若干二维材料表界面性能及应用的第一原理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着石墨烯(graphene)的成功剥落,在过去的十年里我们见证了二维材料的快速发展。二维层状材料如金属硫族化合物,过渡族金属氧化物,拓扑绝缘体,以及其它的二维材料复合物获得了人们的广泛关注。由于具有独特的性能以及高的比表面积,这些二维材料在许多方面都具有应用潜力,例如光电设备,自旋设备,催化剂,化学和生物传感器,超电容,太阳能电池以及锂离子电池。当材料的维度降低到二维,其表面体积比迅速增大,表面对于材料性能的影响变得越来越大。特别是对于graphene,单层六方氮化硼(h-BN)等材料,其基本上完全由表面构成。从这个角度上来说,研究二维材料的表面对于我们理解以及应用二维材料都非常的重要。除此之外,随着研究的深入,为了获得所需要的性能,人们已经逐渐从研究二维材料本身转向研究二维材料异质结构,即按一定的顺序堆垛不同的二维材料。将不同的二维材料堆垛在一起时,异质界面的出现对所获得的二维异质材料的性能有着重要的影响。因此对于二维材料而言,表面功能化和界面设计逐渐成为调节它们电子性能的重要手段。
     Graphene是碳原子通过sp2杂化的方式排列形成的一种二维单层材料。相比于传统的材料,graphene具有许多优异的性能,如在白光图谱中2.3%的吸光率,高的表面积、杨氏模量以及极佳的热导。此外,由于其线性的能带散布关系,理想的graphene具有超高的载流子迁移率。其常温下的载流子迁移率(15000cm2.V-1.s-1)约是商业硅片的10倍。这使得graphene在高速电子设备领域具有重大的潜力,如场效应晶体管(FET)。但是,原始的graphene本身不能被用来制造室温下运行的FET,这是因为graphene中没有能隙。能隙的缺失使得基于graphene的FET无法有效的关闭,其开关电流比很小。因此,打开graphene的能隙便成为实现其在逻辑电路中运用的重要的一步。除此之外,在graphene表面集成FET或者其它电子光学设备,还依赖于我们对其局部载流子类型和浓度的控制能力,即在graphene表面可控的实现p-n节/超点阵的能力。
     基于金属铂(Pt)的催化剂对许多重要的化学反应都具有良好的催化活性及选择性,因此在商业中被广泛地应用。不过在实际的催化过程中Pt的利用率却很低,这是因为在催化反应中只有Pt纳米颗粒表面的原子参与了催化,其内部的Pt原子并没有得到有效的利用。降低催化剂粒子的尺寸可以有效地提高Pt的利用率,当使用单原子Pt作为催化剂时它的利用率达到最大,但是在实际的使用过程中单个的Pt原子容易烧结并团聚在一起。这就需要找到一种适当的基底材料,它必须可以有效地固定住催化剂原子,抑制其在反应中的团聚并能够保持其高的催化活性。二维材料具有大的表面体积比,并且其电子性能囊括了绝缘体,半导体以及金属,因此是一类潜在的可以作为单原子Pt催化剂基底的材料。
     基于以上考虑,我们研究了graphene与其它二维材料之间的异质界面对于调节石墨烯的能隙以及其载流子类型和浓度的作用,并详细地阐明了能隙和载流子调节的物理机制。由于二维材料具有极高的表面积,我们还探讨了二维单层金属酞菁片(金属原子从Sc到Zn)在作为催化剂基底方面的应用。其具体内容主要分为以下三个部分:
     首先,研究了在氢化的graphene/h-BN中,异质界面的存在对体系能隙的影响,并阐述了能隙调节的物理机制。研究结果表明在氢化的graphene/h-BN中,界面处电荷转移诱导产生一个由graphene层指向h-BN层的内建势差。该内建势差对体系的能隙值起着决定性的作用。通过外加电场或者改变氢化的graphene/h-BN中h-BN的层数可以调节这个势差,从而实现对系统能隙值的线性调控。
     其次,研究了通过界面设计的方法在MoSe2基底和graphene之间插入一层功能化的双面材料作为缓冲层(H-G-F),以实现对graphene中载流子类型和浓度的控制。研究发现,取决于H-G-F,MoSe2以及graphene的相对排列,电子将自发地从MoSe2基底以隧道的方式转移到最上层的graphene中或从graphene中转移到基底。Graphene p-n节/超点阵的形成便可以通过选择性地功能化缓冲层使其形成graphene纳米带包围的H-G-F和F-G-H岛来实现。这种隧道掺杂现象的物理机制源于:H-G-F中的势差与由于它的引入而产生的界面偶极矩共同作用,最终导致MoSe2基底的价带顶或导带底高于(低于)graphene的狄拉克点。
     最后,研究了二维金属酞菁片作为单原子Pt催化剂的基底的可能性,并使用CO氧化反应测试了其催化反应的活性。研究结果表明Ti-Pc是一个较好的可实现单原子Pt负载的基底,它可以有效的防止单个Pt原子的团聚并保留其高的催化活性。
With the successful exfoliation of single layer graphene, we have witnessed a rapiddevelopment of two-dimension (2D) materials during the passed decades.2D layeredmaterials such as metal chalcogenides, transition metal oxides, topological insulator andother2D compounds have gained comprehensive interest. Because of their remarkableproperties, they have shown great potential in a wide range of areas, including optical andelectronic devices, spin equipment, catalyst, chemical and biosensor, supercapacitor, solarand Li-ion battery. In view of the rapid increase of specific surface area in2D materials, thesurfaces become very important to their properties, especially for graphene and monolayerhexagonal boron nitride (h-BN) which consist of entirely surfaces. In this respect, it isessential to study the surface properties in order to better understand or use the2D materials.Additionally, the attentions have shifted from2D materials themselves to theheterostructures fabricated by stacking different2D crystals on top of each other to obtainthe required properties. When stacking different2D crystals into heterostructures, theemergence of heterointerface plays a significant role in determining the properties of theobtained system. Consequently, surface functionalization as well as interface designationgradually becomes a vital way to modulate the electronic properties of the2D materials.
     Graphene is a single layer of sp2-hybridized2D carbon atoms. Compared withtraditional materials, graphene exhibits unique and fascinating electronic properties, such asits2.3%absorption in the white light spectrum, high surface area, excellent thermalconductivity and high young’s modulus. In addition, in view of its linear band dispersion,ultrahigh carrier mobility (15000cm2.V-1.s-1in room temperature) has been observed, almost10times larger than that in commercial sillion wafers, holding great potential in high-speedelectronic devices, such as filed effect transitor (FET). However, pristine graphene can notbe used to fabricate FET operated in room temperature with the absence of band gap. One ofthe important steps toward the applications of graphene in logic circuit is to open a band gap.On the other hand, integrations of FET or other electronic and photonic devices on grapheneare highly dependent on our ability to locally control the carrier type and concentration ingraphene, namely the ability of controllable formation of graphene p-n junctions/superlattice.
     Supported Pt-based catalysts are widely used in industry by virtue of their high activityand/or selectivity for many important chemical reactions, while their efficiency is extremely low because only the surface active-sites are used. Reducing the size of catalyst couldsteadily improve its efficiency and the highest one could be achieved when it is down tosingle atom scale. However, the application of Pt single atom catalysts has been largelyhampered by their easiness to sinter and aggregation under realistic reaction conditions,which call for a suitable substrate mateiral with the ability to fasten the single catalyst atomtightly and to prevent their aggregation in reaction while retaining their high catalyticactivity. On account of the huge surfaces and variety of electronic properties ranging frominsulator, semiconductor to metal in2D materials, they hold great potential as the substratematerials for single atom catalysts.
     Based on the above considerations, the effects of heterogeneous interfaces betweengraphene and other2D materials on its band gap and carrier type and concentration havebeen studied. The corresponding physical mechanisms have also been discussed. In terms ofthe high surface area in2D materials, we also investigated the application of2D monolayerTM-Phthalocyanine (TM from Sc to Zn) as a substrate material for catalyst. The three partsof our research contents are listed as below:
     Firstly, the effect of heterogeneous interface on the band gap of hydrogenated graphene/h-BN and the corresponding physical mechanism have been investigated. The resultsdemonstrate that the emergence of dipoles at the interface induced by the charge transferbetween the graphene and the h-BN layer introduces a built-in potential difference, whichplays a critical role in determining the energy gap of the resulting system. Tuning thisbuild-in potential difference through changing the number of h-BN layers or an external biasallows linear modulation of the gap.
     Secondly, on the basis of interface designation, we propose to modulate the carrier typeand concentration in graphene through inserting a functionalized janus material in betweenMoSe2substrate and graphene as the buffer layer (defined as H-G-F). It is found that after itsintroduction, electrons would transfer from the MoSe2substrate to graphene or reversethrough a tunneling effect depending on their detailed arrangements. Appropriatefunctionalization of the janus material would open the possibility of creating well orderedand atomically sharp graphene p–n junctions/superlattices in a single layer of graphene. Thephysical origin of the tunneling phenomena is determined by a net potential differencebetween the valence band maximum/conduction band minimum in substrate and the Diracpoint in graphene layer caused by the competition between the dipole of the janus materialand the concomitant interface dipoles after its insertion.
