965.
    [98] Liu, L.; Ai, W.; Li, M.; Liu, S.; Zhang, C.; Yan, H.; Du, Z.; Wong, W. Chem.Mater.2007,19,1704.
    [99] Bazzan, G.; Smith, W.; Francesconi, Drain, C. Langmuir.2008,24,3244.
    [100] Liu, L.; Chen, M.; Yang, J.; Liu, S.; Du, Z.; Wong, W. J. Polym. Sci. Part A:Polym. Chem.2009,879.
    [101] Zhang, T.; Feng, W.; Bao, C.; Li, T.; Zhao, Y.; Yao, J. Mar. Chem. Phy.2002,78,380.
    [102] Zhang, T.; Feng, W.; Fu, Y.; Bao, C.; Zhang, X.; Zhao, B.; Sun, C.; Li, T.; Zhao,Y.; Yao, J. J. Mater. Chem.2002,12,1453.
    [103] Zhang, G.; Yang, W.; Yao, J. Adv. Funct. Mater.2005,15,1255.
    [104] Jiang, M.; Wang, E.; Wang, X.; Xu, L.; Li, Z. J. Colloid. Interface. Sci.2005,275,596.
    [105] Jiang, M.; Jiao, T.; Liu, M. New J. Chem.2008,32,959.
    [106] Qi, W.; Li, H.; Wu, L. J. Phys. Chem. B.2008,112,8257.
    [107] Tell, B.; Wagner, S. Appl. Phys. Lett.1978,33,837.
    [108] Yamase, T.; Sasaki, Y.; Motowaki, T. Inorg. Chem. Acta.1986,121,19.
    [109] You, X.; Shan, B.; Zhang, X.; Zheng, S.; Bai, Z. J. Appl. Electrochem.1997,27,1297.
    [110] Zhang, X. Shan, B.; Bai, Z.; You, X.; Duan, C. Chem. Mater.1997,9,2687.
    [111] Liu, S.; M hwald, H.; Volkmer, D.; Kurth, D. Langmuir.2006,22,1949.
    [112] Zhang, T.; Liu, S.; Kurth, D.; Faul, C. Adv. Funct. Mater.2009,19,642.
    [113] Gao, G.; Xu, L.; Wang, W.; An, W.; Qou, Y. J. Mater, Chem.2004,14,2024.
    [114] Gao, G.; Xu, L.; Wang, W.; Wang, Z.; Qiu, Y.; Wang, E. J. Electrochem. Soc.2005,152,102.
    [115] Gao, G.; Xu, L.; Wang, W.; Wang, Z.; Qiu, Y.; Wang, E. Electrochim. Acta.2005,50,1101.
    [116] Gao, G.; Xu, L.; Wang, W.; An, W.; Qiu, Y.; Wang, Z.; Wang, E. J. Phys. Chem.B.2005,109,8948.
    [117] Xu, B.; Xu, L.; Gao, G.; Jin, Y. Appl. Surf. Sci.2007,253,3190.
    [118] Xu, B.; Xu, L.; Gao, G.; Guo, W.; Liu, S. J. Colloid Interface Sci.2009,330,408.
    [119] Liu, S.; Xu, L.; Gao, G.; Xu, L.; Guo, W. Mater. Chem. Phys.2009,116,88.
    [120] Xu, B.; Xu, L.; Gao, G.; Yang, Y.; Guo, W.; Liu, S.; Sun, Z. Electrochimi. Acta.2009,54,2246.
    [121] Liu, S.; Xu, L.; Gao, G.; Xu, B.; Thin Solid Films.2009,517,4668.
    [122] Sun, Z.; Xu, L.; Guo, W.; Xu, B.; Liu, S.; Li, F. J. Phys. Chem. C.2010,114,5211.
    [123] Liu, S.; Xu, L.; Li, F.; Xu, B.; Sun, Z. J. Mater. Chem.2011,21,1946.
    [124] He, T.; Ma, Y.; Cao, Y.; Yang, W.; Yao, J. J. Non-Cryst. Solids.2003,315,7.
