CD-like微流控芯片关键器件和集成化技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
CD-like微流控芯片是一种简单实用的微流体平台,广泛应用于现场即时诊断、生物学、食品安全、制药、化学合成和环境检测等领域。本论文针对微流控芯片高深宽比复杂结构的加工与封装键合工艺,及典型微流控器件实验验证问题,采用弹性模具热压、激光烧蚀和表面改性等方法,实现了CD-like微流控芯片的多功能集成,低成本、批量化加工,以及关键微流控器件的性能验证。
     主要研究内容如下:
     (1)采用弹性模具热压的方法制作微流控芯片,有效的解决了高深宽比复杂结构的脱模问题,制得了表面平整、无缺陷的微流控芯片,芯片内结构最大深宽比达3:1,结构变形量小于5%的微流控芯片,并通过溶剂辅助键合的方式完成了微流控芯片的键合。
     (2)采用纳米粒子自组装,等离子体处理,表面活性剂处理等方法,开展亲水改性研究,并通过原子力显微镜,扫描电子显微镜和X射线光电子能谱仪对改性后的表面进行表征。通过改性机理的分析和接触角的测量,验证了改性方法的有效性。其中O2等离子体处理的方法可以快速有效的实现PMMA材料表面的亲水改性,通过2到3分钟的处理即可将PMMA表面接触角降为35o,且48小时后仍保持为45o。
     (3)对基于布局优化方法设计的被动微混合器开展实验研究。使用软光刻技术制备所设计的微混合器,并通过立体显微镜和共聚焦显微镜来评价其混合性能。通过比较微通道内有无所设计的混合结构的混合结果,证明了布局优化方法在提高微混合器混合性能上的有效性。通过数值仿真结果和具体的实验结果的对比,确认了所用布局优化方法的可靠性。
     (4)采用CO2激光加工的方法,制作CD-like微流控芯片。基于凸起及重铸物产生的机理,采用覆盖保护层的方法,有效的去除了通道边缘凸起及重铸物。采用叠层芯片的设计,将芯片结构按深度分层加工,然后通过粘接键合的方式,实现芯片的快速制作。通过探测芯片的设计与制作,实现了微流控芯片系统全功能的集成,并通过全血测试,验证了我们设计制作的CD-like微流控芯片系统的有效性。
The CD (compack disk)-like microfluidic system is one type of simple andpractical microfluidic platforms. It has been widely used in point-of-care (POC)diagnostic, biology, food safety, pharmaceutics chemical synthesis and environmentalmonitoring. This thesis is focused on the process of manufacture and bonding formicrofluidic chips with high aspect ratio and complex structures, and the experimentalverification of the typical microfluidic devices, where the elastomeric mould basedhot embossing, laser ablation method and surface modification are used to achieve themulti-function integration, low-cost and massive production of the CD-likemicrofluidic chip, as well as the performance verification of the key microfluidicunits.
     The main contents of this thesis are listed as follows:
     Using the elastomeric mould based hot embossing, the problems on the high aspectratio and complex structures of the demoulding are solved effectively for thefabrication of microfluidic chip. Using this method, the surface-smooth, defect-freemicrofluidic chips can be obtained. The microstructure aspect ratio is up to3and thedeformation is less than5%. And through the solvent-assisted bonding method,bonding of microfluidic chips is achieved.
     The methods of self-assembly of nanoparticles, O2plasma treatment and surfacesilanization are used to carry out hydrophilic modification research. The modifiedsurfaces are characterized by Atomic force microscopy (AFM), scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS). And the modifiedmethod is verified by analyzing the mechanism of modification and the contact anglemeasurements. O2plasma treatment can achieve fast and efficient hydrophilicmodification of PMMA. After2-3minutes of O2plasma treatment, PMMA surfacecontact angle can be reduced to35o, and the contact angle remains45o after48hours.
     The passive micromixers designed using the layout optimization method areinvestigated experimentally. The designed micromixers are fabricated usingpolydimethylsiloxane soft photolithography techniques. The mixing performance isevaluated by stereoscopic and confocal microscopes. By comparing the mixingperformance of micromixers with layouts obtained using the layout optimizationmethod and that of micromixers without blocks, the effectiveness of the layoutoptimization method is verified in improving the mixing performance of micromixers.The reliability of the layout optimization method is confirmed by a comparison of thenumerical and experimental results.
