分枝杆菌甾醇代谢机制的解析以及其代谢工程改造应用于制备重要甾药中间体的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
类固醇激素,又称甾体激素,是人体一种重要的生命物质,常作为信号分子通过结合受体蛋白,微观调控特定基因的转录与细胞的正常生理功能。当其分泌失常或功能性不足时,会明显引起多种生命体征的失衡,需人为摄入甾类药物用以调节维稳,因此,甾体类药物(甾药)市场需求极大。目前,甾药的主流生产方式为,天然甾类物质的化学/生物法改造制备甾药前体,再由药性修饰获得药物原料,其中微生物法制备甾药前体的工艺因其环境污染小,反应步骤少,产品损失低、收率高等突出优势,受到新型甾药生产企业的青睐。该法获得的重要前体雄甾烯酮,经过化学修饰可用于合成近乎所有重要的临床甾体药物,其地位在当今的甾药加工行业中日益突出。但由于存在技术门槛高,微生物资源稀缺,生物技术手段落后、微生物代谢机制认知匮乏的现实问题,我国微生物转化生产的方式整体上仍处于较低水平,这严重的制约了甾药产业绿色转型的步伐。
     在这样的背景下,本论文运用先进的生物技术手段,初始于对一株甾类降解分枝杆菌的反应机制的探索,着眼于其代谢途径的人为可控改造,致力于开发先进的甾药微生物资源,系统的阐释了如何通过分子技术手段实现特定、多样代谢中间物的高纯度高产量高效积累。在此,将具体工作展示如下:
     1、胆固醇氧化酶的代谢解析与应用改造
     本文首次报道并证实了在生物转化媒介中,催化甾体氧化第一步反应的酶——胆固醇氧化酶ChO,是影响底物分子摄取与跨膜转运的关键因素。克服微生物底物转化力的瓶颈,毋庸置疑,应对ChO以及由其指导的底物代谢途径加以改造。文章鉴定了Mycobacterium neoaurum ATCC25795中具备ChO活性的两种同工酶ChoM1与ChoM2,通过酶催化反应动力学的表征,揭示了其催化甾醇反应的分子机制。进一步的,基于基因敲除的代谢解析,我们首次阐释了ChO在甾醇生物催化过程中的代谢功能,同时指明了其因不同的细胞定位而各自独特的代谢方式。以胞外分泌形式存在的ChoM2是影响ChO代谢底物最为关键因子之一,而以膜结合方式作用的ChoM1则从旁辅助,协同合作,有效加快代谢速率。于是,我们尝试强化关键因子ChoM2的表达,增进现有甾药中间体生产菌摄取与转化底物的效率,改善发酵高浓度甾醇时产率低下的现状。这样一来,在15g/L植物甾醇转化时,重要中间体雄甾-4-烯-3,17-二酮(AD)和雄甾-1,4-二烯-3,17-二酮(ADD)产量较改造前提高达51.2%和40.0%,进一步凸显了该类生物媒介在甾药中间体生产中的应用潜质。
     2、3-甾酮-△1-脱氢酶的功能阐释与活性缺失
     9α-羟基雄甾4-烯-3,17-二酮(9-OHAD)是一类重要的甾药前体,其结构中特殊的α-构型羟基,是获得卤代皮质类激素的重要前提。文章充分考虑到现有9-OHAD工业微生物的稀缺,创新的提出通过“开源节流”的技术手段,由野生型分枝杆菌M. neoaurum ATCC25795出发,人工改造其代谢通路,实现目标产物9-OHAD的高纯度积累。分析认为,作为微生物降解甾醇关键酶之一的3-甾酮-△1-脱氢酶(KstD),却是不利于9-OHAD稳定积累的重要诱因,必须将其活性彻底缺失。M. neoaurum中共存在3种KstD的同工酶(MN-KstD1-3),其中MN-KstD1与MN-KstD2为膜蛋白,MN-KstD3是胞内蛋白。三个KstD同工酶分别以9-OHAD, T, AD为最适底物,且MN-KstD1与MN-KstD3特定的参与9-OHAD与AD的代谢,构成甾醇代谢的两条主要代谢流通路。当阻断9-OHAD的分解代谢,缺失各路KstD活性时,缺陷型MutkstD(1&z&3)发酵15g/L甾醇可制9-OHAD5.17-5.42g L-1,但也混杂有1.04-1.55g L-1的AD与0.12-0.24g L-1的4-BNA (22-hydroxy-23,24-bisnorchol-4-en-3-one)等一类9-OHAD的前体代谢物。可见,9-OHAD的高纯度积累不仅需“节流”其降解代谢,还应注重“开源”9α-羟基化过程的代谢通量。
     3、3-甾酮-9α-羟基化酶的分子改造与功能强化
     KSH酶为母核代谢的另一关键因素,但其催化的9a-羟基化反应同时也是生成9-OHAD的必经之路,因此KSH酶的高活性是高产9-OHAD的重要保障。KSH为双组份酶(KshA+KshB),而M. neoaurum同时具有2种MN-KshA同工酶以及1种MN-KshB活性。其中MN-KshA1位于甾体降解基因簇内,受到甾醇等的强烈调控,可显著影响中间代谢物AD(D)等的积累,被证实是M. neoaurum内KSH酶活性的重要支柱。此外,MN-KshA1B (KshA1+KshB)可催化多种3-酮基甾体的底物,以1,4-BNC(3-oxo-23,24-bisnorchola-1,4-dien-22-oic acid)为最适反应底物,在甾体催化活性上,远超另一同工酶MN-KshA2。因此,MN-KshA1具备分子改造的重要价值与意义。我们拟定,高KshA活性的分子改造策略,可以包括酶反应中心的置换研究与氨基酸关键残基的定点突变。最终,实验鉴定到位于酶活性中心入口处的一处突变(V202T),可显著提高KshA的酶活,定义为突变体MN-KshAV202T'可用于分枝杆菌KSH的功能强化。符合预期的,过表达有MN-KshAV202T的MutMN-kstD(1&2&3)(NwIB-V)菌株,15g/L甾醇发酵可制9-OHAD5.77-6.13g L-1,无杂产物AD,4-BNA的生成。然而除此之外,代谢产物中却鉴定到另一种副产物9-OH-BNA (0.95-1.26g L-1)的积累。分析表明,9-OH-BNA来自于甾体侧链的不完全代谢,因此只有阐释侧链降解的发生机制,尤其是有关9-OH-BNA的形成与代谢机理,才是最终达到9-OHAD高纯度积累的关键。
     4、甾醇侧链降解机制的揭示与关键酶的功能放大
     我们筛查了甾体代谢基因簇内的各有关侧链降解的基因,设定了一系列重要的研究对象,利用基因敲除兼代谢物鉴定的主要技术手段,构建了多达20株不同的基因缺陷株,研究基因对象达到近30个,主要解决了以下两个主要问题:①M.neoaurum侧链代谢的分子机制;②产生副产物9-OH-BNA积累的关键因素。在我们的发现中,脱氢酶FadE26-27,水合酶Hsd4B,硫解酶Ltp3-4,KstR2调控区等不会显著影响侧链代谢,而另一脱氢酶Hsd4A与硫解酶FadA5的敲除却带来重要产物1,4-BNA(22-hydroxy-23,24-bisnorchola-1,4-diene-3-one)的大量积累,证实Hsd4A与FadA5才是引起4-BNA,9-OH-BNA等C22中间体降解代谢的关键因素。于是,通过Hsd4A与MN-KshAlV202T的共强化,工程菌株NwIB-V2产9-OHAD得率为66.2-70.1%,副产物<3%,9-OHAD的产物纯度达88.3-93.1%,较NwIB-V在9-OHAD的发酵纯度更上一层台阶。
     综上所述,本文通过分子生物学、代谢工程等的研究手段,详尽揭示了微生物甾醇降解分子机制,分别实现了C19类甾药中间体AD、ADD的高效生产,9-OHAD的高纯度高产量积累,同时开发了先进的可有效产C22类中间体1,4-BNA的工程菌株,由此大大丰富了现有的甾药工业微生物资源,并创建了一整套新型、稳定、高效的甾药工程菌开发平台。
Steroid hormones are human bioactive materials. When bound to protein receptors, steroid hormones can be often used as signal molecule to regulate gene transcription and cellular physiological behavior. People have to intake specific steroid drugs to cure the off-balance of internal hormone level and some physiological malfunctions. Thus, demand for hormone drugs keeps rising annually. Currently, the major way to produce these drugs was to firstly prepare some key steroid intermediates in a microbial or chemical way from a variety of natural sterols such as cholesterol, phytosterols or diosgenin, and then chemically modify those molecules into related hormone pharmaceuticals. Among these, the microbial production of steroid metabolites was increasingly highlighted, due to a few of its advantages, such as environment-friendly, simple transformation procedures, relatively low loss but a high yield. However in China, steroid processing industry lacks the core technology and microorganism resources, thus stagnated at a junior stage of application for bio-transformation of sterols into pharmaceutical precursors. In this sense, this study aims at establishing high-efficient microbial producers for steroid precursor supply, through researching and artificially modifying the catabolic pathway of sterols, then redirecting the major metabolic flux to the targeted product in some microbial cells, such as Mycobacterium neoaurum. The elaborate work is represented as follows:
     1. The metabolic annotation of cholesterol oxidases and their engineering