     Lastly, the potential of TM-Phthalocyanine as a substrate material for single Pt catalysthas been studied. CO oxidation is selected as a probe reaction to test the catalytic activity ofthe resulting system. It is found that Ti-Pc is the most appropriate compound which preventsthe aggregation of Pt atoms and retains its high catalytic activity.
引文
[1] FERAIN I, COLINGE C A and COLINGE J-P. Multigate transistors as the future ofclassical metal-oxide-semiconductor field-effect transistors [J]. Nature2011,479:310-316.
    [2] WILK G D, WALLACE R M and ANTHONY J M. High-κ gate dielectrics: Currentstatus and materials properties considerations [J]. Journal of Applied Physics2001,89:5243-5275.
    [3] SCHWIERZ F. Graphene transistors [J]. Nature Nanotechnology2010,5:487-496.
    [4] RADISAVLJEVIC B, RADENOVIC A, BRIVIO J, GIACOMETTI V and KIS A.Single-layer MoS2transistors [J]. Nature Nanotechnology2011,6:147-150.
    [5] ZENG H, DAI J, YAO W, XIAO D and CUI X. Valley polarization in MoS2monolayersby optical pumping [J]. Nature Nanotechnology2012,7:490-493.
    [6] FENG J, PENG L, WU C, SUN X, HU S, LIN C, DAI J, YANG J and XIE Y. Giantmoisture responsiveness of VS2ultrathin nanosheets for novel touchless positioning interface[J]. Advanced Materials2012,24:1969-1974.
    [7] UENO A, FUJITA T, MATSUE M, YANAGISAWA H, OSHIMA C, PATTHEY F,PLOIGT H C, SCHNEIDER W D and OTANI S. Scanning tunneling microscopy study on aBC3covered NbB2(0001) surface [J]. Surface Science2006,600:3518-3521.
    [8] KARA A, ENRIQUEZ H, SEITSONEN A P, LEW YAN VOON L C, VIZZINI S,AUFRAY B and OUGHADDOU H. A review on silicene—New candidate for electronics[J]. Surface Science Reports2012,67:1-18.
    [9] NAGUIB M, KURTOGLU M, PRESSER V, LU J, NIU J, HEON M, HULTMAN L,GOGOTSI Y and BARSOUM M W. Two-dimensional nanocrystals produced by exfoliationof Ti3AlC2[J]. Advanced Materials2011,23:4248-4253.
    [10] NAGUIB M, MASHTALIR O, CARLE J, PRESSER V, LU J, HULTMAN L,GOGOTSI Y and BARSOUM M W. Two-dimensional transition metal carbides [J]. ACSNano2012,6:1322-1331.
    [11] AMO-OCHOA P, WELTE L, GONZALEZ-PRIETO R, SANZ MIGUEL P J,GOMEZ-GARCIA C J, MATEO-MARTI E, DELGADO S, GOMEZ-HERRERO J andZAMORA F. Single layers of a multifunctional laminar Cu(i,ii) coordination polymer [J].Chemical Communications2010,46:3262-3264.
    [12] ABEL M, CLAIR S, OURDJINI O, MOSSOYAN M and PORTE L. Single layer ofpolymeric Fe-phthalocyanine: An organometallic sheet on metal and thin insulating film [J].Journal of the American Chemical Society2010,133:1203-1205.
    [13] WATANABE K, TANIGUCHI T and KANDA H. Direct-bandgap properties andevidence for ultraviolet lasing of hexagonal boron nitride single crystal [J]. Nature Material2004,3:404-409.
    [14] KIM K, CHOI J-Y, KIM T, CHO S-H and CHUNG H-J. A role for graphene insilicon-based semiconductor devices [J]. Nature2011,479:338-344.
    [15] FRANK D J, YUAN T and WONG H S P. Generalized scale length for two-dimensionaleffects in MOSFETs [J]. Electron Device Letters, IEEE1998,19:385-387.
    [16] NOVOSELOV K S, GEIM A K, MOROZOV S V, JIANG D, ZHANG Y, DUBONOS SV, GRIGORIEVA I V and FIRSOV A A. Electric field effect in atomically thin carbon films[J]. Science2004,306:666-669.
    [17] LEMME M C, ECHTERMEYER T J, BAUS M and KURZ H. A graphene field-effectdevice [J]. Ieee Electron Device Letters2007,28:282-284.
    [18] LIAO L, BAI J, QU Y, LIN Y-C, LI Y, HUANG Y and DUAN X. High-κ oxidenanoribbons as gate dielectrics for high mobility top-gated graphene transistors [J].Proceedings of the National Academy of Sciences2010.
    [19] MERIC I, HAN M Y, YOUNG A F, OZYILMAZ B, KIM P and SHEPARD K L.Current saturation in zero-bandgap, top-gated graphene field-effect transistors [J]. NatureNanotechnology2008,3:654-659.
    [20] LIN Y-M, DIMITRAKOPOULOS C, JENKINS K A, FARMER D B, CHIU H-Y,GRILL A and AVOURIS P.100-ghz transistors from wafer-scale epitaxial graphene [J].Science2010,327:662.
    [21] MOON J S, CURTIS D, HU M, WONG D, MCGUIRE C, CAMPBELL P M,JERNIGAN G, TEDESCO J L, VANMIL B, MYERS-WARD R, EDDY C and GASKILL DK. Epitaxial-graphene RF field-effect transistors on Si-face6h-SiC substrates [J]. ElectronDevice Letters, IEEE2009,30:650-652.
    [22] LOPEZ N, JANSSENS T V W, CLAUSEN B S, XU Y, MAVRIKAKIS M,BLIGAARD T and N RSKOV J K. On the origin of the catalytic activity of goldnanoparticles for low-temperature CO oxidation [J]. Journal of Catalysis2004,223:232-235.
    [23] HERZING A A, KIELY C J, CARLEY A F, LANDON P and HUTCHINGS G J.Identification of active gold nanoclusters on iron oxide supports for CO oxidation [J].Science2008,321:1331-1335.
    [24] TURNER M, GOLOVKO V B, VAUGHAN O P H, ABDULKIN P,BERENGUER-MURCIA A, TIKHOV M S, JOHNSON B F G and LAMBERT R M.Selective oxidation with dioxygen by gold nanoparticle catalysts derived from55-atomclusters [J]. Nature2008,454:981-983.
    [25] VAJDA S, PELLIN M J, GREELEY J P, MARSHALL C L, CURTISS L A,BALLENTINE G A, ELAM J W, CATILLON-MUCHERIE S, REDFERN P C,MEHMOOD F and ZAPOL P. Subnanometre platinum clusters as highly active and selectivecatalysts for the oxidative dehydrogenation of propane [J]. Nature Material2009,8:213-216.
    [26] JUDAI K, ABBET S, W RZ A S, HEIZ U and HENRY C R. Low-temperature clustercatalysis [J]. Journal of the American Chemical Society2004,126:2732-2737.
    [27] LEI Y, MEHMOOD F, LEE S, GREELEY J, LEE B, SEIFERT S, WINANS R E,ELAM J W, MEYER R J, REDFERN P C, TESCHNER D, SCHL GL R, PELLIN M J,CURTISS L A and VAJDA S. Increased silver activity for direct propylene epoxidation viasubnanometer size effects [J]. Science2010,328:224-228.
    [28] REMEDIAKIS I N, LOPEZ N and NORSKOV J K. CO oxidation on rutile-supportedAu nanoparticles [J]. Angewandte Chemie International Edition2005,44:1824-1826.
    [29] YANG X-F, WANG A, QIAO B, LI J, LIU J and ZHANG T. Single-atom catalysts: Anew frontier in heterogeneous catalysis [J]. Accounts of Chemical Research2013,46:1740-1748.
    [30] QIAO B, WANG A, YANG X, ALLARD L F, JIANG Z, CUI Y, LIU J, LI J andZHANG T. Single-atom catalysis of CO oxidation using Pt1/FeOx[J]. Nature Chemistry2011,3:634-641.
    [31] UZUN A, ORTALAN V, BROWNING N D and GATES B C. A site-isolatedmononuclear iridium complex catalyst supported on MgO: Characterization by spectroscopyand aberration-corrected scanning transmission electron microscopy [J]. Journal of Catalysis2010,269:318-328.
    [32] UZUN A, ORTALAN V, HAO Y, BROWNING N D and GATES B C. Nanoclusters ofgold on a high-area support: Almost uniform nanoclusters imaged by scanning transmissionelectron microscopy [J]. ACS Nano2009,3:3691-3695.
    [33] WANG W L, SANTOS E J G, JIANG B, CUBUK E D, OPHUS C, CENTENO A,PESQUERA A, ZURUTUZA A, CISTON J, WESTERVELT R and KAXIRAS E. Directobservation of a long-lived single-atom catalyst chiseling atomic structures in graphene [J].Nano letters2014,14:450-455.
    [34] WANG C, MA L, LIAO L, BAI S, LONG R, ZUO M and XIONG Y. A uniqueplatinum-graphene hybrid structure for high activity and durability in oxygen reductionreaction [J]. Sci Rep2013,3.
    [35] TANG Y, ZHANG G, LIU C, LUO S, XU X, CHEN L and WANG B. MagneticTiO2-graphene composite as a high-performance and recyclable platform for efficientphotocatalytic removal of herbicides from water [J]. Journal of Hazardous Materials2013,252–253:115-122.