     CO2laser ablation method is used to fabricate the CD-like microfluidic chip withthe PMMA substrate. On the basis of the formation mechanism of bulges, we apply acover layer on the top of PMMA to protect it during laser processing. And it is aneffective method to achieve a microfluidic chip without bulges at the rim of thechannels. Using the laminated design, the chip is layered according to the depth ofstructures. After the adhesive bonding process, rapid fabrication of the chip isachieved. Through the design and fabrication of detection chip, a fully integratedCD-like microfluidic system with multi functions is obtained. Through the wholeblood detection, we can verify the effectiveness of the manufactured CD-likemicrofluidic system which we design and fabricate.
引文
[1] D. F. Chen, M. Mauk, X. B. Qiu, C. C. Liu, J. T. Kim, S. Ramprasad; S. Ongagna;W. R. Abrams, D. Malamud, P. L. Corstjens, H. H. Bau. An integrated, self-containedmicrofluidic cassette for isolation, amplification, and detection of nucleic acids [J].Biomed. Microdevices,2010,12:705719
    [2] S. J. Kim, G. W. Shin, S. J. Choi, H. S. Hwang, G. Y. Jung, T. S. Seo. Triblockcopolymer matrix-based capillary electrophoretic microdevice for highresolutionmultiplex pathogen detection.[J].Electrophoresis,2010,31:11081115
    [3] P. S. Dittrich, K. Tachikawa, A. Manz. Micro total analysis systems. latestadvancements and trends [J]. Anal. Chem.,2006,78:38873907
    [4] K. A. Hagan, C. R. Reedy, M. L. Uchimoto, D. Basu, D. A. Engel, J. P. Landers.An integrated, valveless system for microfluidic purification and reversetranscription-PCR amplification of RNA for detection of infectious agents [J]. LabChip,2011,11:957961
    [5] P. Liu, T. S. Seo, N. Beyor, K. J. Shin, J. R. Scherer, R. A. Mathies. IntegratedPortable olymerase Chain Reaction-Capillary Electrophoresis Microsystem for RapidForensic Short Tandem Repeat Typing [J]. Anal. Chem.,2007,79(5):18811889
    [6] Y. Tanaka, K. Sato, T. Shimizu, M. Yamato, T. Okano, T. Kitamori. Amicro-spherical heart pump powered by cultured cardiomyocytes [J]. Lab Chip,2007,7:207212
    [7] D. R. Reyes, D. Iossifidis, P. A. Auroux, A. Manz. Micro total analysis systems.1.introduction, theory, and technology [J].Anal. Chem.,2002,74:2623–2636
    [8] C. F. Chou, O. Bakajin, S. W. P. Turner, T. A. J. Duke, S. S. Chan, E. C. Cox, H.G. Craighead, R. H. Austin. Sorting by diffusion An asymmetric obstacle course forcontinuous molecular separation [J]. Proc. Natl. Acad. Sci. U.S.A.,1999,96:1376213765
    [9] N. Goedecke, B. McKenna, S. El-Difrawy, L. Carey, P. Matsudaira, D. A. Ehrlich.high-performance multilane microdevice system designed for the DNA forensicslaboratory [J]. Electrophoresis,2004,25:16781686
    [10] K. M. Horsman, J. M. Bienvenue, K. R. Blasier, J. P. Landers, Forensic DNAAnalysis on Microfluidic Devices: A Review [J]. J. Forensic Sci.,2007,52:784799
    [11] Y. T. Kim, Y. C. Chen, J. Y. Choi, W. J. Kim, H. M. Dae, J. Jung, T. S. Seo.Integrated microdevice of reverse transcription-polymerase chain reaction withcolorimetric immunochromatographic detection for rapid gene expression analysis ofinfluenza A H1N1virus [J]. Biosens. Bioelectron.,2012,33:8894
    [12] Y. J. Liu, S. S. Guo, Z. L. Zhang, W. H. Huang, D. Baigl, Y. Chen, D. W.Pang. Integration of minisolenoids in microfluidic device for magnetic bead–basedimmunoassays [J]. J. Appl. Phys.2007,102:084911084916