    [125] Xue, B.; Peng, J.; Xin, Z.; Kong, Y.; Li, L.; Li, B. J. Mater. Chem.2005,15,4793.
    [126] Li, C.; Halloran, K.; Ma, H.; Shi, S. J. Phys. Chem. B.2009,113,8043.
    [127] Bi, L.; Zhou, W.; Jiang, J.; Dong, S. J. Electroanal. Chem.2008,624,269.
    [128] Jiang, M.; Liu, M. J Colloid Interface Sci.2007,37,100.
    [129] Wang, Z.; Zhang, R.; Ma, Y.; Peng, A.; Fu, H.; Yao, J.; J. Mater. Chem.2010,20,271.
    [130] Wang, X.; Wang, J.; Sunshima, R.; Pan, K.; Cao, B.; Song, Y. Ind. Eng. Chem.Res.2013,52,2598.
    [131] Wang, Z.; Ma, Y.; Zhang, R.; Peng, A.; Liao, Q.; Cao, Z.; Fu, H.; Yao, J. Adv.Mater.2009,21,1737.
    [132] Qin, B.; Chen, H.; Liang, H.; Fu, L.; Liu, X.; Qiu, X.; Liu, S.; Song, R.; Tang, Z.J. Am. Chem. Soc.2010,132,2886.
    [133] Wang, B.; Yin, Z.; Bi, L.; Wu, L. Chem.Commun.2010,46,7163.
    [134] Wang, B.; Bi, L.; Wu, L. J. Mater. Chem.2011,21,69.
    [135] Wang, B.; Ma, Y.; Wang, S.; Zhang, L.; Liang, J.; Li, H.; Wu, L.; Bi, L. J.Mater. Chem. C.2014, DOI:10.1039/C3TC32306D.
    [136] Jin, L.; Fang, Y.; Hu, P.; Zhai, L.; Wang, E.; Dong, S. ChemCommun.2012,48,2101.
    [137] Zhai, Y.; Zhu, Z.; Zhu, C.; Zhu, J.; Ren, J.; Wang, E.; Dong, S. Nanoscale.2013,5,4344.
    [138] Gu, M.; Bi, L.; Fu, Y.; Wang, N.; Liu, S.; Tang, Z. Chem.Sci.2013,4,4371.
    [1] Huynh, W.; Dittmer, J.; Alivisatos. Science,2002,295,29.
    [2] Bonaccorso, F.; Sun, Z.; Hasan, T.; Ferrari, A. Nat. Photonics.2010,4,611.
    [3] Zheng, Q.; Zhou, B.; Bai, J.; Li, H.; Jin, Z.; Zhang, J.; Li, J.; Liu, Y.; Cai. W.; Zhu,Y. Adv. Mater.2008,20,1044.
    [4] Andrew, T.; Tsai, H.; Menon, R. Science.2009,324,917.
    [5] Han, F.; Higuchi, M.; Kurth, D. J. Am. Chem. Soc.2008,130,2073.
    [6] Tetsuka, H.; Ebina, T.; Mizukami, F. Adv. Mater.2008,20,3039.
    [7] Zhang, C.; Zhou, H.; Liao, L.; Feng, W.; Sun, W.; Xu, C.; Sun, L.; Yan, C. Adv.Mater.2010,22,633.
    [8] Montilla, F.; Mallavia, R. J. Phy. Chem. B.2006,110,25791.
    [9] Borrás-Almenar, J.; Coronado, E.; Müller, A.; Pope, M. PolyoxometalateMolecular Science, Kluwer Academic Publishers,2001.
    [10] Liu, S.; Mohwald, H.; Volkmer, D.; Kurth, D. Langmuir.2006,22,1949.
    [11] Chen, J.; Ai, L.; Feng, W.; Xiong, D.; Liu, Y.; Cai, W. Mater. Lett.2007,61,5247.