     This study, for the first time, claimed and demonstrated cholesterol oxidases (ChO) are involved in the initial and rate-limiting step of sterols uptake. Some industrial bacteria were conversionally deficient in the mass transfer of sterol molecules across cell membrane, probably because of a low activity of ChO. There were totally two ChO isoforms identified in M. neoaurum ATCC25795, i.e. ChoM1and ChoM2, which were extracellularly distributed and membrane-associated, respectively. In comparison to ChoMl, ChoM2appeared to function as a main ChO activity, for its inactivation would remarkably attenuated the mutant for the uptake and utilization of cholesterol. Therefore, ChoMl would be regarded as a critical factor to improve the microbial transformation under a high-concentration of phytosterols. Accordingly, we augmented ChoM2in M. neoaurum NwIB-O1MS (producing1,4-androstadiene-3,17-dione, ADD) and M. neoaurum NwIB-R10(producing4-androstene-3,17-dione, AD), then achieved a yield of5.57g/LADD and6.85g/L AD, greatly higher than the original level,3.87g/LADD and4.53g/L AD.
     2. The functional determination of3-ketosteroid-△'-dehydrogenase and its inactivation for the production of9-OHAD
     9a-Hydroxyandrost-4-ene-3,17-dione (9-OHAD) is widely considered as a significant assistor for a C9-halogen substitution of corticoids, due to its advantageous conformation of9a-hydroxyl group. This study distinctively proposed a conception of "increase influx and reduce efflux" to over-produce9-OHAD, with metabolic re-construction in a wild-type M. neoaurum ATCC25795. Above all, there are two crucial factors involving in the accumulation of9-OHAD, one of which is S-ketosteroid-A'-dehydrogenase (KstD). KstD would dehydrogenate3-oxosteroids and threaten the integrity of our products; thus removal of total KstD activities should be the precondition to ensure the stable accumulation of9-OHAD. Up to three KstD isoenzymes were identified in M. neoaurum, and two of them (MN-KstD1and MN-KstD2) were located on the membrane. These three KstDs kinetically used9-OHAD, T, AD as their optimum substrates. Moreover, MN-KstD1and MN-KstD3were found to metabolically participate in the9-OHAD-pathway and AD-pathway during the sterol transformation. Only when all those KstDs were inactivated, a stable yield of9-OHAD (5.17-5.42g L-1) can be obtained, however with two other by-products, i.e.1.04-1.55g L-1of AD and0.12-0.24g L-1of4-BNA (22-hydroxy-23,24-bisnorchol-4-en-3-one). Therefore, further steps of metabolic modification for the high-purity of9-OHAD have to be made.
     3. Engineering of3-ketosteroid-9a-hydroxylase for the overproduction of9-OHAD
     3-Ketosteroid-9a-hydroxylase (KSH) acts on degradation of the steroid nucleus with association of KstD, but for the overproduction of9-OHAD, its high activity means much more. KSH is known as a two-component monooxygenase, comprising the terminal oxygenase KshA and ferredoxin reductase KshB. The results showed, there were two KshAhomologs but one form of KshB in M. neoaurum. MN-KshAl was located within the proposed gene cluster of steroid catabolism, strongly induced by cholesterol and outstandingly involved in the formation of steroid metabolites. Further, MN-KshAlB also showed a wide range of substrates and preferably catalyzed such3-oxosteroids as1,4-BNC (3-oxo-23,24-bisnorchola-1,4-dien-22-oic acid). Therefore, engineering of a high-level KSH activity could primarily rely on the MN-KshA1. Mutation analyses demonstrated aβ-sheet structure within the catalytic domain greatly influenced the KSH activity and further a point mutagenesis of V202T at the entrance of channel to the active center substantially improved the performance of9a-hydroxylation (defined as MN-KshA1v202T-By means of MN-KshA1V202T augmentation in MutMN-kstD(1&2&3), we generated NwIB-V and realized an improvement of9-OHAD to5.77-6.13g L-1, without contamination of AD and4-BNA. Unexpectedly, however, another form of by-product,9-OH-BNA (0.95-1.26g I-1) which derived from an incomplete side-chain degradation, occurred and lowed the final purity of9-OHAD.
     4. Insight into the steroid side-chain degradation
     This section screened the putative key factors within the gene cluster of steroid catabolism in M. neoaurum and gained an insight into the mechanism of steroid side-chain degradation. We altogether constructed up to20DCO (double cross-over) mutants covering approximately over30targets of genes, investigated their phenotypes and then solved the following two questions:1) The putative mechanism of steroid side-chain degradation;2) The particular cause to induce the occurrence of9-OH-BNA. In our conclusion, a putative CoA-dehydrogenase FadE26-27, an enoyl-CoA hydratase Hsd4B, a thiolase Ltp3-4and a whole KstR2-regulon were not involved in the rate-limiting step of side-chain oxidation. By contrast, another hydroxyl-CoA dehydrogenase and a thiolase FadA5played a central role in the accumulation of such C22-ketosteroids as1,4-BNA and aroused our special concern. Through co-augmentation of Hsd4A and MN-KshAv202T, the resultant NwIB-V2overcame the catabolic deficiency of side-chain cleavage and thus gave rise to a66.2-70.1%molar yield of9-OHAD with less than3%of9-OH-BNA.
     From what has been discussed above, this study specified strategies of metabolic engineering, and elaborated the catabolic mechanism of microbial sterol degradation. Eventually, high-efficient industrial bio-producer of such C19-ketosteroids as AD(D),9-OHAD and C22-ketosteroids as1,4-BNA were developed, which enriched the microorganism resources and also served as a novel, stable and promising platform for the future development.