    [13] R. M. Connatser, M. Cochran, R. J. Harrison, M. J. Sepaniak, Analyticaloptimization of nanocomposite surface-enhanced Raman spectroscopyscatteringdetection in microfluidic separation devices [J]. Electrophoresis,2008,29:14411450
    [14] D. S. Peterson, T. Rohr, F. Svec, J. M. J. Fréchet. EnzymaticMicroreactor-on-a-Chip Protein Mapping Using Trypsin Immobilized on PorousPolymer Monoliths Molded in Channels of Microfluidic Devices [J]. Anal. Chem.,2002,74:40814088
    [15] M. A. McClain, C. T. Culbertson, S. C. Jacobson, N. L. Allbritton, C. E. Sims, J.M. Ramsey, Microfluidic devices for the high-throughput chemical analysis of cells[J]. Anal. Chem.,2003,75:56465655
    [16] P. Sethu, L. L. Moldawer, M. N. Mindrinos, S P. O. cumpia, C. L. Tannahill, J.Wilhelmy, P. A. Efron, B. H. Brownstein, R. G. Tompkins, M. Toner. MicrofluidicIsolation of Leukocytes from Whole Blood for Phenotype and Gene ExpressionAnalysis [J]. Anal. Chem.,2006,78:54535461
    [17] X. H. Cheng, A. Gupta, C. C. Chen, R. G. Tompkins, W. Rodriguez, M. Toner.Enhancing the performance of a point-of-care CD4+T-cell counting microchipthrough monocyte depletion for HIVAIDS diagnostics [J]. Lab Chip,2009,9:13571364
    [18] A. K. Balasubramanian, K. A. Soni, A. Beskok, S. D. Pillai, A microfluidicdevice for continuous capture and concentration of microorganisms from potablewater [J]. Lab Chip,2007,7:13151321
    [19] G. D. Chen, C. J. Alberts, W. Rodriguez, M. Toner. Concentration andPurification of Human Immunodeficiency Virus Type1Virions by MicrofluidicSeparation of Superparamagnetic Nanoparticles [J]. Anal. Chem.,2010,82:723728
    [20] D. Akin, H. B. Li, R. Bashir, Real-Time Virus Trapping and Fluorescent Imagingin Microfluidic Devices [J]. Nano Lett.,2004,4:257259
    [21] J. T. Connelly, S. Kondapalli, M. Skoupi, J. S. L. Parker, B. J. Kirby, A. J.Baeumner. Micro-total analysis system for virus detection microfluidicpre-concentration coupled to liposome-based detection [J]. Anal. Bioanal. Chem.,2012,402:315323
    [22] K. Y. Lien, J. L. Lin, C. Y. Liu, H. Y. Lei, G. B. Lee. Purification andenrichment of virus samples utilizing magnetic beads on a microfluidic system [J].Lab Chip,2007,7:868875
    [23] Z. Shen, X. J. Liu, Z. C. Long, D. Y. Liu, N. N. Ye, J. H. Qin, Z. P. Dai, B. C.Lin. Parallel analysis of biomolecules on a microfabricated capillary array chip [J].Electrophoresis,2006,27:10841092
    [24] T. M. Squires, S. R. Quake. Microfluidics-Fluid Physics at the Nanoliter Scale[J].Rev. Mod. Phys.,2005,77:977–1026
    [25] D. Janasek, J. Franzke,, A. Manz. Scaling and the design of miniaturizedchemical-analysis systems [J]. Nature,2006,442:374–380
    [26] J. Atencia, D. J. Beebe. Controlled Microfluidic Interfaces [J]. Nature,2005,437:648–655
    [27]林炳承,秦建华,微流控芯片实验室[M],北京:科学出版社,2006.1-3
    [28] M. Madou, J. Zoval, G. Jia, H. Kido, J. Kim, N. Kim. Lab on a CD [J]. Annu.Rev. Biomed. Eng.,2006,8:601-628
    [29] J. Ducrée, S. Haeberle, S. Lutz, S. Pausch, F. V. Stetten, R. Zengerle. TheCentrifugal Microfluidic Bio-Disk Platform [J]. J. Micromech. Microeng.,2007,17(7):103-115
    [30] M. J. Madou, G. J. Ke11ogg. The LabCD: A Centrifuge-Based MicrofluidicPlatform for Diagnostics [C]. Proc. SPIE. San Jose, CA, USA,1998,3259:80-80-13.