    [12] Xue, B.; Peng, J.; Xin, Z.; Kong, Y.; Li, L.; Li, B. J. Mater. Chem.2005,15,4793.
    [13] Qi, W.; Li, H.; Wu, L. Adv. Mater.2007,19,1983.
    [14] Dong, T.; Ma, H.; Zhang, W.; Gong, L.; Wang, F.; Li, C. J. Colloid Interface Sci.2007,311,523.
    [15] Wang, Z.; Ma, Y.; Zhang, R.; Peng, A.; Liao, Q.; Cao, Z.; Fu, H.; Yao, J. Adv.Mater.2009,21,1737.
    [16] Haraguchi, N.; Okaue, Y.; Isobe, T.; Matsuda, Y. Inorg. Chem.1994,33,1015.
    [17] Wang, J.; Yan, Q.; Du, X.; Duan, X.; Niu, J. Inorg. Chem. Acta.2008,361,2701.
    [18] Jiang, M.; Wang, E.; Wang, X.; Wu, A.; Kang, Z.; Lian, S.; Xu, L.; Li, Z. Appl.Surf. Sci.2005,242,199.
    [19] Vyas, R.; Wang, B. Electrochem. Commun.2008,10,416.
    [20] Zhang, G.; Chen, Z.; Ke, H.; He, T.; Shao, K.; He, T.; Yang, W.; Yao, J. J. Phys.Chem. B.2004,108,6944.
    [21] Delongchamp, D.; Hammond, P. Chem. Mater.2004,16,4799.
    [1] Hagn, F.; Eisoldt, L.; Hardy, J.; Vendrely, C.; Coles, M.; Scheibel, T.; Kessler, H.Nature.2010,465,239.
    [2] Margulies, D.; Felder, C.; Melman, G.; Shanzer, A. J. Am. Chem. Soc.2007,129,347.
    [3] Ganesh, N.; Zhang, W.; Mathias, P.; Chow, E.; Soares, J.; Malyarchuk, V.; Smith,A.; Cunningham, S. Nature Nanotech.2007,2,515.
    [4] Harano, K.; Hiraoka, S.; Shionoya, M. J. Am. Chem. Soc.2007,129,5300.
    [5] Zhu, L.; Wu, W.; Zhu, M.; Han, J.; Hurst, J.; Li, A. J. Am. Chem. Soc.2007,12,3525.
    [6] Ercole, F.; Davis, T.; Evans, R. Polym.Chem.2010,1,37.
    [7] Zhang, R., Wang, Z.; Fu, H.; Wu, Y.; Yao, J. Org. Lett.2008,10,3065.
    [8] Kim, Y.; Kim, E.; Clavier, G.; Audebert, P. Chem.Commun.2006,36,3612.
    [9] Chung, J.; Yoon, S.; Lim, S.; An, B.; Park, S. Angew. Chem.2009,121,7164.
    [10] Wang, B.; Yin, Z.; Bi, L.; Wu, L. Chem.Commun.2010,46,7163.
    [11] Qin, B.; Chen. H.; Liang, H.; Liu, X.; Qiu, X.; Liu, S.; Song, R.; Tang, Z. J. Am.Chem. Soc.2010,132,2886.
    [12] Alvin P. Ginsberg,Inorganic Syntheses, JOHN WILEY&SONS,1990.
    [13] Fan, D.; Hao, J. J. Phys. Chem. B.2009,113,7513.
    [14] Bryce-Smith, D. Photochemistry, The Royal Society of Chemistry,1986.
    [15] Mingos, D. Bonding and Charge Distribution in Polyoxometalates: A BondValence Approach, Springer-Verlag,1999.
    [16] Wang, B.; Dong, S. J. Electroanal. Chem.1992,328,245.
    [17] Bi, L.; zhou, W.; Wang, H.; Dong, S. Electroanaly.2008,20,996.
    [1] Wang, B.; Yin, Z.; Bi, L.; Wu, L. ChemCommun.2010,46,7163.
    [2] Wang, B.; Bi, L.; Wu, L. J. Mater. Chem.2011,21,69.