引文
[I]Fernandes P.,Cabral J.M.S. Phytosterols:applications and recovery methods. Bioresour Technol.2007,98(12):2335-2350
    [2]Hannich J.T., Umebayashi K., Riezman H. Distribution and functions of sterols and sphingolipids. Cold Spring Harb Perspect Biol.2011,3(5):a004762
    [3]Muthukrishman S., Merzendorfer H., Arakane Y, et al. Chitin metabolism in insects. In: Gilbert L.I., (Ed). Insect molecular biology and biochemistry,1st edn. Academic Press, London.2011, pp.193-235
    [4]Fragkaki A.G., Angelis Y.S., Koupparis M, et al. Structural characteristics of anabolic androgenic steroids contributing to binding to the androgen receptor and to their anabolic and androgenic activities:applied modifications in the steroidal structure. Steroids.2009,74(2): 172-197
    [5]Funder J.W. Minireview:aldosterone and mineralocorticoid receptors:past, present, and future. Endocrinology.2010,151(11):5098-5102
    [6]Lednicer D. Steroid chemistry at a glance. Chichester:Wiley,2011
    [7]Garcia J.L., Uhia I., Galan B. Catabolism and biotechnological applications of cholesterol degrading bacteria. Microb Biotechnol.2012,5(6):679-699
    [8]Zhang Y. The magic bullets and tuberculosis drug targets. Annu Rev Pharmacol Toxicol.2005, 45:529-564
    [9]Zhang Y.,Yew W.W. Mechanisms of drug resistance in Mycobacterium tuberculosis. Int J Tuberc Lung Dis.2009,13(11):1320-1330
    [10]Alberts B., Bray D., Lewis J., et al. Molecular Biology of the Cell,3rd ed. New York Garland Publishing Inc.,1994
    [11]Rupprecht R. Neuroactive steroids:mechanisms of action and neuropsychopharmacological properties. Psychoneuroendocrinology.2003,28(2):139-168
    [12]Baker M.E. Origin and diversification of steroids:Co-evolution of enzymes and nuclear receptors. Mol Cell Endocrinol.2011,334(1-2):14-20
    [13]Schtile C., Eser D., Baghai T.C., et al. Neuroactive steroids in affective disorders:target for novel antidepressant or anxiolytic drugs? Neuroscience.2011,191:55-77
    [14]Miller M.B.,Bassler B.L. Quorum sensing in bacteria. Annu Rev Microbiol.2001,55: 165-199
    [15]Waters C.M.,Bassler B.L. Quorum sensing:cell-to-cell communication in bacteria. Annu Rev Cell Dev Biol. vol.21.2005, pp.319-346
    [16]Hughes D.T.,Sperandio V. Inter-kingdom signalling:communication between bacteria and their hosts. Nat Rev Microbiol.2008,6(2):111-120
    [17]Antunes L.C.M., Davies J.E., Finlay B.B. Chemical signaling in the gastrointestinal tract. F1000 Biol Rep.2011,3:4-4
    [18]Reddy D.S. Pharmacology of endogenous neuroactive steroids. Crit Rev Neurobiol.2003, 15(3-4):197-234
    [19]Eser D., Schuele C., Baghai T.C., et al. Neuroactive steroids and affective disorders. Pharmacol Biochem Behav.2006,84(4):656-666
    [20]Melcangi R.C., Panzica G., Garcia-Segura L.M. Neuroactive steroids:focus on human brain. Neuroscience.2011,191:1-5
    [21]Asselin-Labat M.-L., Vaillant F., Sheridan J.M., et al. Control of mammary stem cell function by steroid hormone signalling. Nature.2010,465(7299):798-802
    [22]Callewaert F., Boonen S., Vanderschueren D. Sex steroids and the male skeleton:a tale of two hormones. Trends in Endocrinol Metabol.2010,21(2):89-95
    [23]Rubtsov A.V., Rubtsova K., Kappler J.W., et al. Genetic and hormonal factors in female-biased autoimmunity. Autoimmun Rev.2010,9(7):494-498
    [24]Backstrom T., Haage D., Lofgren M., et al. Paradoxical effects of GAB A-A modulators may explain sex steroids induced negative mood symptoms in some persons. Neuroscience.2011, 191:46-54
    [25]Craigie E., Mullins J.J., Bailey M.A. Glucocorticoids and mineralocorticoids. In:Bader M., (Ed). Cardiovascular hormone systems: from molecular mechanisms to novel therapeutics. Wiley-VCH Verlag GmbH & Co, Weinheim.2009, pp.1-64
    [26]Douglas M. Neurology of endocrine disease. Clin Med.2010,10(4):387-390
    [27]Garcia-Segura L.M.,Balthazart J. Steroids and neuroprotection:new advances. Front Neuroendocrinol.2009,30(2):V-IX
    [28]Tong W.-Y.,Dong X. Microbial biotransformation:recent developments on steroid drugs. Recent Patents on Biotechnol.2009,3(2):141-153
    [29]Wang F.Q., Yao K., Wei D.Z. From soybean phytosterols to steroid hormones. In:El-Shemy H., (Ed). Soybean and health. Intech.2011, pp.231-252
    [30]Donova M.V.,Egorova O.V. Microbial steroid transformations:current state and prospects. Appl Microbiol Biotechnol.2012,94(6):1423-1447
    [31]Fernandes P., Cruz A., Angelova B., et al. Microbial conversion of steroid compounds: recent developments. Enzyme Microb Technol.2003,32(6):688-705
    [32]计志忠.化学制药工艺学.北京:化学工业出版社,2000:148-163
    [33]Kieslich K. Microbial side-chain degradation of sterols. J Basic Microbiol.1985,25(7): 461-474
    [34]Hanson J.R. Steroids:reactions and partial synthesis. Nat Prod Rep.2005,22(1):104-110
    [35]Fernandes P.,Cabral J.M.S. Steroid Bioconversion. In:Flickinger M., (Ed). Encyclopedia of industrial biotechnology:bioprocess, bioseparation, and cell technology. Wiley, New York. 2010, pp.1-32
    [36]Zheng L.Y., Luo W.Y., Lin J.L., et al. Production status and sustainable development strategies of diosgenin in China. Guangxi Trop Agricul.2006,105:35-36
    [37]Raymond K.M., David M.S., R.Alan A. Guidebook to organic synthesis,3ra ed. Beijing: Person Education Limited,2001:346-347
    [38]Carballeira J.D., Quezada M.A., Hoyos P., et al. Microbial cells as catalysts for stereoselective red-ox reactions. Biotechnol Adv.2009,27(6):686-714
    [39]Donova M.V., Egorova O.V., Nikolayeva V.M. Steroid 17β-reduction by microorganisms-a review. Process Biochem.2005,40(7):2253-2262
    [40]Sedlaczek L. Biotransformations of steroids. Crit Rev Biotechnol.1988,7(3):187-236
    [41]Ahmad S., Garg S.K., Johri B.N. Biotransformation of sterols:selective cleavage of the side chain. Biotechnol Adv.1992,10(1):1-67
    [42]Szentirmai A. Microbial physiology of sidechain degradation of sterols. J Ihd Microbiol Biotechnol.1990,6(2):101-115
    [43]Brands S.J. Systema Naturae 2000. Amsterdam, The Netherlands,1989-2005: Available at:http://sn2000.taxonomy.nl/
    [44]Hopwood D.A. Streptomyces in nature and medicine:the antibiotic makers. New York: Oxford University Press,2007
    [45]Ron E.Z.,Rosenberg E. Biosurfactants and oil bioremediation. Curr Opin Biotechnol.2002, 13(3):249-252