    [36] TANG Y, YANG Z, DAI X, MA D and FU Z. Formation, stabilities, and electronic andcatalytic performance of platinum catalyst supported on non-metal-doped graphene [J]. TheJournal of Physical Chemistry C2013,117:5258-5268.
    [37] WANG B, YOON B, K NIG M, FUKAMORI Y, ESCH F, HEIZ U and LANDMAN U.Size-selected monodisperse nanoclusters on supported graphene: Bonding, isomerism, andmobility [J]. Nano letters2012,12:5907-5912.
    [38] LIU X, MENG C and HAN Y. Substrate-mediated enhanced activity of Runanoparticles in catalytic hydrogenation of benzene [J]. Nanoscale2012,4:2288-2295.
    [39] LU Y-H, ZHOU M, ZHANG C and FENG Y-P. Metal-embedded graphene: A possiblecatalyst with high activity [J]. The Journal of Physical Chemistry C2009,113:20156-20160.
    [40] LI F, ZHAO J and CHEN Z. Fe-anchored graphene oxide: A low-cost and easilyaccessible catalyst for low-temperature CO oxidation [J]. The Journal of Physical ChemistryC2011,116:2507-2514.
    [41] NICOLOSI V, CHHOWALLA M, KANATZIDIS M G, STRANO M S and COLEMANJ N. Liquid exfoliation of layered materials [J]. Science2013,340.
    [42] GEIM A K. Graphene: Status and prospects [J]. Science2009,324:1530-1534.
    [43] DAS SARMA S, ADAM S, HWANG E H and ROSSI E. Electronic transport intwo-dimensional graphene [J]. Reviews of Modern Physics2011,83:407-470.
    [44] CASTRO NETO A H, GUINEA F, PERES N M R, NOVOSELOV K S and GEIM A K.The electronic properties of graphene [J]. Reviews of Modern Physics2009,81:109-162.
    [45] NOVOSELOV K S, GEIM A K, MOROZOV S V, JIANG D, KATSNELSON M I,GRIGORIEVA I V, DUBONOS S V and FIRSOV A A. Two-dimensional gas of masslessdirac fermions in graphene [J]. Nature2005,438:197-200.
    [46] ZHANG Y, TAN Y-W, STORMER H L and KIM P. Experimental observation of thequantum Hall effect and Berry's phase in graphene [J]. Nature2005,438:201-204.
    [47] YOUNG A F and KIM P. Quantum interference and Klein tunnelling in grapheneheterojunctions [J]. Nature Physics2009,5:222-226.
    [48] CHEIANOV V V, FAL'KO V and ALTSHULER B L. The focusing of electron flow anda Veselago lens in graphene p-n junctions [J]. Science2007,315:1252-1255.
    [49] GEIM A K and NOVOSELOV K S. The rise of graphene [J]. Nat Mater2007,6:183-191.
    [50] HWANG E H and DAS SARMA S. Acoustic phonon scattering limited carrier mobilityin two-dimensional extrinsic graphene [J]. Physical Review B2008,77:115449.
    [51] BOLOTIN K I, SIKES K J, JIANG Z, KLIMA M, FUDENBERG G, HONE J, KIM Pand STORMER H L. Ultrahigh electron mobility in suspended graphene [J]. Solid StateCommunications2008,146:351-355.
    [52] BALANDIN A A, GHOSH S, BAO W, CALIZO I, TEWELDEBRHAN D, MIAO Fand LAU C N. Superior thermal conductivity of single-layer graphene [J]. Nano letters2008,8:902-907.
    [53] CHEN Y, ZHANG B, LIU G, ZHUANG X and KANG E-T. Graphene and itsderivatives: Switching on and off [J]. Chemical Society reviews2012,41:4688-4707.
    [54] BAE S, KIM H, LEE Y, XU X, PARK J-S, ZHENG Y, BALAKRISHNAN J, LEI T, RIKIM H, SONG Y I, KIM Y-J, KIM K S, OZYILMAZ B, AHN J-H, HONG B H and IIJIMAS. Roll-to-roll production of30-inch graphene films for transparent electrodes [J]. NatureNanotechnology2010,5:574-578.
    [55] ZHOU H, YU W J, LIU L, CHENG R, CHEN Y, HUANG X, LIU Y, WANG Y,HUANG Y and DUAN X. Chemical vapour deposition growth of large single crystals ofmonolayer and bilayer graphene [J]. Nature Communications2013,4.
    [56] NOVOSELOV K S, FALKO V I, COLOMBO L, GELLERT P R, SCHWAB M G andKIM K. A roadmap for graphene [J]. Nature2012,490:192-200.
    [57] WANG XIN-RAN S Y, ZHANG RONG. Field-effect transistors based ontwo-dimensional materials for logic applications [J]. Chinese Physics B2013,22:0985051-09850515.
    [58] NAKADA K, FUJITA M, DRESSELHAUS G and DRESSELHAUS M S. Edge state ingraphene ribbons: Nanometer size effect and edge shape dependence [J]. Physical Review B1996,54:17954-17961.
    [59] SON Y-W, COHEN M L and LOUIE S G. Energy gaps in graphene nanoribbons [J].Physical Review Letters2006,97:216803.
    [60] CASTRO E V, NOVOSELOV K S, MOROZOV S V, PERES N M R, DOS SANTOS JM B L, NILSSON J, GUINEA F, GEIM A K and NETO A H C. Biased bilayer graphene:Semiconductor with a gap tunable by the electric field effect [J]. Physical Review Letters2007,99:216802.
    [61] ZHANG Y, TANG T-T, GIRIT C, HAO Z, MARTIN M C, ZETTL A, CROMMIE M F,SHEN Y R and WANG F. Direct observation of a widely tunable bandgap in bilayergraphene [J]. Nature2009,459:820-823.
    [62] GUINEA F, KATSNELSON M I and GEIM A K. Energy gaps and a zero-field quantumHall effect in graphene by strain engineering [J]. Nature Physics2010,6:30-33.
    [63] CHOI S-M, JHI S-H and SON Y-W. Controlling energy gap of bilayer graphene bystrain [J]. Nano letters2010,10:3486-3489.
    [64] BHATTACHARYA A, BHATTACHARYA S and DAS G P. Strain-induced band-gapdeformation of H/F passivated graphene and h-BN sheet [J]. Physical Review B2011,84:075454.
    [65] AVOURIS P. Graphene: Electronic and photonic properties and devices [J]. Nano letters2010,10:4285-4294.
    [66] MIN H, SAHU B, BANERJEE S K and MACDONALD A H. Ab initio theory of gateinduced gaps in graphene bilayers [J]. Physical Review B2007,75:155115.
    [67] WANG T H, ZHU Y F and JIANG Q. Bandgap opening of bilayer graphene by dualdoping from organic molecule and substrate [J]. The Journal of Physical Chemistry C2013,117:12873-12881.
    [68] XIA F, FARMER D B, LIN Y-M and AVOURIS P. Graphene field-effect transistorswith high on/off current ratio and large transport band gap at room temperature [J]. Nanoletters2010,10:715-718.
    [69] MCCANN E. Asymmetry gap in the electronic band structure of bilayer graphene [J].Physical Review B2006,74:161403.
    [70] SON Y-W, COHEN M L and LOUIE S G. Half-metallic graphene nanoribbons [J].Nature2006,444:347-349.
    [71] CAI J, RUFFIEUX P, JAAFAR R, BIERI M, BRAUN T, BLANKENBURG S,MUOTH M, SEITSONEN A P, SALEH M, FENG X, MULLEN K and FASEL R.Atomically precise bottom-up fabrication of graphene nanoribbons [J]. Nature2010,466:470-473.
    [72] BAI J, ZHONG X, JIANG S, HUANG Y and DUAN X. Graphene nanomesh [J].Nature Nanotechnology2010,5:190-194.
    [73] KIM M, SAFRON N S, HAN E, ARNOLD M S and GOPALAN P. Fabrication andcharacterization of large-area, semiconducting nanoperforated graphene materials [J]. Nanoletters2010,10:1125-1131.
    [74] LU G, YU K, WEN Z and CHEN J. Semiconducting graphene: Converting graphenefrom semimetal to semiconductor [J]. Nanoscale2013,5:1353-1368.
    [75] HAN T H, HUANG Y-K, TAN A T L, DRAVID V P and HUANG J. Steam etchedporous graphene oxide network for chemical sensing [J]. Journal of the American ChemicalSociety2011,133:15264-15267.
    [76] LI X, CAI W, AN J, KIM S, NAH J, YANG D, PINER R, VELAMAKANNI A, JUNG I,TUTUC E, BANERJEE S K, COLOMBO L and RUOFF R S. Large-area synthesis ofhigh-quality and uniform graphene films on copper foils [J]. Science2009,324:1312-1314.
    [77] DE HEER W A, BERGER C, RUAN M, SPRINKLE M, LI X, HU Y, ZHANG B,HANKINSON J and CONRAD E. Large area and structured epitaxial graphene produced byconfinement controlled sublimation of silicon carbide [J]. Proceedings of the NationalAcademy of Sciences2011,108:16900-16905.
    [78] LIANG X, JUNG Y-S, WU S, ISMACH A, OLYNICK D L, CABRINI S and BOKOR J.Formation of bandgap and subbands in graphene nanomeshes with sub-10nm ribbon widthfabricated via nanoimprint lithography [J]. Nano letters2010,10:2454-2460.