    [3] Jin, L.; Fang, Y.; Hu, P.; Zhai, L.; Wang, E.; Dong, S. ChemCommun.2012,48,2101.
    [4] Gu, M.; Bi, L.; Fu, Y.; Wang, N.; Liu, S.; Tang, Z. Chem. Sci.2013,4,4371.
    [5] Ritchie, C.; Moore, E.; Speldrich, M.; Kogerler, P.; Boskovic, C. Angew. Chem.2010,122,7868.
    [6] Hungerf rd, G.; Hussain, F.; Patzke, G.; Green, M. Phys. Chem. Chem. Phys.2010,12,7266.
    [7] Feng, X.; Liu, L.; Wang, S.; Zhu, B. Chem. Soc. Rev.2010,39,2411.
    [8] Rurack, K.; Spieles, M. Anal. Chem.2011,83,1232.
    [9] Liu, S.; Kurth, D.; Bredenk tter, B.; Volkmer, D. J. Am. Chem. Soc.2002,124,12279.
    [10] Liu, S.; Kurth, D.; M hwald, H.; Volkmer, D. Adv. Mater.2002,14,225.
    [11] Allen, M.; Tung, V.; Kaner, R. Chem. Rev.2010,110,132.
    [12] Dreyer, D.; Park, S.; Bielawski, C.; Ruoff, R. Chem. Soc. Rev.2010,39,228.
    [13] Creaser, I.; Heckel, M.; Neitz, R.; Pope, M. Inorg. Chem.1993,32,1573.
    [14] Hummers, W.; Offeman, R. J. Am. Chem. Soc.1958,80,1339; Zhao, J.; Pei, S.;Ren, W.; Gao, L.; Cheng, H. ACS. Nano.2010,4,5245.
    [15] Huang, S.; Shi, Y.; Li, N.; Luo, H. Analyst.2012,124,12279.
    [16] Lakowicz, J. Principles of Fluorescence Spectroscopy, Springer,2006.
    [17] Huang, M.; Bi, L.; Shen, Y.; Liu, B.; Dong, S. J. Phys. Chem. B.2004,108,9780.
    [18] Pedone, A.; Bloino, J.; Monti, S.; Prampolini, G.; Barone, V. Phys. Chem. Chem.Phys.2010,12,1000.
    [19] Eda, G.; Lin, Y.; Mattevi, C.; Yamaguchi, H.; Chen, H.; Chen, S.; Chhowalla, M.Adv. Mater.2010,22,505.
    [20]董绍俊等,化学修饰电极,科学出版社,1996.
    [21] Liu, S.; Xu, L.; Li, F.; Xu, B.; Sun, Z. J. Mater. Chem.2011,21,1946.
    [22] Li, H.; Pang, S.; Wu, S.; Feng, X.; Mullen, K.; Bubeck, C. J. Am. Chem. Soc.2011,133,9423.
    [23] Jin, L.; Fang, Y.; Wen, D.; Wang, L.; Wang, E.; Dong, S. ACS. Nano.2011,5,5249.
    [1] Lee, M.; Yang, Z.; Lim, C.; Lee, Y.; Sun, D, Kang, C.; Kim, J. Chem. Rev.2013,113,5071.
    [2] Kim, S.; Yoon, S.; Park, S. J. Am. Chem. Soc.2012,134,12091.
    [3] Zhu, L.; Huo, P.; Wang, Q.; Liang, F.; Zhang, C.; Li, J.; Qu, X.; Wang, B.; Yang, Z.Chem. Commun.2013,49,5283.
    [4] Yan, D.; Lu, J.; Ma, J.; Wei, M.; Evans, D.; Duan, X. Angew. Chem. Int. Ed.2011,50,720.
    [5] Zhou, Z.; Hu, H.; Yang, H.; Yi, T.; Huang, K.; Yu, M.; Li, F.; Huang, C.Chem.Commun.2008,45,4786.