    [46]Banat I.M., Nigam P., Singh D., et al. Microbial decolorization of textile-dyecontaining effluents:Areview. Bioresour Technol.1996,58(3):217-227
    [47]Marsheck W.J., Kraychy S., Muir R.D. Microbial degradation of sterols. Appl Microbiol. 1972,23(1):72-77
    [48]Wang F.-Q., Li B., Wang W., et al. Biotransformation of diosgenin to nuatigenin-type steroid by a newly isolated strain, Streptomyces virginiae IBL-14. Appl Microbiol Biotechnol.2007, 77(4):771-777
    [49]Wang F.-Q., Zhang C.-G., Li B., et al. New microbiological transformations of steroids by Streptomyces virginiae IBL-14. Environ Sci Technol.2009,43(15):5967-5974
    [50]Wang W., Wang F.-Q., Wei D.-Z. Characterization of P450 FcpC, the enzyme responsible for bioconversion of diosgenone to isonuatigenone in Streptomyces virginiae IBL-14. Appl Environ Microbiol.2009,75(12):4202-4205
    [51]Engel R.,Knorr D. Production of liquid, water-dispersible, phytosterol formulations for increased dose response in food systems. Eng Life Sci.2004,4(4):374-377
    [52]Akihisa T., Kokke W., Tamura T. Naturally occurring sterols and related compounds from plants. In:Patterson G.W. and Nes W.D., (Eds). Physiology and biochemistry of sterols. American Oil Chemists1 Society, Champaign, IL. 1991, pp.172-228
    [53]Malaviya A.,Gomes J. Androstenedione production by biotransformation of phytosterols. Bioresour Technol.2008,99(15):6725-6737
    [54]Wang K.C., You B.J., Yan J.L., et al. Microbial transformation of lanosterol derivatives with Mycobacterium sp. NRRL B-3805. J Nat Prod.1995,58(8):1222-1227
    [55]Ambrus G., Jekkel A., Ilkoy E., et al. Novel 26-oxygenated products in microbial degradation of ergosterol. Steroids.1995,60(9):626-629
    [56]Donova M.V., Dovbnya D.V., Sukhodolskaya G.V., et al. Microbial conversion of sterol-containing soybean oil production waste. J Chem Technol Biotechnol.2005,80(1): 55-60
    [57]Perez C., Falero A., Duc H.L., et al. A very efficient bioconversion of soybean phytosterols mixtures to androstanes by mycobacteria. J Ind Microbiol Biotechnol.2006,33(8):719-723
    [58]Lin Y., Song X., Fu J., et al. Microbial transformation of phytosterol in corn flour and soybean flour to 4-androstene-3,17-dione by Fusarium moniliforme Sheld. Bioresour Technol. 2009,100(5):1864-1867
    [59]Sallam L.A.R., Osman M.E., Hamdy A.A., et al. Microbial transformation of phytosterols mixture from rice bran oil unsaponifiable matter by selected bacteria. World J Microbiol Biotechnol.2008,24(9):1643-1656
    [60]Perez C., Falero A., Hung B.R., et al. Bioconversion of phytosterols to androstanes by mycobacteria growing on sugar cane mud. J Ind Microbiol Biotechnol.2005,32(3):83-86
    [61]Wovcha M.G. Process for preparing 9α-hydroxyandrostenedione. US patent 4,035,236. 1977
    [62]Wovcha M.G., Antosz F.J., Beaton J.M., et al. Composition of matter and process. US patent 4,175,006.1979
    [63]Wovcha M.G. Process for preparing 9a-OH BN acid methyl ester. US patent 4,214,051. 1979
    [64]Martin C.K. Microbial cleavage of sterol side chains. Adv Appl Microbiol.1977,22:29-58
    [65]Dias A.C.P., Fernandes P., Cabral J.M.S., et al. Isolation of a biodegradable sterol-rich fraction from industrial wastes. Bioresour Technol.2002,82(3):253-260
    [66]Liu W.-H., Kuo C.-W., Wu K.-L., et al. Transformation of cholesterol to testosterone by Mycobacterium sp. J Ind Microbiol Biotechnol.1994,13(3):167-171
    [67]Egorova O.V., Nikolayeva V.M., Sukhodolskaya G.V., et al. Transformation of C19-steroids and testosterone production by sterol-transforming strains of Mycobacterium spp. J Mol Catal B:Enzym.2009,57(1-4):198-203
    [68]Lo C.K., Pan C.P., Liu W.H. Production of testosterone from phytosterol using a single-step microbial transformation by a mutant of Mycobacterium sp. J Ind Microbiol Biotechnol.2002, 28(5):280-283
    [69]Kutney J.P., Herrington E.J., Spassov G. Process for fermentation of phytosterols to androstadiendione. WO2003064674A2.2003
    [70]Andor A., Jekkel A., Hopwood D.A., et al. Generation of useful insertionally blocked sterol degradation pathway mutants of fast-growing mycobacteria and cloning, characterization, and expression of the terminal oxygenase of the 3-ketosteroid 9α-hydroxylase in Mycobacterium smegmatis mc2 155. Appl Environ Microbiol.2006,72(10):6554-6559
    [71]Toro A.,Ambrus G. Oxidative decarboxylation of 17(20)-dehydro-23,24-dinorcholanoic acids. Tetrahedron Lett.1990,31(24):3475-3476
    [72]刘志恒,姜成林.放线菌现代生物学与生物技术.北京:科学出版社,2004:77-78
    [73]龚金梅,肖红卫,安庆,et al.甾体类激素原药地塞米松生产工艺与市场分析.云南科技管理.2012,6:69-72
    [74]Vuorinen A., Odermatt A., Schuster D. In silico methods in the discovery of endocrine disrupting chemicals. J Steroid Biochem Mol Biol.2013,137:18-26
    [75]Mahmood-Khan Z.,Hall E.R. Occurrence and removal of plant-sterols in pulp and paper mill effluents. J Environ Eng Sci.2003,2(1):17-26
    [76]Piironen V., Lindsay D.G., Miettinen T.A., et al. Plant sterols:biosynthesis, biological function and their importance to human nutrition. J Sci Food Agric.2000,80(7):939-966
    [77]Mahato S.B.,Garai S. Advances in microbial steroid biotransformation. Steroids.1997, 62(4):332-345
    [78]Levy H.R.,Talalay P. Bacterial oxidation of steroids. Ⅰ. Ring A dehydrogenations by intact cells. J Biol Chem.1959,234(8):2009-2013
    [79]Dhar A.,Samanta T.B. Novel oxidative cleavage of C17-C20 bond in pregnane by a Pseudomonas sp. J Steroid Biochem Mol Biol.1993,44(1):101-104
    [80]Tenneson M.E., Baty J.D., Bilton R.F., et al. The degradation of cholic acid by Pseudomonas sp. N.C.I.B.10590. Biochem J.1979,184(3):613-618
    [81]Turfitt G.E. Microbiological agencies in the degradation of steroids:I. The cholesterol-decomposing organisms of soils. J Bacteriol.1944,47(6):487-493
    [82]Horvath J.,Kramli A. Microbiological oxidation of cholesterol with Azotobacter. Nature. 1947,160(4071):639-639
    [83]Sih C.J., Wang K.C., Tai H.H. C-22 acid intermediates in the microbiological cleavage of the cholesterol side chain. J Am Chem Soc.1967,89(8):1956-1957
    [84]Drzyzga O., Navarro Llorens J.M., Fernandez de las Heras L., et al. Gordonia cholesterolivorans sp nov., a cholesterol-degrading actinomycete isolated from sewage sludge. Int J Syst Evolut Microbiol.2009,59:1011-1015