    [79] PARK S and RUOFF R S. Chemical methods for the production of graphenes [J].Nature Nanotechnology2009,4:217-224.
    [80] LERF A, HE H, FORSTER M and KLINOWSKI J. Structure of graphite oxiderevisited‖[J]. The Journal of Physical Chemistry B1998,102:4477-4482.
    [81] CAI W, PINER R D, STADERMANN F J, PARK S, SHAIBAT M A, ISHII Y, YANG D,VELAMAKANNI A, AN S J, STOLLER M, AN J, CHEN D and RUOFF R S. Synthesisand solid-state NMR structural characterization of13C-labeled graphite oxide [J]. Science2008,321:1815-1817.
    [82] LOH K P, BAO Q, EDA G and CHHOWALLA M. Graphene oxide as a chemicallytunable platform for optical applications [J]. Nature Chemistry2010,2:1015-1024.
    [83] G MEZ-NAVARRO C, WEITZ R T, BITTNER A M, SCOLARI M, MEWS A,BURGHARD M and KERN K. Electronic transport properties of individual chemicallyreduced graphene oxide sheets [J]. Nano letters2007,7:3499-3503.
    [84] STANKOVICH S, DIKIN D A, PINER R D, KOHLHAAS K A, KLEINHAMMES A,JIA Y, WU Y, NGUYEN S T and RUOFF R S. Synthesis of graphene-based nanosheets viachemical reduction of exfoliated graphite oxide [J]. Carbon2007,45:1558-1565.
    [85] PAREDES J I, VILLAR-RODIL S, SOL S-FERN NDEZ P, MART NEZ-ALONSO Aand TASC N J M D. Atomic force and scanning tunneling microscopy imaging of graphenenanosheets derived from graphite oxide [J]. Langmuir2009,25:5957-5968.
    [86] CHEN D, FENG H and LI J. Graphene oxide: Preparation, functionalization, andelectrochemical applications [J]. Chemical Reviews2012,112:6027-6053.
    [87] YANG D, VELAMAKANNI A, BOZOKLU G, PARK S, STOLLER M, PINER R D,STANKOVICH S, JUNG I, FIELD D A, VENTRICE JR C A and RUOFF R S. Chemicalanalysis of graphene oxide films after heat and chemical treatments by X-ray photoelectronand micro-raman spectroscopy [J]. Carbon2009,47:145-152.
    [88] BAGRI A, MATTEVI C, ACIK M, CHABAL Y J, CHHOWALLA M and SHENOY VB. Structural evolution during the reduction of chemically derived graphene oxide [J].Nature Chemistry2010,2:581-587.
    [89] ZHU Y, MURALI S, CAI W, LI X, SUK J W, POTTS J R and RUOFF R S. Grapheneand graphene oxide: Synthesis, properties, and applications [J]. Advanced Materials2010,22:3906-3924.
    [90] ERICKSON K, ERNI R, LEE Z, ALEM N, GANNETT W and ZETTL A.Determination of the local chemical structure of graphene oxide and reduced graphene oxide[J]. Advanced Materials2010,22:4467-4472.
    [91] GóMEZ-NAVARRO C, MEYER J C, SUNDARAM R S, CHUVILIN A, KURASCH S,BURGHARD M, KERN K and KAISER U. Atomic structure of reduced graphene oxide [J].Nano letters2010,10:1144-1148.
    [92] L PEZ V, SUNDARAM R S, G MEZ-NAVARRO C, OLEA D, BURGHARD M, GMEZ-HERRERO J, ZAMORA F and KERN K. Chemical vapor deposition repair ofgraphene oxide: A route to highly-conductive graphene monolayers [J]. Advanced Materials2009,21:4683-4686.
    [93] SU C-Y, XU Y, ZHANG W, ZHAO J, LIU A, TANG X, TSAI C-H, HUANG Y and LIL-J. Highly efficient restoration of graphitic structure in graphene oxide using alcohol vapors[J]. ACS Nano2010,4:5285-5292.
    [94] VEDALA H, SORESCU D C, KOTCHEY G P and STAR A. Chemical sensitivity ofgraphene edges decorated with metal nanoparticles [J]. Nano letters2011,11:2342-2347.
    [95] GAO H, WANG L, ZHAO J, DING F and LU J. Band gap tuning of hydrogenatedgraphene: H coverage and configuration dependence [J]. The Journal of Physical ChemistryC2011,115:3236-3242.
    [96] BOUKHVALOV D W, KATSNELSON M I and LICHTENSTEIN A I. Hydrogen ongraphene: Electronic structure, total energy, structural distortions and magnetism fromfirst-principles calculations [J]. Physical Review B2008,77:035427.
    [97] SOFO J O, CHAUDHARI A S and BARBER G D. Graphane: A two-dimensionalhydrocarbon [J]. Physical Review B2007,75:153401.
    [98] JELOAICA L and SIDIS V. DFT investigation of the adsorption of atomic hydrogen ona cluster-model graphite surface [J]. Chemical Physics Letters1999,300:157-162.
    [99] LEB GUE S, KLINTENBERG M, ERIKSSON O and KATSNELSON M I. Accurateelectronic band gap of pure and functionalized graphane from gw calculations [J]. PhysicalReview B2009,79:245117.
    [100] GUISINGER N P, RUTTER G M, CRAIN J N, FIRST P N and STROSCIO J A.Exposure of epitaxial graphene on SiC(0001) to atomic hydrogen [J]. Nano letters2009,9:1462-1466.
    [101] SESSI P, GUEST J R, BODE M and GUISINGER N P. Patterning graphene at thenanometer scale via hydrogen desorption [J]. Nano letters2009,9:4343-4347.
    [102] LUO Z, YU T, KIM K-J, NI Z, YOU Y, LIM S, SHEN Z, WANG S and LIN J.Thickness-dependent reversible hydrogenation of graphene layers [J]. ACS Nano2009,3:1781-1788.
    [103] ELIAS D C, NAIR R R, MOHIUDDIN T M G, MOROZOV S V, BLAKE P,HALSALL M P, FERRARI A C, BOUKHVALOV D W, KATSNELSON M I, GEIM A Kand NOVOSELOV K S. Control of graphene's properties by reversible hydrogenation:Evidence for graphane [J]. Science2009,323:610-613.
    [104] ZHOU J, LIANG Q and DONG J. Enhanced spin–orbit coupling in hydrogenated andfluorinated graphene [J]. Carbon2010,48:1405-1409.
    [105] ARTYUKHOV V I and CHERNOZATONSKII L A. Structure and layer interaction incarbon monofluoride and graphane: A comparative computational study [J]. The Journal ofPhysical Chemistry A2010,114:5389-5396.
    [106] ROBINSON J T, BURGESS J S, JUNKERMEIER C E, BADESCU S C, REINECKET L, PERKINS F K, ZALALUTDNIOV M K, BALDWIN J W, CULBERTSON J C,SHEEHAN P E and SNOW E S. Properties of fluorinated graphene films [J]. Nano letters2010,10:3001-3005.
    [107] RIBAS M, SINGH A, SOROKIN P and YAKOBSON B. Patterning nanoroads andquantum dots on fluorinated graphene [J]. Nano Research2011,4:143-152.
    [108] SAMARAKOON D K, CHEN Z, NICOLAS C and WANG X-Q. Structural andelectronic properties of fluorographene [J]. Small2011,7:965-969.
    [109] AHIN H, TOPSAKAL M and CIRACI S. Structures of fluorinated graphene and theirsignatures [J]. Physical Review B2011,83:115432.
    [110] NAIR R R, REN W, JALIL R, RIAZ I, KRAVETS V G, BRITNELL L, BLAKE P,SCHEDIN F, MAYOROV A S, YUAN S, KATSNELSON M I, CHENG H-M,STRUPINSKI W, BULUSHEVA L G, OKOTRUB A V, GRIGORIEVA I V, GRIGORENKOA N, NOVOSELOV K S and GEIM A K. Fluorographene: A two-dimensional counterpart ofteflon [J]. Small2010,6:2877-2884.
    [111] BARAKET M, WALTON S G, LOCK E H, ROBINSON J T and PERKINS F K. Thefunctionalization of graphene using electron-beam generated plasmas [J]. Applied PhysicsLetters2010,96:231501.
    [112] ZBO IL R, KARLICK F, BOURLINOS A B, STERIOTIS T A, STUBOS A K,GEORGAKILAS V, AF OV K, JAN K D, TRAPALIS C and OTYEPKA M.Graphene fluoride: A stable stoichiometric graphene derivative and its chemical conversionto graphene [J]. Small2010,6:2885-2891.
    [113] TOUHARA H and OKINO F. Property control of carbon materials by fluorination [J].Carbon2000,38:241-267.
    [114] JEON K-J, LEE Z, POLLAK E, MORESCHINI L, BOSTWICK A, PARK C-M,MENDELSBERG R, RADMILOVIC V, KOSTECKI R, RICHARDSON T J andROTENBERG E. Fluorographene: A wide bandgap semiconductor with ultravioletluminescence [J]. ACS Nano2011,5:1042-1046.