    [6] Welter,S.; Brunner,K.; Hofstraat, J.; Cola, L. Nature.2003,421,54.
    [7] Yan, D.; Lu, J.; Ma, J.; Wei, M.; Evans, D.; Duan, X. Angew. Chem. In. Ed.2011,50,720.
    [8] Krishna, V.; Ho, Y.; Basak, S.; Rajeshwar, K. J. Am. Chem. Soc.1991,113,3325.
    [9] Zollinger, H. Color Chemistry: Syntheses, Properties, and Applications of OrganicDyes and Pigmengts, Wiley-VCH,2003.
    [10] Tan, W.; Donovan, M.; Jiang, J. Chem. Rev.2013,113,2842.
    [11] Borras-Almenar, J.; Coronado, E.; Muller, A.; Pope, M. PolyoxometalateMolecular Science, Kluwer Academic Publishers,2003.
    [12] Yamase, T.; Pope, M. Polyoxometalate Chemistry for nano-CompositeDesign,Kluwer Academic Publishers,2004.
    [13] Liu, S.; Kurth, D.; Bredenk tter, B.; Volkmer, D. J. Am. Chem. Soc.2002,124,12279.
    [14] lemente-León, M.; Coronado, E.; Delhaes, P.; Gómez-Garcia, C.; Mingotaud, C.Adv. Mater.2001,13,8.
    [15] Liu, S.; Xu, L.; Li, F.; Xu, B.; Sun, Z. J. Mater. Chem.2011,21,1946.
    [16] Llordés, A.; Garcia, G.; Gazquez, J.; Milliron, D. Nature.2013,500,323.
    [17] Wang, Z.; Ma, Y.; Zhang, R.; Peng, A.; Liao, Q.; Cao, Z.; Fu, H.; Yao, J. Adv.Mater.2009,21,1737.
    [18] Qin, B.; Yue, H.; Liang, H.; Fu, L.; Liu, X.; Qiu, X.; Liu, S.; Song, R.; Tang, Z. J.Am. Chem. Soc.2010,132,2886.
    [19] Wang, Z.; Ma, Y.; Zhang, R.; Peng, A.; Liao, Q.; Cao, Z.; Fu, H. Yao, J. Adv.Mater.2009,21,1737.
    [20] Wang, B.; Yin, Z.; Bi, L.; Wu, L. Chem.Commun.2010,46,7163.
    [21] Zhai, Y.; Zhu, Z.; Zhu, C.; Zhu, J.; Ren, J.; Wang, E.; Dong, S. Nanoscale.2013,5,4344.
    [22] Zhai, Y.; Zhu, C.; Ren, J.; Wang, E.; Dong, S. Chem. Commun.2013,49,2400.
    [23] Wang, B.; Meng, R.; Bi, L.; Wu, L. Dalton Trans.2011,40,5298.
    [24] Wang, Z.; Zhang, R.; Ma, Y.; Peng, A.; Fu, H.; Yao, J.; J. Mater. Chem.2010,20,271.
    [25] Wang, X.; Wang, J.; Sunshima, R.; Pan, K.; Cao, B.; Song, Y. Ind. Eng. Chem.Res.2013,52,2598.
    [26] Martin, M.; Lindqvist, L. J. Lumin.1975,10,381.
    [1] Miao, P.; Shen, M.; Chen, G.; Ying, Y. Anal. Bioanal. Chem.2011,399,2407.
    [2] Mishra, S.; Singh, V.; Jain, A.; Verma, K. Analyst.2000,125,459.
    [3] Ciftc, H.; Tamer, U.; Anal. Chem. Acta.2011,687,137.
    [4] Kondrashina, A.; Dmitriev, R.; Borisov, S.; Klimant, I.; Brien, L.; Nolan, Y.;Zhdanov, A.; Papkovsky, D. Adv. Funct. Mater.2012,22,4931.
    [5] Yuan, L.; Lin, W.; Xie, Y.; Chen, B.; Zhu, S. J. Am. Chem. Soc.2012,134,1305.