    [31]肖丽君,陈翔,汪鹏,李以贵,陈迪,微流体系统中微阀的研究现状[J],微纳电子技术,2009,46(02):34-41
    [32] C. D. Chin, V. Linder, S. K. Sia. Commercialization of microfluidic point-of-carediagnostic devices [J]. Lab Chip,2012,12:2118–2134
    [33] J. L. Arlett, E. B. Myers, M. L. Roukes. Comparative advantages of mechanicalbiosensors [J]. Nat. Nanotechnol.,2011,6:203–215
    [34] T. M. Squires, R. J. Messinger, S. R. Manalis. Making it stick: convection,reaction and diffusion in surface-based biosensors [J].Nat. Biotechnol.,2008,26:417–426
    [35] D. Erickson, D. Q. Li. Integrated microfluidic devices [J]. Anal. Chim. Acta,2004,507:11–26
    [36] A. H. C. Ng, U. Uddayasankar, A. R. Wheeler. Immunoassays in microfluidicsystems [J]. Anal. Bioanal. Chem.,2010,397:991–1007
    [37] J. Hong, J. B. Edel, A. J. deMello. Micro-and nanofluidic systems forhigh-throughput biological screening [J].Drug Discovery Today,2009,14:134–146
    [38] M. Medina-Sanchez, S. Miserere, A. Merkoci. Nanomaterials and lab-on-a-chiptechnologies [J].Lab Chip,2012,12:1932–1943
    [39] G. C. Shao, J. Wang, Z. H. Li, L. Saraf, W. J. Wang, Y. H. Lin.Poly(dimethylsiloxane) microchip-based immunoassay with multiple reaction zones:Toward on-chip multiplex detection platform [J]. Sens. Actuators, B,2011,159:44–50
    [40] E. Eteshola, D. Leckband. Development and characterization of an ELISA assayin PDMS microfluidic channels [J]. Sens. Actuators, B,2001,72:129–133
    [41] C.D. Chin, V. Linder, S.K. Sia. Lab-on-a-chip devices for global health Paststudies and future opportunities [J]. Lab Chip,2007,7(1):41–57
    [42] T. Vilkner, D. Janasek, A. Manz. Micro total analysis systems. recentdevelopments [J]. Anal. Chem.,2004,76(12):3373–3385
    [43] B. Weigl, G. Domingo, P. Labarre, J. Gerlach. Towards non-and minimallyinstrumented, microfluidics-based diagnostic devices [J]. Lab Chip,2008,8(12):1999–2014
    [44] V. Gubala, L.F. Harris, A.J. Ricco, M. X. Tan, D.E. Williams. Point of carediagnostics: status and future [J]. Anal. Chem.,2012,84(2):487–515
    [45] C. Rivet, H. Lee, A. Hirsch, S. Hamilton, H. Lu. Microfluidics for medicaldiagnostics and biosensors [J]. Chemical Engineering Science,2011,66(7):1490–1507
    [46] A. Bange, H.B. Halsall, W. R. Heineman. Microfluidic immunosensor systems [J].Biosensors&Bioelectronics,2005,20(12):2488–2503
    [47] S. Haeberle, R. Zengerle. Microfluidic platforms for lab-on-a-chip applications[J]. Lab Chip,2007,7(9):1094–1110
    [48] D. Mark, S. Haeberle, G. Roth, F. V. Stetten, R. Zengerle. MicrofluidicLab-on-a-chip Platforms: Requirements, Characteristics and Applications [J]. Chem.Soc. Rev.,2010,39(3):1153-1182
    [49] M. J. Felton. CD Simplicity [J], Anal. Chem.2003,75(13):302-306.
    [50]张玲,王传虎,基于离心力驱动微流控芯片的研究进展[J],广州化工,2010,38(11):57-58.
    [51] J. Steigert, M. Grumann, T. Brenner, L. Riegger, J. Harter, R. Zengerle, J. Ducrée.Fully integrated whole blood testing by real-time absorption measurement on acentrifugal platform [J]. Lab Chip.2006,6(8):1040–1044.
    [52] Y. K. Cho, J. G. Lee, J. M. Park, B. S. Lee, Y. Lee, C. Ko. One-step pathogenspecific DNA extraction from whole blood on a centrifugal microfluidic device [J].Lab Chip.2007,7(5):565-573.