    [115] WANG X, LI X, ZHANG L, YOON Y, WEBER P K, WANG H, GUO J and DAI H.N-doping of graphene through electrothermal reactions with ammonia [J]. Science2009,324:768-771.
    [116] KATO T, JIAO L, WANG X, WANG H, LI X, ZHANG L, HATAKEYAMA R andDAI H. Room-temperature edge functionalization and doping of graphene by mild plasma[J]. Small2011,7:574-577.
    [117] LIN Y-C, LIN C-Y and CHIU P-W. Controllable graphene n-doping with ammoniaplasma [J]. Applied Physics Letters2010,96:-.
    [118] WEI D, LIU Y, WANG Y, ZHANG H, HUANG L and YU G. Synthesis of n-dopedgraphene by chemical vapor deposition and its electrical properties [J]. Nano letters2009,9:1752-1758.
    [119] LHERBIER A, BLASE X, NIQUET Y-M, TRIOZON F and ROCHE S. Chargetransport in chemically doped2D graphene [J]. Physical Review Letters2008,101:036808.
    [120] PANCHAKARLA L S, SUBRAHMANYAM K S, SAHA S K, GOVINDARAJ A,KRISHNAMURTHY H R, WAGHMARE U V and RAO C N R. Synthesis, structure, andproperties of boron-and nitrogen-doped graphene [J]. Advanced Materials2009,21:4726-4730.
    [121] SCHEDIN F, GEIM A K, MOROZOV S V, HILL E W, BLAKE P, KATSNELSON MI and NOVOSELOV K S. Detection of individual gas molecules adsorbed on graphene [J].Nature Material2007,6:652-655.
    [122] WEHLING T O, NOVOSELOV K S, MOROZOV S V, VDOVIN E E,KATSNELSON M I, GEIM A K and LICHTENSTEIN A I. Molecular doping of graphene[J]. Nano letters2007,8:173-177.
    [123] JUNG N, KIM N, JOCKUSCH S, TURRO N J, KIM P and BRUS L. Charge transferchemical doping of few layer graphenes: Charge distribution and band gap formation [J].Nano letters2009,9:4133-4137.
    [124] GAO W and KAHN A. Controlled p-doping of zinc phthalocyanine by coevaporationwith tetrafluorotetracyanoquinodimethane: A direct and inverse photoemission study [J].Applied Physics Letters2001,79:4040-4042.
    [125] TAKENOBU T, TAKANO T, SHIRAISHI M, MURAKAMI Y, ATA M, KATAURA H,ACHIBA Y and IWASA Y. Stable and controlled amphoteric doping by encapsulation oforganic molecules inside carbon nanotubes [J]. Nature Material2003,2:683-688.
    [126] CHEN W, CHEN S, QI D C, GAO X Y and WEE A T S. Surface transfer p-typedoping of epitaxial graphene [J]. Journal of the American Chemical Society2007,129:10418-10422.
    [127] PINTO H, JONES R, GOSS J P and BRIDDON P R. P-type doping of graphene withF4-TCNQ[J]. Journal of Physics-Condensed Matter2009,21:402001.
    [128] COLETTI C, RIEDL C, LEE D S, KRAUSS B, PATTHEY L, VON KLITZING K,SMET J H and STARKE U. Charge neutrality and band-gap tuning of epitaxial graphene onSiC by molecular doping [J]. Physical Review B2010,81.
    [129] LU Y H, CHEN W, FENG Y P and HE P M. Tuning the electronic structure ofgraphene by an organic molecule [J]. The Journal of Physical Chemistry B2008,113:2-5.
    [130] LIU H, RYU S, CHEN Z, STEIGERWALD M L, NUCKOLLS C and BRUS L E.Photochemical reactivity of graphene [J]. Journal of the American Chemical Society2009,131:17099-17101.
    [131] LIU L, RYU S, TOMASIK M R, STOLYAROVA E, JUNG N, HYBERTSEN M S,STEIGERWALD M L, BRUS L E and FLYNN G W. Graphene oxidation:Thickness-dependent etching and strong chemical doping [J]. Nano letters2008,8:1965-1970.
    [132] LEE B, CHEN Y, DUERR F, MASTROGIOVANNI D, GARFUNKEL E, ANDREI EY and PODZOROV V. Modification of electronic properties of graphene withself-assembled monolayers [J]. Nano letters2010,10:2427-2432.
    [133] CHEN J H, JANG C, ADAM S, FUHRER M S, WILLIAMS E D and ISHIGAMI M.Charged-impurity scattering in graphene [J]. Nature Physics2008,4:377-381.
    [134] GIERZ I, RIEDL C, STARKE U, AST C R and KERN K. Atomic hole doping ofgraphene [J]. Nano letters2008,8:4603-4607.
    [135] BENAYAD A, SHIN H J, PARK H K, YOON S M, KIM K K, JIN M H, JEONG H K,LEE J C, CHOI J Y and LEE Y H. Controlling work function of reduced graphite oxide withAu-ion concentration [J]. Chemical Physics Letters2009,475:91-95.
    [136] GIOVANNETTI G, KHOMYAKOV P A, BROCKS G, KARPAN V M, VAN DENBRINK J and KELLY P J. Doping graphene with metal contacts [J]. Physical Review Letters2008,101:026803.
    [137] VALDEN M, LAI X and GOODMAN D W. Onset of catalytic activity of gold clusterson titania with the appearance of nonmetallic properties [J]. Science1998,281:1647-1650.
    [138] BRUIX A, RODRIGUEZ J A, RAM REZ P J, SENANAYAKE S D, EVANS J, PARKJ B, STACCHIOLA D, LIU P, HRBEK J and ILLAS F. A new type of strong metal–supportinteraction and the production of H2through the transformation of water on Pt/CeO2(111)and Pt/CeOx/TiO2(110) catalysts [J]. Journal of the American Chemical Society2012,134:8968-8974.
    [139] YOON B, H KKINEN H, LANDMAN U, W RZ A S, ANTONIETTI J-M, ABBET S,JUDAI K and HEIZ U. Charging effects on bonding and catalyzed oxidation of CO on Au8clusters on MgO [J]. Science2005,307:403-407.
    [140] CRESPO-QUESADA M, YARULIN A, JIN M, XIA Y and KIWI-MINSKER L.Structure sensitivity of alkynol hydrogenation on shape-and size-controlled palladiumnanocrystals: Which sites are most active and selective?[J]. Journal of the AmericanChemical Society2011,133:12787-12794.
    [141] SOMORJAI G A and PARK J Y. Molecular surface chemistry by metal single crystalsand nanoparticles from vacuum to high pressure [J]. Chemical Society reviews2008,37:2155-2162.
    [142] LIN J, QIAO B, LIU J, HUANG Y, WANG A, LI L, ZHANG W, ALLARD L F,WANG X and ZHANG T. Design of a highly active Ir/Fe(OH)x catalyst: Versatileapplication of Pt-group metals for the preferential oxidation of carbon monoxide [J].Angewandte Chemie International Edition2012,51:2920-2924.
    [143] HEIZ U, SANCHEZ A, ABBET S and SCHNEIDER W D. Catalytic oxidation ofcarbon monoxide on monodispersed platinum clusters: Each atom counts [J]. Journal of theAmerican Chemical Society1999,121:3214-3217.
    [144] QIAO B, LIU L, ZHANG J and DENG Y. Preparation of highly effective ferrichydroxide supported noble metal catalysts for CO oxidations: From gold to palladium [J].Journal of Catalysis2009,261:241-244.
    [145] HARUTA M, KOBAYASHI T, SANO H and YAMADA N. Novel gold catalysts forthe oxidation of carbon monoxide at a temperature far below0°C [J]. Chemistry Letters1987,16:405-408.
    [146] GYAMFI M, EELBO T, WA NIOWSKA M and WIESENDANGER R. Fe adatomson graphene/Ru(0001): Adsorption site and local electronic properties [J]. Physical ReviewB2011,84:113403.
    [147] CORAUX J, N‘DIAYE A T, BUSSE C and MICHELY T. Structural coherency ofgraphene on Ir(111)[J]. Nano letters2008,8:565-570.
    [148] SU D S, PERATHONER S and CENTI G. Nanocarbons for the development ofadvanced catalysts [J]. Chemical Reviews2013,113:5782-5816.
    [149] HUANG C, LI C and SHI G. Graphene based catalysts [J]. Energy&EnvironmentalScience2012,5:8848-8868.
    [150] GEIM A K and GRIGORIEVA I V. Van der waals heterostructures [J]. Nature2013,499:419-425.
    [151] CHHOWALLA M, SHIN H S, EDA G, LI L-J, LOH K P and ZHANG H. Thechemistry of two-dimensional layered transition metal dichalcogenide nanosheets [J]. NatureChemistry2013,5:263-275.
    [152] HOHENBERG P and KOHN W. Inhomogeneous electron gas [J]. Physical Review1964,136: B864-B871.
    [153] KOHN W and SHAM L J. Self-consistent equations including exchange andcorrelation effects [J]. Physical Review1965,140: A1133-A1138.
    [154] SLATER J C. A simplification of the hartree-fock method [J]. Physical Review1951,81:385-390.
    [155] PERDEW J P, BURKE K and ERNZERHOF M. Generalized gradient approximationmade simple [J]. Physical Review Letters1996,77:3865-3868.