    [85]Ferreira N.P.,Tracey R.P. Numerical taxonomy of cholesterol-degrading soil bacteria. J Appl Bacteriol.1984,57(3):429-446
    [86]Martin C.K.A.,Wagner F. Microbial transformation of β-sitosterol by Nocardia sp. M 29. European J Appl Microbiol.1976,2(4):243-255
    [87]Malaviya A.,Gomes J. Rapid screening and isolation of a Fungus for sitosterol to androstenedione biotransformation. Appl Biochem Biotechnol.2009,158(2):374-386
    [88]Liu Y., Chen G., Ge F., et al. Efficient biotransformation of cholesterol to androsta-1,4-diene-3,17-dione by a newly isolated actinomycete Gordonia neofelifaecis. World J Microbiol Biotechnol.2011,27(4):759-765
    [89]Chaudhari P.N., Chaudhari B.L., Chincholkar S.B. Cholesterol biotransformation to androsta-1,4-diene-3,17-dione by growing cells of Chryseobacterium gleum. Biotechnol Lett. 2010,32(5):695-699
    [90]Finnerty W.R. The biology and genetics of the genus Rhodococcus. Annu Rev Microbiol. 1992,46:193-218
    [91]van der Geize R.,Dijkhuizen L. Harnessing the catabolic diversity of rhodococci for environmental and biotechnological applications. Curr Opin Microbiol.2004,7(3):255-261
    [92]Sripalakit P., Wichai U., Saraphanchotiwitthaya A. Biotransformation of various natural sterols to androstenones by Mycobacterium sp and some steroid-converting, microbial strains. J Mol Catal B:Enzym.2006,41(1-2):49-54
    [93]Gordon R.E.,Mihm J.M. A comparative study of some strains received as nocardiae. J Bacteriol.1957,73(1):15-27
    [94]Neu T.R. Significance of bacterial surface-active compounds in interaction of bacteria with interfaces. Microbiol Rev.1996,60(1):151-166
    [95]Bicca F.C., Fleck L.C., Ayub M.A.Z. Production of biosurfactant by hydrocarbon degrading Rhodococcus ruber and Rhodococcus erythropolis. Revist Microbiol.1999,30(3):231-236
    [96]Larkin M.J., Kulakov L.A., Allen C.C.R. Biodegradation and Rhodococcus-masters of catabolic versatility. Curr Opin Biotechnol.2005,16(3):282-290
    [97]van der Geize R., Yam K., Heuser T., et al. A gene cluster encoding cholesterol catabolism in a soil actinomycete provides insight into Mycobacterium tuberculosis survival in macrophages. Proc Nat Acad Sci USA.2007,104(6):1947-1952
    [98]Kendall S.L., Withers M., Soffair C.N., et al. A highly conserved transcriptional repressor controls a large regulon involved in lipid degradation in Mycobacterium smegmatis and Mycobacterium tuberculosis. Mol Microbiol.2007,65(3):684-699
    [99]Petrusma M., Dijkhuizen L., van der Geize R. Rhodococcus rhodochrous DSM 43269 3-ketosteroid 9a-hydroxylase, a two-component iron-sulfur-containing monooxygenase with subtle steroid substrate specificity. Appl Environ Microbiol.2009,75(16):5300-5307
    [100]Rosloniec K.Z., Wilbrink M.H., Capyk J.K., et al. Cytochrome P450 125 (CYP125) catalyses C26-hydroxylation to initiate sterol side-chain degradation in Rhodococcus jostii RHA1. Mol Microbiol.2009,74(5):1031-1043
    [101]Wilbrink M.H., Petrusma M., Dijkhuizen L., et al. FadD19 of Rhodococcus rhodochrous DSM43269, a steroid-coenzyme A ligase essential for degradation of C-24 branched sterol side chains. Appl Environ Microbiol.2011,77(13):4455-4464
    [102]Yang X.X., Dubnau E., Smith I., et al. Rv1106c from Mycobacterium tuberculosis is a 3beta-hydroxysteroid dehydrogenase. Biochemistry.2007,46(31):9058-9067
    [103]Chang J.C., Harik N.S., Liao R.P., et al. Identification of mycobacterial genes that alter growth and pathology in macrophages and in mice. J Infect Dis.2007,196(5):788-795
    [104]Nesbitt N.M., Yang X., Fontan P., et al. A thiolase of Mycobacterium tuberculosis is required for virulence and production of androstenedione and androstadienedione from cholesterol. Infect Immun.2010,78(1):275-282
    [105]Chang J.C., Miner M.D., Pandey A.K., et al. igr genes and Mycobacterium tuberculosis cholesterol metabolism. J Bacteriol.2009,191(16):5232-5239
    [106]Schnappinger D., Ehrt S., Voskuil M.I., et al. Transcriptional adaptation of Mycobacterium tuberculosis within macrophages:Insights into the phagosomal environment. J Exp Med. 2003,198(5):693-704
    [107]Griffin J.E., Gawronski J.D., DeJesus M.A., et al. High-resolution phenotypic profiling defines genes essential for mycobacterial growth and cholesterol catabolism. PLoS Pathog. 2011,7(9):e1002251
    [108]Yao K., Wang F.Q., Zhang H.C., et al. Identification and engineering of cholesterol oxidases involved in the initial step of sterols catabolism in Mycobacterium neoaurum. Metab Eng.2013,15:75-87
    [109]Uhia I., Galan B., Morales V., et al. Initial step in the catabolism of cholesterol by Mycobacterium smegmatis mc2155. Environ Microbiol.2011,13(4):943-959
    [110]Yam K.C., D'Angelo I., Kalscheuer R., et al. Studies of a ring-cleaving dioxygenase illuminate the role of cholesterol metabolism in the pathogenesis of Mycobacterium tuberculosis. PLoS Pathog.2009,5(3):e1000344
    [111]Ouellet H., Johnston J.B., de Montellano P.R.O. Cholesterol catabolism as a therapeutic target in Mycobacterium tuberculosis. Trends Microbiol.2011,19(11):530-539
    [112]Capyk J.K., Casabon I., Gruninger R., et al. Activity of 3-ketosteroid 9a-hydroxylase (KshAB) indicates cholesterol side chain and ring degradation occur simultaneously in Mycobacterium tuberculosis. J Biol Chem.2011,286(47):40717-40724
    [113]Atrat P., Hosel P., Richter W., et al. Interactions of Mycobacterium fortuitum with solid sterol substrate particles. J Basic Microbiol.1991,31(6):413-422
    [114]Shen Y., Wang M., Zhang L., et al. Effects of hydroxypropyl-β-cyclodextrin on cell growth, activity, and integrity of steroid-transforming Arthrobacter simplex and Mycobacterium sp. Appl Microbiol Biotechnol.2011,90(6):1995-2003
    [115]Banerjee R., Vats P., Dahale S., et al. Comparative genomics of cell envelope components in Mycobacteria. PLoS One.2011,6(5):e19280
    [116]Donova M.V., Dovbnya D.V., Koshcheyenko K.A. Modified CDs-mediated enhancement of microbial sterol sidechain degradation. In:Szejtli J. and Szente L., (Eds). Proceedings of the Eighth International Symposium on Cyclodextrins. Springer Netherlands.1996, pp. 527-530
    [117]Donova M.V., Nikolayeva V.M., Dovbnya D.V., et al. Methyl-β-cyclodextrin alters growth, activity and cell envelope features of sterol-transforming mycobacteria. Microbiology.2007, 153:1981-1992