    [6] He, F.; Tang, Y.; Yu, M.; Wang, S.; Li, Y.; Zhu, B. Adv. Funct. Mater.2006,16,91.
    [7] Wu, P.; Xiao, Z.; Zhang, J.; Hao, J.; Chen, J.; Yin, P.; Wei, Y. Chem.Commun.2011,47,5557.
    [8] Du, D.; Qin, J.; Wang, C.; Liu, X.; Li, S.; Su, Z.; Wang, X.; Lan, Y.; Wang, E. J.Mater. Chem.2012,22,21040.
    [9] Stracke, J.; Finke, R. J. Am. Chem. Soc.2011,133,14872.
    [10] Song, J.; Luo, Z.; Britt, D.; Furukawa, H.; Yaghi, O.; Hardcastle, K.; Hill, C. J.Am. Chem. Soc.2011,133,16839.
    [11] Ma, H.; Shi, S.; Zhang, Z.; Pang, H.; Zhang, Y. J. Electroanaly. Chem.2010,648,128.
    [12] Thangamuthu, R.; Pan, Y.; Chen, S. Electroanalysis.2010,22,1812.
    [13] Anwar, N.; Vagin, M.; Laffir, F.; Armstrong, G.; Dickinson, C.; McCormac, T.Analyst.2012,137,624.
    [14] Lin, S.; Zhang, X.; Luo, M. J. Solid State Electrochem.2009,13,1585.
    [15] Poulos, A.; Constantin, D.; Davidson, P.; Imperor, M.; Pansu, B.; Panine, P.;Nicole, L.; Sanchez, C. Langmuir.2008,24,6285.
    [16] Compain, J.; Deniard, P.; Dessapt, R.; Dolbecq, A.; Oms, O.; Secheresse, F.;Marrot, J.; Mialane, P. Chem. Commun.2010,46,7733.
    [17] Oms, O.; Hakouk, K.; Dessapt, R.; Deniard, pJobic,S.; Keita, B.; Mialane, P.Chem.Commun.2012,48,12103.
    [18] Wang, Z.; Ma, Y.; Zhang, R.; Peng, A.; Liao, Q.; Cao, Z.; Fu, H.; Yao, J. Adv.Mater.2009,21,1737.
    [19] Qin, B.; Yue, H.; Liang, H.; Fu, L.; Liu, X.; Qiu, X.; Liu, S.; Song, R.; Tang, Z. J.Am. Chem. Soc.2010,132,2886.
    [20] Zhai, Y.; Zhu, C.; Ren, J.; Wang, E.; Dong, S. Chem.Commun.2013,49,2400.
    [21] Wang, B.; Yin, Z.; Bi, L.; Wu, L. Chem.Commun.2010,46,7163.
    [22] Wang, B.; Bi, L.; Wu, L. J. Mater. Chem.2010,21,69.
    [23] Jin, L.; Feng, Y.; Hu, P.; Zhai, Y.; Wang, E.; Dong, S. Chem. Commun.2012,48,2101.
    [24] Gu, H.; Bi, L.; Fu, Y.; Wang, N.; Liu, S.; Tang, Z. Chem. Sci.2013,4,4371.
    [25] Jin, L.; Fang, Y.; Wen, D.; Wang, L.; Wang, E.; Dong, S. ACSNano.2011,5,5249.
    [26] Wang, J.; Yan, Q.; Du, X.; Duan, X.; Niu, J. Inorg. Chem. Acta.2008,361,2701.
    [27] Keita, B.; Lu, Y.; Nadjo, L.; Contant, R. Electrochem.Comm.2000,2,720.
    [28] Yamase, T. Chem. Rev.1998,98,307.
    [29] Wang, X.; Wang, J.; Sunshima, R.; Pan, K.; Cao, B.; Song, Y. Ind. Eng. Chem.Res.2013,52,2598.
    [30] Shan, Y.; Yang, G.; Jia, Y.; Gong, J.; Su, Z.; Qu, L. Electrochem.Comm.2007,9,2224.