    [156] COHEN R E and KRAKAUER H. Lattice dynamics and origin of ferroelectricity inBaTiO3: Linearized-augmented-plane-wave total-energy calculations [J]. Physical Review B1990,42:6416-6423.
    [157] KERKER G P. Non-singular atomic pseudopotentials for solid state applications [J].Journal of Physics C: Solid State Physics1980,13: L189.
    [158] PAYNE M C, TETER M P, ALLAN D C, ARIAS T A and JOANNOPOULOS J D.Iterative minimization techniques for ab initio total-energy calculations: Molecular dynamicsand conjugate gradients [J]. Reviews of Modern Physics1992,64:1045-1097.
    [159] DELLEY B. An all-electron numerical method for solving the local density functionalfor polyatomic molecules [J]. The Journal of Chemical Physics1990,92:508-517.
    [160] DELLEY B. From molecules to solids with the DMol3approach [J]. The Journal ofChemical Physics2000,113:7756-7764.
    [161] PERDEW J P, CHEVARY J A, VOSKO S H, JACKSON K A, PEDERSON M R,SINGH D J and FIOLHAIS C. Atoms, molecules, solids, and surfaces: Applications of thegeneralized gradient approximation for exchange and correlation [J]. Physical Review B1992,46:6671-6687.
    [162] HAMMER B, HANSEN L B and N RSKOV J K. Improved adsorption energeticswithin density-functional theory using revised perdew-burke-ernzerhof functionals [J].Physical Review B1999,59:7413-7421.
    [163] WU Z and COHEN R E. More accurate generalized gradient approximation for solids[J]. Physical Review B2006,73:235116.
    [164] PERDEW J P, RUZSINSZKY A, CSONKA G I, VYDROV O A, SCUSERIA G E,CONSTANTIN L A, ZHOU X and BURKE K. Restoring the density-gradient expansion forexchange in solids and surfaces [J]. Physical Review Letters2008,100:136406.
    [165] DELLEY B. Hardness conserving semilocal pseudopotentials [J]. Physical Review B2002,66:155125.
    [166] DOLG M, WEDIG U, STOLL H and PREUSS H. Energypseudopotentials for the first row transition elements [J]. The Journal of Chemical Physics1987,86:866-872.
    [167] D D KOELLING B N H. A technique for relativistic spin-polarised calculations [J]. J.Phys. C: Solid State Phys.1977,10:3107
    [168] YAVARI F, KRITZINGER C, GAIRE C, SONG L, GULAPALLI H,BORCA-TASCIUC T, AJAYAN P M and KORATKAR N. Tunable bandgap in graphene bythe controlled adsorption of water molecules [J]. Small2010,6:2535-2538.
    [169] SZAFRANEK B N, SCHALL D, OTTO M, NEUMAIER D and KURZ H. Highon/off ratios in bilayer graphene field effect transistors realized by surface dopants [J]. Nanoletters2011:2640–2643.
    [170] MOROZOV S V, NOVOSELOV K S, SCHEDIN F, JIANG D, FIRSOV A A andGEIM A K. Two-dimensional electron and hole gases at the surface of graphite [J]. PhysicalReview B2005,72:201401.
    [171] ZHANG Y, JIANG Z, SMALL J P, PUREWAL M S, TAN Y W, FAZLOLLAHI M,CHUDOW J D, JASZCZAK J A, STORMER H L and KIM P. Landau-level splitting ingraphene in high magnetic fields [J]. Physical Review Letters2006,96:136806.
    [172] SAMARAKOON D K and WANG X-Q. Tunable band gap in hydrogenated bilayergraphene [J]. ACS Nano2010,4:4126-4130.
    [173] WANG X, OUYANG Y, LI X, WANG H, GUO J and DAI H. Room-temperatureall-semiconducting sub-10-nm graphene nanoribbon field-effect transistors [J]. PhysicalReview Letters2008,100:206803.
    [174] LI X, WANG X, ZHANG L, LEE S and DAI H. Chemically derived, ultrasmoothgraphene nanoribbon semiconductors [J]. Science2008,319:1229-1232.
    [175] BALOG R, JORGENSEN B, NILSSON L, ANDERSEN M, RIENKS E, BIANCHI M,FANETTI M, LAEGSGAARD E, BARALDI A, LIZZIT S, SLJIVANCANIN Z,BESENBACHER F, HAMMER B, PEDERSEN T G, HOFMANN P and HORNEKAER L.Bandgap opening in graphene induced by patterned hydrogen adsorption [J]. Nat Mater2010,9:315-319.
    [176] PABLO A D. Band gap opening of monolayer and bilayer graphene doped withaluminium, silicon, phosphorus, and sulfur [J]. Chemical Physics Letters2010,492:251-257.
    [177] TOPSAKAL M, AKT RK E and CIRACI S. First-principles study of two-andone-dimensional honeycomb structures of boron nitride [J]. Physical Review B2009,79:115442.
    [178] SHI Y, HAMSEN C, JIA X, KIM K K, REINA A, HOFMANN M, HSU A L, ZHANGK, LI H, JUANG Z-Y, DRESSELHAUS M S, LI L-J and KONG J. Synthesis of few-layerhexagonal boron nitride thin film by chemical vapor deposition [J]. Nano letters2010,10:4134-4139.
    [179] CI L, SONG L, JIN C, JARIWALA D, WU D, LI Y, SRIVASTAVA A, WANG Z F,STORR K, BALICAS L, LIU F and AJAYAN P M. Atomic layers of hybridized boronnitride and graphene domains [J]. Nature Material2010,9:430-435.
    [180] BHOWMICK S, SINGH A K and YAKOBSON B I. Quantum dots and nanoroads ofgraphene embedded in hexagonal boron nitride [J]. The Journal of Physical Chemistry C2011,115:9889-9893.
    [181] MANNA A K and PATI S K. Tunable electronic and magnetic properties in BxNyCznanohybrids: Effect of domain segregation [J]. The Journal of Physical Chemistry C2011,115:10842-10850.
    [182] XU B, LU Y H, FENG Y P and LIN J Y. Density functional theory study of BN-dopedgraphene superlattice: Role of geometrical shape and size [J]. Journal of Applied Physics2010,108:073711-073717.
    [183] DA ROCHA MARTINS J and CHACHAM H L. Disorder and segregation in B-C-Ngraphene-type layers and nanotubes: Tuning the band gap [J]. ACS Nano2010,5:385-393.
    [184] LIU Z, SONG L, ZHAO S, HUANG J, MA L, ZHANG J, LOU J and AJAYAN P M.Direct growth of graphene/hexagonal boron nitride stacked layers [J]. Nano letters2011,11:2032-2037.
    [185] DING X, DING G, XIE X, HUANG F and JIANG M. Direct growth of few layergraphene on hexagonal boron nitride by chemical vapor deposition [J]. Carbon2011,49:2522-2525.
    [186] YUAN L, LI Z, YANG J and HOU J G. Diamondization of chemically functionalizedgraphene and graphene-BN bilayers [J]. Physical Chemistry Chemical Physics2012,14:8179-8184.
    [187] ORTMANN F, BECHSTEDT F and SCHMIDT W G. Semiempirical van der waalscorrection to the density functional description of solids and molecular structures [J].Physical Review B2006,73:205101.
    [188] PERDEW J P and WANG Y. Accurate and simple analytic representation of theelectron-gas correlation energy [J]. Physical Review B1992,45:13244-13249.
    [189] FRANCIOSI A and VAN DE WALLE C G. Heterojunction band offset engineering [J].Surface Science Reports1996,25:1-140.
    [190] ZHOU Z, ZHAO J, CHEN Z and SCHLEYER P V R. Atomic and electronic structuresof fluorinated BN nanotubes: Computational study [J]. The Journal of Physical Chemistry B2006,110:25678-25685.
    [191] ZHANG Z, ZENG X C and GUO W. Fluorinating hexagonal boron nitride intodiamond-like nanofilms with tunable band gap and ferromagnetism [J]. Journal of theAmerican Chemical Society2011,133:14831-14838.
    [192] ZHANG Z, ZENG X C and GUO W. Fluorinating hexagonal boron nitride/graphenemultilayers into hybrid diamondlike nanofilms with tunable energy gap [J]. The Journal ofPhysical Chemistry C2011,115:21678-21684.
    [193] ZHANG Z and GUO W. Controlling the functionalizations of hexagonal boron nitridestructures by carrier doping [J]. The Journal of Physical Chemistry Letters2011,2:2168-2173.
    [194] LU N, LI Z and YANG J. Electronic structure engineering via on-plane chemicalfunctionalization: A comparison study on two-dimensional polysilane and graphane [J]. TheJournal of Physical Chemistry C2009,113:16741-16746.
    [195] POSTERNAK M, BALDERESCHI A, FREEMAN A J, WIMMER E and WEINERTM. Prediction of electronic interlayer states in graphite and reinterpretation of alkali bands ingraphite intercalation compounds [J]. Physical Review Letters1983,50:761.
    [196] OTANI M and OKADA S. Gate-controlled carrier injection into hexagonal boronnitride [J]. Physical Review B2011,83:073405.
    [197] ZHAO J, FENG M, YANG J and PETEK H. The superatom states of fullerenes andtheir hybridization into the nearly free electron bands of fullerites [J]. ACS Nano2009,3:853-864.