    [53] J. Ducrée, S. Haeberle, T. Brenner, T. Glatzel, R. Zengerle. Patterning of Flowand Mixing in Rotating Radial Microchannels [J]. Microfluid Nanofluid,2006,2(2):97-105
    [54] K. W. Oh, C. H. Ahn. A review of microvalves [J]. J. Micromech. Microeng.,2006,16:13–39
    [55] T. J. Johnson, D. Ross, L. E. Locascio. Rapid Microfluidic Mixing [J].Anal.Chem.2002,74(1):45-51
    [56] G. S. Jeong, S. Chung, C.-B. Kim, S.-H. Lee. Applications of micromixingtechnology [J]. Analyst2010,135:460-473
    [57] C.-Y. Lee, C.-L. Chang, Y.-N. Wang, L.-M. Fu. Microfluidic Mixing: A Review[J].Int. J. Mol. Sci.2011,12(5):3263-3287
    [58] A. A. S. Bhagat, E. T. K. Peterson, I. J. Papautsky. A passive planar micromixerwith obstructions for mixing at low Reynolds numbers [J]. Micromech. Microeng.2007,17:1017-1024
    [59] D. Yan, C. Yang, J. Miao, Y. Lam, X. Huang. Enhancement of electrokineticallydriven microfluidic T-mixer using frequency modulated electric field and channelgeometry effects [J]. Electrophoresis2009,30:3144-3152
    [60] A. Soleymani, E. Kolehmainen, I. Turunen, Numerical and experimentalinvestigations of liquid mixing in T-type micromixers [J]. Chem. Eng. J.2008,135:S219-S228
    [61] C. Lindenberg, J. Sch ll, L. Vicum, M. Mazzotti, J. Brozio. Experimentalcharacterization and multi-scale modeling of mixing in static mixers [J]. Chem. Eng.Sci.2008,63,4135-4149
    [62] L. Capretto, W. Cheng, M. Hill, X. Zhang. Micromixing within microfluidicdevices, Curr. Chem.2011,304:27-68
    [63] M. Long, M. A. Sprague, A. A. Grimes, B. D. Rich, M. Khine. A simplethree-dimensional vortex micromixer [J]. Appl. Phys. Lett.2009,94:133501
    [64] M. A. Ansari, K.-Y. Kim. Parametric study on mixing of two fluids in athree-dimensional serpentine microchannel [J]. Chem. Eng. J.2009,146:439-448
    [65] T. S. Sheu, S. J. Chen, J. J. Chen. Mixing of a split and recombine micromixerwith tapered curved microchannels [J].Chem. Eng. Sci.2012,71:321-322.
    [66] V. Mengeaud, J. Josserand, H. H. Girault. Mixing Processes in a ZigzagMicrochannel: Finite Element Simulations and Optical Study [J]. Anal. Chem.2002,74:4279-4286
    [67] S. Hossain, M. A. Ansari, K.-Y. Kim. Evaluation of the mixing performance ofthree passive micromixers [J].Chem. Eng. J.2009,150:492-501
    [68] L. E. Locascio. Microfluidic mixing [J].Anal. Bioanal. Chem.2004,379,325-327
    [69] O. J nnig, N.-T. Nguyen. A polymeric high-throughput pressure-drivenmicromixer using a nanoporous membrane [J].Microfluid. Nanofluid.2011,10:513-519
    [70] Y. S. Huh, T. J. Park, E. Z. Lee, W. H. Hong, S. Y. Lee. Development of a fullyintegrated microfluidic system for sensing infectious viral disease [J].Electrophoresis2008,29:2960-2969
    [71] D. Ahmed, X. Mao, J. Shi, B. K. Juluri, T. J. Huang. A millisecond micromixervia single-bubble-based acoustic streaming [J]. Lab Chip,2009,9:2738-2741
    [72] G. M. Whitesides. The origins and the future of microfluidics [J]. Nature2006;442:368–73.
    [73] H. P. Le, Progress and Trends in Ink-jet Printing Technology [J]. J. Imaging Sci.Technol.,1998,42:49–62
    [74] S. C. Terry, J. H. Jerman, J. B. Angell. A gas chromatograph air analyzerfabricated on a silicon wafer [J]. IEEE Trans. Electron Devices,1979,26:1880–1886
    [75] A. Manz, Y. Miyahara, J. Miura, Y. Watanabe, H. Miyagi, K. Sato. Design of anopen-tubular column liquid chromatograph using silicon chip technology [J]. Sens.Actuators, B,1990,1:249–255
    [76] S. Shoji, M. Esashi, T. Matsuo. Prototype miniature blood gas analyzerfabricated on a silicon wafer [J]. Sens. Actuators,1988,14:101–107.