    [118]Nikolayeva V.M., Egorova O.V., Dovbnya D.V., et al. Extracellular 3β-hydroxysteroid oxidase of Mycobacterium vaccae VKM Ac-1815D. J Steroid Biochem Mol Biol.2004, 91(1-2):79-85
    [119]Arruda S., Bomfim G., Knights R., et al. Cloning of an M. tuberculosis DNA fragment associated with entry and survival inside cells. Science.1993,261(5127):1454-1457
    [120]Pandey A.K.,Sassetti C.M. Mycobacterial persistence requires the utilization of host cholesterol. Proc Natl Acad Sci USA.2008,105(11):4376-4380
    [121]Garcia J.L., Uhia I., Garcia E., et al. Bacterial degradation of cholesterol and other contaminant steroids, In:Koukkou A.I., (Ed). Microbial Bioremediation of Nonmetals: Current Research. Caister Academic Press, Ioannina, Greece.2011, pp.23-43
    [122]Casali N.,Riley L.W. A phylogenomic analysis of the Actinomycetales mce operons. BMC Genomics.2007,8:60
    [123]Mohn W.W., van der Geize R., Stewart G.R., et al. The actinobacterial mce4 locus encodes a steroid transporter. J Biol Chem.2008,283(51):35368-35374
    [124]Yue Q.K., Kass I.J., Sampson N.S., et al. Crystal structure determination of cholesterol oxidase from Streptomyces and structural characterization of key active site mutants. Biochemistry.1999,38(14):4277-4286
    [125]Lario P.I., Sampson N., Vrielink A. Sub-atomic resolution crystal structure of cholesterol oxidase:What atomic resolution crystallography reveals about enzyme mechanism and the role of the FAD cofactor in redox activity. J Mol Biol.2003,326(5):1635-1650
    [126]Vrielink A., Lloyd L.F., Blow D.M. Crystal structure of cholesterol oxidase from Brevibacterium sterolicum refined at 1.8 A resolution. J Mol Biol.1991,219(3):533-554
    [127]Coulombe R., Yue K.Q., Ghisla S., et al. Oxygen access to the active site of cholesterol oxidase through a narrow channel is gated by an Arg-Glu pair. J Biol Chem.2001,276(32): 30435-30441
    [128]Motteran L., Pilone M.S., Molla G., et al. Cholesterol oxidase from Brevibacterium sterolicum-The relationship between covalent flavinylation and redox properties. J Biol Chem.2001,276(21):18024-18030
    [129]Pollegioni L., Wels G., Pilone M.S., et al. Kinetic mechanisms of cholesterol oxidase from Streptomyces hygroscopicus and Brevibacterium sterolicum. Eur J Biochem.1999,264(1): 140-151
    [130]Doukyu N.,Aono R. Two moles of O2 consumption and one mole of H2O2 formation during cholesterol peroxidation with cholesterol oxidase from Pseudomonas sp strain ST-200. Biochem J.1999,341:621-627
    [131]Doukyu N., Shibata K., Ogino H., et al. Purification and characterization of Chromobacterium sp. DS-1 cholesterol oxidase with thermal, organic solvent, and detergent tolerance. Appl Microbiol Biotechnol.2008,80(1):59-70
    [132]de las Heras L.F., Mascaraque V., Fernandez E.G., et al. ChoG is the main inducible extracellular cholesterol oxidase of Rhodococcus sp strain CECT3014. Microbiol Res.2011, 166(5):403-418
    [133]Ivashina T.V., Nikolayeva V.M., Dovbnya D.V., et al. Cholesterol oxidase ChoD is not a critical enzyme accounting for oxidation of sterols to 3-keto-4-ene steroids in fast-growing Mycobacterium sp. VKM Ac-1815D. J Steroid Biochem Mol Biol.2012,129(1-2):47-53
    [134]Uhia I., Galan B., Javier Medrano F., et al. Characterization of the KstR-dependent promoter of the gene for the first step of the cholesterol degradative pathway in Mycobacterium smegmatis. Microbiology.2011,157:2670-2680
    [135]Kisiela M., Skarka A., Ebert B., et al. Hydroxysteroid dehydrogenases (HSDs) in bacteria-Abioinformatic perspective. J Steroid Biochem Mol Biol.2012,129(1-2):31-46
    [136]Thomas S.T., VanderVen B.C., Sherman D.R., et al. Pathway profiling in Mycobacterium tuberculosis:elucidation of cholesterol-derived catabolite and enzymes that catalyze its metabolism. J Biol Chem.2011,286(51):43668-43678
    [137]Buckland B.C., Dunnill P., Lilly M.D. The enzymatic transformation of water-insoluble reactants in nonaqueous solvents. Conversion of cholesterol to cholest-4-ene-3-one by a Nocardia sp. Biotechnol Bioeng.2000,67(6):714-719
    [138]Abul-Hajj Y.J. Stereochemistry of C-1,2 dehydrogenation of 5β-pregnane-3,11,20-trione by Septomyxa affinis. J Biol Chem.1972,247(3):686-691
    [139]Plesiat P., Grandguillot M., Harayama S., et al. Cloning, sequencing, and expression of the Pseudomonas testosteroni gene encoding 3-oxosteroid △1-dehydrogenase. J Bacteriol.1991, 173(22):7219-7227
    [140]Rohman A., van Oosterwijk N., Thunnissen A.-M.W.H., et al. Crystal structure and site-directed mutagenesis of 3-ketosteroid △1-dehydrogenase from Rhodococcus erythropolis SQ1 explain its catalytic mechanism. J Biol Chem.2013,288(49):35559-35568
    [141]Molnar I., Choi K.-P., Yamashita M., et al. Molecular cloning, expression in Streptomyces lividans, and analysis of a gene cluster from Arthrobacter simplex encoding 3-ketosteroid-△1-dehydrogenase,3-ketosteroid-△5-isomerase and a hypothetical regulatory protein. Mol Microbiol.1995,15(5):895-905
    [142]van der Geize R., Hessels G.I., van Gerwen R., et al. Targeted disruption of the kstD gene encoding a 3-ketosteroid △1-dehydrogenase isoenzyme of Rhodococcus erythropolis strain SQl. Appl Environ Microbiol.2000,66(5):2029-2036
    [143]van der Geize R., Hessels G.I., Dijkhuizen L. Molecular and functional characterization of the kstD2 gene of Rhodococcus erythropolis SQ1 encoding a second 3-ketosteroid △1-dehydrogenase isoenzyme. Microbiology.2002,148:3285-3292
    [144]Brzostek A., Sliwinski T., Rumijowska-Galewicz A., et al. Identification and targeted disruption of the gene encoding the main 3-ketosteroid dehydrogenase in Mycobacterium smegmatis. Microbiology.2005,151:2393-2402
    [145]Knol J., Bodewits K., Hessels G.I., et al.3-Keto-5a-steroid△1-dehydrogenase from Rhodococcus erythropolis SQ1 and its orthologue in Mycobacterium tuberculosis H37Rv are highly specific enzymes that function in cholesterol catabolism. Biochem J.2008,410: 339-346
    [146]Sukhodolskaya G.V., Nikolayeva V.M., Khomutov S.M., et al. Steroid-1-dehydrogenase of Mycobacterium sp VKM Ac-1817D strain producing 9a-hydroxy-androst-4-ene-3,17-dione from sitosterol. Appl Microbiol Biotechnol.2007,74(4):867-873