    [198] KHOO K H, MAZZONI M S C and LOUIE S G. Tuning the electronic properties ofboron nitride nanotubes with transverse electric fields: A giant dc Stark effect [J]. PhysicalReview B2004,69:201401.
    [199] ZHANG Z and GUO W. Energy-gap modulation of BN ribbons by transverse electricfields: First-principles calculations [J]. Physical Review B2008,77:075403.
    [200] HUARD B, SULPIZIO J A, STANDER N, TODD K, YANG B andGOLDHABER-GORDON D. Transport measurements across a tunable potential barrier ingraphene [J]. Physical Review Letters2007,98:236803.
    [201] DU X, SKACHKO I, BARKER A and ANDREI E Y. Approaching ballistic transportin suspended graphene [J]. Nature Nanotechnology2008,3:491-495.
    [202] KONSTANTATOS G, BADIOLI M, GAUDREAU L, OSMOND J, BERNECHEA M,DE ARQUER F P G, GATTI F and KOPPENS F H L. Hybrid graphene-quantum dotphototransistors with ultrahigh gain [J]. Nature Nanotechnology2012,7:363-368.
    [203] BRITNELL L, GORBACHEV R V, JALIL R, BELLE B D, SCHEDIN F,MISHCHENKO A, GEORGIOU T, KATSNELSON M I, EAVES L, MOROZOV S V,PERES N M R, LEIST J, GEIM A K, NOVOSELOV K S and PONOMARENKO L A.Field-effect tunneling transistor based on vertical graphene heterostructures [J]. Science2012,335:947-950.
    [204] WANG Y, SHAO Y, MATSON D W, LI J and LIN Y. Nitrogen-doped graphene and itsapplication in electrochemical biosensing [J]. ACS Nano2010,4:1790-1798.
    [205] YAN K, WU D, PENG H, JIN L, FU Q, BAO X and LIU Z. Modulation-doped growthof mosaic graphene with single-crystalline p–n junctions for efficient photocurrentgeneration [J]. Nature Communications2012,3:1280.
    [206] IQBAL M Z, SIDDIQUE S, IQBAL M W and EOM J. Formation of p-n junction withstable p-doping in graphene field effect transistors using deep UV irradiation [J]. Journal ofMaterials Chemistry C2013,1:3078-3083.
    [207] KATSNELSON M I, NOVOSELOV K S and GEIM A K. Chiral tunnelling and theKlein paradox in graphene [J]. Nature Physics2006,2:620-625.
    [208] SUTAR S, COMFORT E S, LIU J, TANIGUCHI T, WATANABE K and LEE J U.Angle-dependent carrier transmission in graphene p–n junctions [J]. Nano letters2012,12:4460-4464.
    [209] MISHCHENKO E G, SHYTOV A V and SILVESTROV P G. Guided plasmons ingraphene p-n junctions [J]. Physical Review Letters2010,104:156806.
    [210] PARK C-H, SON Y-W, YANG L, COHEN M L and LOUIE S G. Electron beamsupercollimation in graphene superlattices [J]. Nano letters2008,8:2920-2924.
    [211] PARK C-H, YANG L, SON Y-W, COHEN M L and LOUIE S G. Anisotropicbehaviours of massless Dirac fermions in graphene under periodic potentials [J]. NaturePhysics2008,4:213-217.
    [212] PARK C-H, SON Y-W, YANG L, COHEN M L and LOUIE S G. Landau levels andquantum Hall effect in graphene superlattices [J]. Physical Review Letters2009,103:046808.
    [213] SUN J, FERTIG H A and BREY L. Effective magnetic fields in graphene superlattices[J]. Physical Review Letters2010,105:156801.
    [214] LEMME M C, KOPPENS F H L, FALK A L, RUDNER M S, PARK H, LEVITOV LS and MARCUS C M. Gate-activated photoresponse in a graphene p–n junction [J]. Nanoletters2011,11:4134-4137.
    [215] WILLIAMS J R, DICARLO L and MARCUS C M. Quantum Hall effect in agate-controlled p-n junction of graphene [J]. Science2007,317:638-641.
    [216] LIU G, VELASCO J J, BAO W and LAU C N. Fabrication of graphene p-n-pjunctions with contactless top gates [J]. Applied Physics Letters2008,92:203103-203103.
    [217] LOHMANN T, VON KLITZING K and SMET J H. Four-terminal magneto-transportin graphene p-n junctions created by spatially selective doping [J]. Nano letters2009,9:1973-1979.
    [218] LIU H, LIU Y and ZHU D. Chemical doping of graphene [J]. Journal of MaterialsChemistry2011,21:3335-3345.
    [219] CHIU H-Y, PEREBEINOS V, LIN Y-M and AVOURIS P. Controllable p-n junctionformation in monolayer graphene using electrostatic substrate engineering [J]. Nano letters2010,10:4634-4639.
    [220] ZHU W, CHEN H, BEVAN K H and ZHANG Z. Formation of graphene p–nsuperlattices on Pb quantum wedged islands [J]. ACS Nano2011,5:3707-3713.
    [221] WANG H, WANG Q, CHENG Y, LI K, YAO Y, ZHANG Q, DONG C, WANG P,SCHWINGENSCHL GL U, YANG W and ZHANG X X. Doping monolayer graphene withsingle atom substitutions [J]. Nano letters2011,12:141-144.
    [222] BOKDAM M, KHOMYAKOV P A, BROCKS G, ZHONG Z and KELLY P J.Electrostatic doping of graphene through ultrathin hexagonal boron nitride films [J]. Nanoletters2011,11:4631-4635.
    [223] DESHPANDE A, BAO W, MIAO F, LAU C N and LEROY B J. Spatially resolvedspectroscopy of monolayer graphene on SiO2[J]. Physical Review B2009,79:205411.
    [224] XUE J, SANCHEZ-YAMAGISHI J, BULMASH D, JACQUOD P, DESHPANDE A,WATANABE K, TANIGUCHI T, JARILLO-HERRERO P and LEROY B J. Scanningtunnelling microscopy and spectroscopy of ultra-flat graphene on hexagonal boron nitride [J].Nature Material2011,10:282-285.
    [225] KHARCHE N and NAYAK S K. Quasiparticle band gap engineering of graphene andgraphone on hexagonal boron nitride substrate [J]. Nano letters2011,11:5274-5278.
    [226] ZHANG L, YU J, YANG M, XIE Q, PENG H and LIU Z. Janus graphene fromasymmetric two-dimensional chemistry [J]. Nature Communications2013,4:1443.
    [227] LEE W-K, ROBINSON J T, GUNLYCKE D, STINE R R, TAMANAHA C R, KINGW P and SHEEHAN P E. Chemically isolated graphene nanoribbons reversibly formed influorographene using polymer nanowire masks [J]. Nano letters2011,11:5461-5464.
    [228] GRIMME S. Semiempirical GGA-type density functional constructed with along-range dispersion correction [J]. Journal of Computational Chemistry2006,27:1787-1799.
    [229] ZHANG P, LIAN J S and JIANG Q. Potential dependent and structural selectivity ofthe oxygen reduction reaction on nitrogen-doped carbon nanotubes: A density functionaltheory study [J]. Physical Chemistry Chemical Physics2012,14:11715-11723.
    [230] GAO W, ZHAO M and JIANG Q. A DFT study on electronic structures and catalysisof Ag12O6/Ag(111) for ethylene epoxidation [J]. The Journal of Physical Chemistry C2007,111:4042-4046.
    [231] SAMARAKOON D K and WANG X-Q. Chair and twist-boat membranes inhydrogenated graphene [J]. ACS Nano2009,3:4017-4022.
    [232] LEENAERTS O, PEELAERS H, HERN NDEZ-NIEVES A D, PARTOENS B andPEETERS F M. First-principles investigation of graphene fluoride and graphane [J].Physical Review B2010,82:195436.
    [233] RAMASUBRAMANIAM A, NAVEH D and TOWE E. Tunable band gaps in bilayergraphene BNheterostructures [J]. Nano letters2011,11:1070-1075.
    [234] YAN Z, SUN Z, LU W, YAO J, ZHU Y and TOUR J M. Controlled modulation ofelectronic properties of graphene by self-assembled monolayers on SiO2substrates [J]. ACSNano2011,5:1535-1540.
    [235] GIOVANNETTI G, KHOMYAKOV P A, BROCKS G, KELLY P J and VAN DENBRINK J. Substrate-induced band gap in graphene on hexagonal boron nitride: Ab initiodensity functional calculations [J]. Physical Review B2007,76:073103.
    [236] BRAUN S, SALANECK W R and FAHLMAN M. Energy-level alignment atorganic/metal and organic/organic interfaces [J]. Advanced Materials2009,21:1450-1472.
    [237] HEIMEL G, RISSNER F and ZOJER E. Modeling the electronic properties ofπ-conjugated self-assembled monolayers [J].Advanced Materials2010,22:2494-2513.
    [238] HEIMEL G, ROMANER L, ZOJER E and BREDAS J-L. The interface energetics ofself-assembled monolayers on metals [J]. Accounts of Chemical Research2008,41:721-729.
    [239] MA Z, RISSNER F, WANG L, HEIMEL G, LI Q, SHUAI Z and ZOJER E. Electronicstructure of pyridine-based sams on flat Au(111) surfaces: Extended charge rearrangementsand Fermi level pinning [J]. Physical Chemistry Chemical Physics2011,13:9747-9760.