    [77] H. T. G. Van Lintel, F. C. M. Vandepol, S. Bouwstra. A piezoelectric micropumpbased on micromachining of silicon [J]. Sens. Actuators,1988,15:153–167
    [78] R. Zengerle, J. Ulrich, S. Kluge, M. Richter, A. Richter. Abidirectional siliconmicropump [J]. Sens. Actuators, A,1995,50:81–86
    [79] E. Verpoorte, A. Manz, H. Ludi, A. E. Bruno, F. Maystre, B. Krattiger, H. M.Widmer, B. H. Vanderschoot, N. F. Derooij. A silicon flow cell for optical detectionin miniaturized total chemical analysis systems [J]. Sens. Actuators, B,1992,6:66–70
    [80] S. Marre, K. F. Jensen. Synthesis of Micro and Nanostructures in MicrofluidicSystems [J].Chem. Soc. Rev.,2010,39:1183–1202
    [81] R. G. Blazej, P. Kumaresan, R. A. Mathies. Microfabricated bioprocessor forintegrated nanoliter-scale sanger DNA sequencing [J].Proc. Natl. Acad. Sci. U.S.A.,2006,103:7240–7245
    [82] D. T. Chiu, R.M. Lorenz. Chemistry and biology in femtoliter and picolitervolume droplets [J]. Acc. Chem. Res.,2008,42:649–658
    [83] A. M. Ghaemmaghami, M. J. Hancock, H. Harrington, H. Kaji, A.Khademhosseini. Biomimetic tissues on a chip for drug discovery [J]. Drug DiscoveryToday,2012,17:173–181
    [84] X. Mu, W. F. Zheng, J. S. Sun, W. Zhang, X. Y. Jiang, Microfluidics formanipulating cells [J]. Small,2012,9:9–21
    [85] K. G. Olsen, D. J. Ross, M. J. Tarlov, Immobilization of DNA hydrogel plugs inmicrofluidic channels [J]. Anal. Chem.,2002,74:1436-1441
    [86] C. H. Yuan, J. Shiea. Sequential electrospray analysis using sharp-tip channelsfabricated on a plastic chip [J]. Anal. Chem.,2001,73:1080-1083
    [87] R. M. McCormick, R. J. Nelson, M. G. Aionso-Amigo, D. J. Benvegnu, H. H.Hooper. Microchannel electrophoretic separations of DNA in injection-molded plasticsubstrates [J]. Anal. Chem.,1997,69:2626-2630
    [88] D. C. Duffy, J. C. McDonald, O. J. A. Schueller, G. M. Whitesides. Rapidprototyping of microfluidic systems in poly(dimethylsiloxane)[J]. Anal. Chem.,1998,70:4974-4984
    [89] L. Martynova, L. E. Locascio, M. Gaitan, G. W. Kramer, R. G. Christensen, W.A. MacCrehan. Fabrication of plastic microfluid channels by imprinting methods[J].Anal. Chem.,1997,69:4783-4789
    [90] Y. C. Lin, H. C. Ho, C. K. Tseng, S. Q. Hou, A poly-methylmethacrylateelectrophoresis microchip with sample preconcentrator [J]. J. Micromech. Microeng.,2001,11:189-194
    [91]马德柱,高聚物的结构与性能[M],科学出版社,1995
    [92] N. C. Nayak, Y. C. Lam, C. Y. Yue, A. T. Sinha. CO2-laser micromachining ofPMMA the effect of polymer molecular weight [J]. J. Micromech. Microeng.,2008,18:095020
    [93] J. Narasimhan, I. Papautsky. Polymer embossing tools for rapid prototyping ofplastic microfluidic devices [J]. J. Micromech. Microeng.,2004,14:96–103
    [94] V. N. Goral, Y. C. Hsieh, O. N. Petzold, R. A. Faris, P. K. Yuen. Hot embossingof plastic microfluidic devices using poly(dimethylsiloxane) molds [J]. J. Micromech.Microeng.,2011,21:017002
    [95] X.J. Feng, L. Jiang. Design and creation of superwetting/antiwetting surfaces [J].Adv. Mater.,2006,18:3063-3078
    [96] H. C. Dong, P. L. Ye, M. J. Zhong, J. Pietrasik, R. Drumright, K. Matyjaszewski.Superhydrophilic Surfaces via Polymer-SiO2Nanocomposites [J]. Langmuir,2010,26(19):15567–15573