    [147]Wovcha M.G., Brooks K.E., Kominek L.A. Evidence for two steroid 1,2-dehydrogenase activities in Mycobacterium fortuitum. Biochim Biophys Acta.1979,574(3):471-479
    [148]Donova M.V., Gulevskaya S.A., Dovbnya D.V., et al. Mycobacterium sp. mutant strain producing 9a-hydroxyandrostenedione from sitosterol. Appl Microbiol Biotechnol.2005, 67(5):671-678
    [149]Huang C.L., Chen Y.R., Liu W.H. Production of androstenones from phytosterol by mutants of Mycobacterium sp. Enzyme Microb Technol.2006,39(2):296-300
    [150]Wei W., Fan S.Y., Wang F.Q., et al. A new steroid-transforming strain of Mycobacterium neoaurum and cloning of 3-ketosteroid 9a-hydroxylase in NwIB-01. Appl Biochem Biotechnol.2010,162(5):1446-1456
    [151]Wei W., Wang F.Q., Fan S.Y., et al. Inactivation and augmentation of the primary S-ketosteroid-A'-dehydrogenase in Mycobacterium neoaurum NwIB-01:biotransformation of soybean phytosterols to 4-androstene-3,17-dione or 1,4-androstadiene-3,17-dione. Appl Environ Microbiol.2010,76(13):4578-4582
    [152]van der Geize R., Hessels G.I., van Gerwen R., et al. Molecular and functional characterization of kshA and kshB, encoding two components of 3-ketosteroid 9alpha-hydroxylase, a class IA monooxygenase, in Rhodococcus erythropolis strain SQl. Mol Microbiol.2002,45(4):1007-1018
    [153]Hu Y.M., van der Geize R., Besra G.S., et al.3-Ketosteroid 9a-hydroxylase is an essential factor in the pathogenesis of Mycobacterium tuberculosis, Mol Microbiol.2010,75(1): 107-121
    [154]Chang F.N.,Sih C.J. Mechanisms of steroid oxidation by microorganisms:7. properties of the 9a-hydroxylase. Biochemistry.1964,3:1551-1557
    [155]Strijewski A. The steroid-9α-hydroxylation system from Nocardia species. Eur J Biochem. 1982,128(1):125-135
    [156]Petrusma M., Hessels G., Dijkhuizen L., et al. Multiplicity of 3-ketosteroid-9α-hydroxylase enzymes in Rhodococcus rhodochrous DSM43269 for specific degradation of different classes of steroids. J Bacteriol.2011,193(15):3931-3940
    [157]Bragin E.Y., Shtratnikova V. Y., Dovbnya D.V., et al. Comparative analysis of genes encoding key steroid core oxidation enzymes in fast-growing Mycobacterium spp. strains. J Steroid Biochem Mol Biol.2013,138(0):41-53
    [158]Capyk J.K., D'Angelo I., Strynadka N.C., et al. Characterization of 3-ketosteroid 9α-hydroxylase, a Rieske oxygenase in the cholesterol degradation pathway of Mycobacterium tuberculosis. J Biol Chem.2009,284(15):9937-9946
    [159]Dresen C., Lin L.Y.C., D'Angelo I., et al. A Flavin-dependent monooxygenase from Mycobacterium tuberculosis involved in cholesterol catabolism. J Biol Chem.2010,285(29): 22264-22275
    [160]Horinouchi M., Yamamoto T., Taguchi K., et al. Meta-cleavage enzyme gene tesB is necessary for testosterone degradation in Comamonas testosteroni TA441. Microbiology. 2001,147(12):3367-3375
    [161]Lack N., Lowe E.D., Liu J., et al. Structure of HsaD, a steroid-degrading hydrolase, from Mycobacterium tuberculosis. Acta Crystallogr Sect F Struct Biol Cryst Commun.2008,64: 2-7
    [162]Horinouchi M., Hayashi T., Koshino H., et al. Identification of 9,17-dioxo-1,2,3,4,10,19-hexanorandrostan-5-oic acid,4-hydroxy-2-oxohexanoic acid, and 2-hydroxyhexa-2,4-dienoic acid and related enzymes involved in testosterone degradation in Comamonas testosteroni TA441. Appl Environ Microbiol.2005,71(9):5275-5281
    [163]Kendall S.L., Burgess P., Balhana R., et al. Cholesterol utilization in mycobacteria is controlled by two TetR-type transcriptional regulators:kstR and kstR2. Microbiology.2010, 156:1362-1371
    [164]van der Geize R., Grommen A.W.F., Hessels G.I., et al. The steroid catabolic pathway of the intracellular pathogen Rhodococcus equi is important for pathogenesis and a target for vaccine development. PLoS Pathog.2011,7(8):e1002181
    [165]Casabon I., Crowe A.M., Liu J., et al. FadD3 is an acyl-CoA synthetase that initiates catabolism of cholesterol rings C and D in actinobacteria. Mol Microbiol.2013,87(2): 269-283
    [166]Sih C.J., Tai H.H., Tsong Y.Y., et al. Mechanisms of steroid oxidation by microorganisms. XIV. Pathway of cholesterol side-chain degradation. Biochemistry.1968,7(2):808-818
    [167]Capyk J.K., Kalscheuer R., Stewart G.R., et al. Mycobacterial cytochrome P450125 (Cypl25) catalyzes the terminal hydroxylation of C27 steroids. J Biol Chem.2009,284(51): 35534-35542
    [168]Ouellet H., Guan S., Johnston J.B., et al. Mycobacterium tuberculosis CYP125A1, a steroid C27 monooxygenase that detoxifies intracellularly generated cholest-4-en-3-one. Mol Microbiol.2010,77(3):730-742
    [169]McLean K.J., Lafite P., Levy C, et al. The structure of Mycobacterium tuberculosis CYP125:Molecular basis for cholesterol binding in a P450 needed for host infection. J Biol Chem.2009,284(51):35524-35533
    [170]Driscoll M.D., McLean K.J., Levy C, et al. Structural and biochemical characterization of Mycobacterium tuberculosis CYP142. J Biol Chem.2010,285(49):38270-38282
    [171]Garcia-Fernandez E., Frank D.J., Galan B., et al. A highly conserved mycobacterial cholesterol catabolic pathway. Environ Microbiol.2013,15(8):2342-2359
    [172]Thomas S.T.,Sampson N.S. Mycobacterium tuberculosis utilizes a unique heterotetrameric structure for dehydrogenation of the cholesterol side chain. Biochemistry.2013,52(17): 2895-2904
    [173]Wilbrink M.H., van der Geize R., Dijkhuizen L. Molecular characterization of Itp3 and Itp4, essential for C24-branched chain sterol-side-chain degradation in Rhodococcus rhodochrous DSM 43269. Microbiology.2012,158(12):3054-3062
    [174]Marcus P.I.,Talalay P. Induction and purification of a-and (3-hydroxysteroid dehydrogenases. J Biol Chem.1956,218(2):661-674
    [175]Rengarajan J., Bloom B.R., Rubin E.J. Genome-wide requirements for Mycobacterium tuberculosis adaptation and survival in macrophages. Proc Nat Acad Sci USA.2005,102(23): 8327-8332
    [176]Sassetti C.M.,Rubin E.J. Genetic requirements for mycobacterial survival during infection. Proc Nat Acad Sci USA.2003,100(22):12989-12994
    [177]de Chastellier C.,Thilo L. Cholesterol depletion in Mycobacterium avium-infected macrophages overcomes the block in phagosome maturation and leads to the reversible sequestration of viable mycobacteria in phagolysosome-derived autophagic vacuoles. Cell Microbiol.2006,8(2):242-256