    [240] CHENG H-C, SHIUE R-J, TSAI C-C, WANG W-H and CHEN Y-T. High-qualitygraphene p n junctions via resist-free fabrication and solution-based noncovalentfunctionalization [J]. ACS Nano2011,5:2051-2059.
    [241] SAJJAD R N and GHOSH A W. High efficiency switching using graphene basedelectron ''optics''[J]. Applied Physics Letters2011,99:123101-123103.
    [242] AO Z M, HERNANDEZ-NIEVES A D, PEETERS F M and LI S. Enhanced stabilityof hydrogen atoms at the graphene/graphane interface of nanoribbons [J]. Applied PhysicsLetters2010,97:233109-233103.
    [243] DAI Q Q, ZHU Y F and JIANG Q. Stability, electronic and magnetic properties ofembedded triangular graphene nanoflakes [J]. Physical Chemistry Chemical Physics2012,14:1253-1261.
    [244] LEE W-K, HAYDELL M, ROBINSON J T, LARACUENTE A R, CIMPOIASU E,KING W P and SHEEHAN P E. Nanoscale reduction of graphene fluoride viathermochemical nanolithography [J]. ACS Nano2013,7:6219-6224.
    [245] GASTEIGER H A, KOCHA S S, SOMPALLI B and WAGNER F T. Activitybenchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts forPEMFCs [J]. Applied Catalysis B: Environmental2005,56:9-35.
    [246] LIN J, WANG A, QIAO B, LIU X, YANG X, WANG X, LIANG J, LI J, LIU J andZHANG T. Remarkable performance of Ir1/FeOxsingle-atom catalyst in water gas shiftreaction [J]. Journal of the American Chemical Society2013,135:15314-15317.
    [247] MOSES-DEBUSK M, YOON M, ALLARD L F, MULLINS D R, WU Z, YANG X,VEITH G, STOCKS G M and NARULA C K. CO oxidation on supported single Pt atoms:Experimental and ab initio density functional studies of CO interaction with Pt atom onθ-Al2O3(010) surface [J]. Journal of the American Chemical Society2013,135:12634-12645.
    [248] YU W, POROSOFF M D and CHEN J G. Review of Pt-based bimetallic catalysis:From model surfaces to supported catalysts [J]. Chemical Reviews2012,112:5780-5817.
    [249] CHEN S, SHENG W, YABUUCHI N, FERREIRA P J, ALLARD L F andSHAO-HORN Y. Origin of oxygen reduction reaction activity on “Pt3Co” nanoparticles:Atomically resolved chemical compositions and structures [J]. The Journal of PhysicalChemistry C2008,113:1109-1125.
    [250] WALKER M, PARKINSON C R, DRAXLER M and MCCONVILLE C F. Growth ofthin platinum films on Cu(100): CAICISS, XPS and LEED studies [J]. Surface Science2005,584:153-160.
    [251] EGAWA C, ENDO S, IWAI H and OKI S. Ethylene hydrogenation on Pt thin films onNi(100) surface [J]. Surface Science2001,474:14-20.
    [252] FERRANDO R, JELLINEK J and JOHNSTON R L. Nanoalloys: From theory toapplications of alloy clusters and nanoparticles [J]. Chemical Reviews2008,108:845-910.
    [253] ZHOU W-P, YANG X, VUKMIROVIC M B, KOEL B E, JIAO J, PENG G,MAVRIKAKIS M and ADZIC R R. Improving electrocatalysts for O2reduction byfine-tuning the Pt support interaction: Pt monolayer on the surfaces of a Pd3Fe(111)single-crystal alloy [J]. Journal of the American Chemical Society2009,131:12755-12762.
    [254] STRASSER P, KOH S, ANNIYEV T, GREELEY J, MORE K, YU C, LIU Z, KAYA S,NORDLUND D, OGASAWARA H, TONEY M F and NILSSON A. Lattice-strain control ofthe activity in dealloyed core–shell fuel cell catalysts [J]. Nature Chemistry2010,2:454-460.
    [255] MAYRHOFER K J J, JUHART V, HARTL K, HANZLIK M and ARENZ M.Adsorbate-induced surface segregation for core-shell nanocatalysts [J]. Angewandte ChemieInternational Edition2009,48:3529-3531.
    [256] HUANG M, DONG G, WANG N, XU J and GUAN L. Highly dispersive Pt atoms onthe surface of RuNi nanoparticles with remarkably enhanced catalytic performance forethanol oxidation [J]. Energy&Environmental Science2011,4:4513-4516.
    [257] KUTTIYIEL K A, SASAKI K, CHOI Y, SU D, LIU P and ADZIC R R. BimetallicIrNi core platinum monolayer shell electrocatalysts for the oxygen reduction reaction [J].Energy&Environmental Science2012,5:5297-5304.
    [258] FLYTZANI-STEPHANOPOULOS M and GATES B C. Atomically dispersedsupported metal catalysts [J]. Annual Review of Chemical and Biomolecular Engineering2012,3:545-574.
    [259] THOMAS J, SAGHI Z and GAI P. Can a single atom serve as the active site in someheterogeneous catalysts?[J]. Topics in Catalysis2011,54:588-594.
    [260] LI Y, ZHOU Z, YU G, CHEN W and CHEN Z. CO catalytic oxidation oniron-embedded graphene: Computational quest for low-cost nanocatalysts [J]. The Journal ofPhysical Chemistry C2010,114:6250-6254.
    [261] SONG E H, WEN Z and JIANG Q. CO catalytic oxidation on copper-embeddedgraphene [J]. The Journal of Physical Chemistry C2011,115:3678-3683.
    [262] YOO E, OKATA T, AKITA T, KOHYAMA M, NAKAMURA J and HONMA I.Enhanced electrocatalytic activity of Pt subnanoclusters on graphene nanosheet surface [J].Nano letters2009,9:2255-2259.
    [263] SEGER B and KAMAT P V. Electrocatalytically active graphene-platinumnanocomposites. Role of2-D carbon support in PEM fuel cells [J]. The Journal of PhysicalChemistry C2009,113:7990-7995.
    [264] WANNAKAO S, NONGNUAL T, KHONGPRACHA P, MAIHOM T andLIMTRAKUL J. Reaction mechanisms for CO catalytic oxidation by N2O on Fe-embeddedgraphene [J]. The Journal of Physical Chemistry C2012,116:16992-16998.
    [265] KYRIAKOU G, BOUCHER M B, JEWELL A D, LEWIS E A, LAWTON T J,BABER A E, TIERNEY H L, FLYTZANI-STEPHANOPOULOS M and SYKES E C H.Isolated metal atom geometries as a strategy for selective heterogeneous hydrogenations [J].Science2012,335:1209-1212.
    [266] WANG S, BORISEVICH A Y, RASHKEEV S N, GLAZOFF M V, SOHLBERG K,PENNYCOOK S J and PANTELIDES S T. Dopants adsorbed as single atoms preventdegradation of catalysts [J]. Nature Material2004,3:274-274.
    [267] HACKETT S F J, BRYDSON R M, GASS M H, HARVEY I, NEWMAN A D,WILSON K and LEE A F. High-activity, single-site mesoporous Pd/Al2O3catalysts forselective aerobic oxidation of allylic alcohols [J]. Angewandte Chemie International Edition2007,46:8593-8596.
    [268] TANG W, HU Z, WANG M, STUCKY G D, METIU H and MCFARLAND E W.Methane complete and partial oxidation catalyzed by Pt-doped CeO2[J]. Journal of Catalysis2010,273:125-137.
    [269] DENG Q, ZHAO L, GAO X, ZHANG M, LUO Y and ZHAO Y. Single layer ofpolymeric cobalt phthalocyanine: Promising low-cost and high-activity nanocatalysts for COoxidation [J]. Small2013,9:3506-3513.
    [270] LIN S, YE X, JOHNSON R S and GUO H. First-principles investigations of metal (Cu,Ag, Au, Pt, Rh, Pd, Fe, Co, and Ir) doped hexagonal boron nitride nanosheets: Stability andcatalysis of CO oxidation [J]. The Journal of Physical Chemistry C2013,117:17319-17326.
    [271] KRASHENINNIKOV A V, LEHTINEN P O, FOSTER A S, PYYKK P andNIEMINEN R M. Embedding transition-metal atoms in graphene: Structure, bonding, andmagnetism [J]. Physical Review Letters2009,102:126807.
    [272] TANG Y, YANG Z and DAI X. A theoretical simulation on the catalytic oxidation ofCO on Pt/graphene [J]. Physical Chemistry Chemical Physics2012,14:16566-16572.
    [273] LOPEZ-ACEVEDO O, KACPRZAK K A, AKOLA J and H KKINEN H. Quantumsize effects in ambient CO oxidation catalysed by ligand-protected gold clusters [J]. NatureChemistry2010,2:329-334.
    [274] ZHOU J and SUN Q. Magnetism of phthalocyanine-based organometallic singleporous sheet [J]. Journal of the American Chemical Society2011,133:15113-15119.
    [275] HAMMER B, MORIKAWA Y and N RSKOV J K. CO chemisorption at metalsurfaces and overlayers [J]. Physical Review Letters1996,76:2141-2144.