    [97] F. Cebeci, Z. Wu, L. Zhai, R. Cohen, M. Rubner. Nanoporosity-drivensuperhydrophilicity: A means to create multifunctional antifogging coatings.[J].Langmuir,2006,22(6):2856-2862
    [98] N. Hasirci, T. Endogan, E. Vardar, A. Kiziltayc, V. Hasirci. Effect of oxygenplasma on surface properties and biocompatibility of PLGA films [J]. Surf. InterfaceAnal.,2010,42:486–491
    [99] S. Minko, M. Muller, M. Motornov, M. Nitschke, K. Grundke, M. Stamm.Two-level structured self-adaptive surfaces with reversibly tunable properties [J]. J.Am. Chem. Soc.,2003,125(13):.3896-3900
    [100] D. Oner, T. McCarthy. Ultrahydrophobic surfaces. Effects of topography lengthscales on wettability [J]. Langmuir,2000,16(20):7777-7782
    [101] X. Zhang, F. Shi, X. Yu, H. Liu, Y. Fu, Z. Wang, L. Jiang, X. Li. Polyelectrolytemultilayer as matrix for electrochemical deposition of gold clusters: towardsuper-hydrophobic surface [J]. J. Am. Chem. Soc.,2004.126(10):3064-3065
    [102] X. Yu, Z. Wang, Y. Jiang, X. Zhang. Surface gradient material: Fromsuperhydrophobicity to superhydrophilicity [J]. Langmuir,2006,22(10):4483-4486
    [103] A. Vesel, M. Mozetic. Surface modification and ageing of PMMA polymer byoxygen plasma treatment [J]. Vacuum,2012,86:634-637
    [104] B. Cortesea, M. C. Mowlemb, H. Morgana. Characterisation of an irreversiblebonding process for COC–COC and COC–PDMS–COC sandwich structures andapplication to microvalves [J].Sen. Actuators, B,2011,160:1473–1480
    [105] H. Hwang, H. H. Kim, Y. K. Cho. Elastomeric membrane valves in a disc [J].Lab Chip,2011,11:1434–1436
    [106] V. Sunkara, D. K. Park, H. Hwang, R. Chantiwas, S. A. Soper, Y.-K. Cho.
    Simple room temperature bonding of thermoplastics and poly(dimethylsiloxane)[J].
    Lab Chip,2011,11:962–965
    [1] H. Zhao, H. H. Bau. Effect of double-layer polarization on the forces that act on ananosized cylindrical particle in an ac electrical field [J]. Langmuir2008,24(12):6050–6059.
    [2] H. Zhao, H. H. Bau. The polarization of a nanoparticle surrounded by a thickelectric double layer [J]. J. Colloid Interface Sci.2009,333(2):663–671
    [3] C. D. Chin, V. Linder, S. K. Sia. Commercialization of microfluidic point-of-carediagnostic devices [J]. Lab Chip,2012,12:2118–2134
    [4] C. T. Lim, Y. Zhang. Bead-based microfluidic immunoassays: The next generation[J]. Biosensors&Bioelectronics,2007,22(7):1197–1204
    [5] K. G. Olsen, D. J. Ross and M. J. Tarlov. Immobilization of DNA hydrogel plugsin microfluidic channels [J]. Anal. Chem.,2002,74:1436-1441
    [6] C. H. Yuan, J. Shiea. Sequential electrospray analysis using sharp-tip channelsfabricated on a plastic chip [J]. Anal. Chem.,2001,73:1080-1083
    [7] R. M. McCormick, R. J. Nelson, M. G. Aionso-Amigo, D. J. Benvegnu, H. H.Hooper. Microchannel electrophoretic separations of DNA in injection-molded plasticsubstrates [J]. Anal. Chem.,1997,69:2626-2630
    [8] D. C. Duffy, J. C. McDonald, O. J. A. Schueller, G. M. Whitesides. Rapidprototyping of microfluidic systems in poly(dimethylsiloxane)[J]. Anal. Chem.,1998,70:4974-4984
    [9] L. Martynova, L. E. Locascio, M. Gaitan, G. W. Kramer, R. G. Christensen, W. A.MacCrehan. Fabrication of plastic microfluid channels by imprinting methods [J].Anal. Chem.,1997,69:4783-4789.