    [178]Dubnau E., Chan J., Mohan V.P., et al. Responses of Mycobacterium tuberculosis to growth in the mouse lung. Infect Immun.2005,73(6):3754-3757
    [179]Navas J., Gonzalez-Zorn B., Ladron N., et al. Identification and mutagenesis by allelic exchange of choE, encoding a cholesterol oxidase from the intracellular pathogen Rhodococcus equi. J Bacteriol.2001,183(16):4796-4805
    [180]Brzostek A., Dziadek B., Rumijowska-Galewicz A., et al. Cholesterol oxidase is required for virulence of Mycobacterium tuberculosis. FEMS Microbiol Lett.2007,275(1):106-112
    [181]Marques M.A.M., Neves-Ferreira A.G.C., Xavier da Silveira E.K., et al. Deciphering the proteomic profile of Mycobacterium leprae cell envelope. Proteomics.2008,8(12): 2477-2491
    [182]Wei W., Fan S.-Y., Wang F.-Q., et al. Accumulation of androstadiene-dione by overexpression of heterologous 3-ketosteroid △1-dehydrogenase in Mycobacterium neoaurum NwIB-01. World J Microbiol Biotechnol.2014:doi:10.1007/s11274-11014-11614-11273
    [183]Goetschel R.,Bar R. Formation of mixed crystals in microbial conversion of sterols and steroids. Enzyme Microb Technol.1992,14(6):462-469
    [184]Manosroi J., Sripalakit P., Manosroi A. Biotransformation of chlormadinone acetate to delmadinone acetate by free and immobilized Arthrobacter simplex ATCC 6946 and Bacillus sphaericus ATCC 13805. Enzyme Microb Technol.2003,33(2-3):320-325
    [185]Heipieper H.J., Neumann G., Cornelissen S., et al. Solvent-tolerant bacteria for biotransformations in two-phase fermentation systems. Appl Microbiol Biotechnol.2007, 74(5):961-973
    [186]El-Hadi A.A. Factors affecting the production of prednisolone by immobilization of Bacillus pumilus E601 cells in poly(vinyl alcohol) cryogels produced by radiation polymerization. Process Biochem.2003,38(12):1659-1664
    [187]Claudino M.J.C., Soares D., Van Keulen F., et al. Immobilization of mycobacterial cells onto silicone-Assessing the feasibility of the immobilized biocatalyst in the production of androstenedione from sitosterol. Bioresour Technol.2008,99(7):2304-2311
    [188]Zehentgruber D., Dragan C.-A., Bureik M., et al. Challenges of steroid biotransformation with human cytochrome P450 monooxygenase CYP21 using resting cells of recombinant Schizosaccharomyces pombe. J Biotechnol.2010,146(4):179-185
    [189]Znidarsic-Plazl P.,Plazl I. Development of a continuous steroid biotransformation process and product extraction within microchannel system. Catal Today.2010,157(1-4):315-320
    [190]Marques M.P.C., Carvalho F., Magalhaes S., et al. Screening for suitable solvents as substrate carriers for the microbial side-chain cleavage of sitosterol using microtitre plates. Process Biochem.2009,44(5):556-561
    [191]Wang Z., Zhao F., Chen D., et al. Biotransformation of phytosterol to produce androsta-diene-dione by resting cells of Mycobacterium in cloud point system. Process Biochem.2006,41(3):557-561
    [192]Shen Y.-B., Wang M., Li H.-N., et al. Influence of hydroxypropyl-β-cyclodextrin on phytosterol biotransformation by different strains of Mycobacterium neoaurum. J Ind Microbiol Biotechnol.2012,39(9):1253-1259
    [193]Wang M., Zhang L., Shen Y., et al. Effects of hydroxypropyl-β-cyclodextrin on steroids 1-en-dehydrogenation biotransformation by Arthrobacter simplex TCCC 11037. J Mol Catal B:Enzym.2009,59(1-3):58-63
    [194]Khomutov S.M., Sukhodolskaya G.V., Donova M.V. The inhibitory effect of cyclodextrin on the degradation of 9a-hydroxyandrost-4-ene-3,17-dione by Mycobacterium sp. VKM Ac-1817D. Biocatal Biotransform.2007,25(5):386-392
    [195]Horhold C, Gottschald B., Grosse H.H. Microbial transformation of sterols to androstane-compounds in presence of organic resins. Proc Vth Internat Conf on Chem and Biotechnol Biol Active Natur Prod.1989:92-110
    [196]Gordhan B.G.,Parish T. Gene replacement using pretreated DNA. In:Parish T. and Stoker N.G., (Eds). Mycobacterium tuberculosis protocols from methods in molecular medicine, vol. 54. Humana Press Inc., Totowa, NJ.2001, pp.77-92
    [197]王敏.一株分枝杆菌降解胆固醇制备AD(D)的转化条件.生物加工过程.2008,6(2):22-27
    [198]Li B., Wang W., Wang F.Q., et al. Cholesterol oxidase ChoL is a critical enzyme that catalyzes the conversion of diosgenin to 4-ene-3-keto steroids in Streptomyces virginiae IBL-14. Appl Microbiol Biotechnol.2010,85(6):1831-1838
    [199]Telenti A., Philipp W.J.S.S., Bernasconi C., et al. The emb operon, a gene cluster of Mycobacterium tuberculosis involved in resistance to ethambutol. Nat Med.1997,3(5): 567-570
    [200]Seidel L.,Horhold C. Selection and characterization of new microorganisms for the manufacture of 9-OH-AD from sterols. J Basic Microbiol.1992,32(1):49-55
    [201]Wovcha M.G., Antosz F.J., Knight J.C., et al. Bioconversion of sitosterol to useful steroidal intermediates by mutants of Mycobacterium fortuitum. Biochim Biophys Acta.1978,531(3): 308-321
    [202]Livak K.J.,Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-△△CT method. Methods.2001,25(4):402-408
    [203]Fernandez de las Heras L., van der Geize R., Drzyzga O., et al. Molecular characterization of three 3-ketosteroid-△1-dehydrogenase isoenzynnes of Rhodococcus ruber strain Chol-4. J Steroid Biochem Mol Biol.2012,132(3-5):271-281
    [204]Petrusma M., Dijkhuizen L., van der Geize R. Structural features in the KshA terminal oxygenase protein that determine substrate preference of 3-ketosteroid 9a-hydroxylase enzymes. J Bacteriol.2012,194(1):115-121
    [205]Egorova O.V., Nikolayeva V.M., Donova M.V.17-Hydroxysteroid dehydrogenases of Mycobacterium sp. VKM Ac-1815D mutant strain. J Steroid Biochem Mol Biol 2002,81(3): 273-279
    [206]Goren T., Harni M., Rimonk S., et al.1-Ene-steroid reductase of Mycobacterium sp. NRRL B-3805. J Steroid Biochem Mol Biol.1983,19(6):1789-1797
    [207]Holert J., Jagmann N., Philipp B. The essential function of genes for a hydratase and an aldehyde dehydrogenase for growth of Pseudomonas sp strain Choll with the steroid compound cholate indicates an aldolytic reaction step for deacetylation of the side chain. J Bacteriol.2013,195(15):3371-3380
    [208]Mindnich R., Moller G., Adamski J. The role of 17 beta-hydroxysteroid dehydrogenases. Mol Cell Endocrinol.2004,218(1-2):7-20