    [10] J. E. Mark. Ceriamic-Reinforced Polymers and Polymer-Modified Ceramics [J].Polym. Eng. Sci.1996,36:2905
    [11] L. Bokobza. The reinforcement of elastomeric networks by fillers [J]. Macromol.Mater. Eng.2004,289:607-621
    [12] M. A. Osman, A. Atallah, M. Muller, U. W. Suter. Reinforcement ofpoly(dimethylsiloxane) networks by mica flakes [J] Polymer,2001,42:6545-6556
    [13] M. A. Osman, A. Atallah, G. Kahr, U. W. Suter. Reinforcement ofPoly(dimethylsiloxane) Networks by Montmorillonite Platelets [J] J. Appl. Polym. Sci.2002,83:2175-2183
    [14] N. R. Raravikar, A. S. Vijayaraghavan, P. Keblinsky, L. S. Schadler, P. M. Ajayan.Embedded Carbon-Nanotube-Stiffened Polymer Surfaces [J]. Small,2005,3:317-320
    [15] C. H. Hu, C. H. Liu, L. Z. Chen, Y. C. Peng, S. S. Fan. Resistance-pressuresensitivity and a mechanism study of multiwall carbon nanotubenetworks/poly(dimethylsiloxane) composites [J]. Appl. Phys. Lett.,2008,93:033108
    [16] J. E. Mark, C. Y. Jiang, M. Y. Tang. Simultaneous curing and filling of elastomers[J]. Macromolecules,1984,17:2613
    [17] S. K. Liao, S. C. Jang, M. F. Lin. Phase Behavior and Mechanical Properties ofSiloxane-Urethane Copolymer.[J]. J. Polym. Res.,2005,12:103-112
    [1] T. Young, An essay on the cohesion of fluids [J]. Philos Trans R Soc.London,1805,95:65-87
    [2] M. K. Chaudhury, G. M.Whiteside. How to make water run uphill [J]. Science,1992,256:1539-1541
    [3] M. Lestelius I. Engquist, P. Tengvall, M. K. Chaudhury, B. Liedberg.Order/disorder gradients of n-alkanethiols on gold [J]. Colloids and Surf B:Biointerfaces,1999,15:57-70
    [4] S. Morgenthaler, S. Lee, S.Zürcher, N. Spencer. A Simple, reproducible approachto the preparation of surface-chemical gradients [J]. Langmuir,2003,19:10459-10462
    [5] W. Lee, P. E. Laibinis. Directed movement of liquids on patterned surfaces usingnoncovalent molecular adsorption [J]. J Am Chem Soc.,2000,122:5395-5396
    [6] Y. Sumino, N. Magome, T. Hamada, K.Yashikawa. Self-Running droplet:emergence of regular motion from nonequilibrium noise [J]. Phys Rev Lett.,2005,94:068301
    [7] S. Daniel, M. K. Chaudhury, J. C.Chen. Fast drop movements resulting from thephase change on a gradient surface [J]. Science,2001,291:633-636
    [8] J. Pihl, J. Sinclair, E. Sahlin, M. Karlsson, F. Petterson, J. Olofsson, O. Orwar.Microfluidic gradient-generating device for pharmacological profiling [J]. AnalChem,2005,77:3897-3903
    [9] H. Wu, B. Huang, R. N. Zare. Generation of complex, static solution gradients inmicrofluidic channels [J]. J Am Chem Soc.,2006,128:4194-4195
    [10] K. Nagai, Y. Sumino, H. Kitahata, K. Yashikawa. Mode selection in thespontaneous motion of an alcohol droplet [J]. Phys Rev E,2005,71:065301
    [11] H. C. Dong, P. L. Ye, M. J. Zhong, J. Pietrasik, R. Drumright, K. Matyjaszewski.Superhydrophilic surfaces via polymer-SiO2nanocomposites [J]. Langmuir,2010,26(19):15567-15573
    [12] F. Cebeci, Z. Wu, L. Zhai, R. Cohen, M. Rubner. Nanoporosity-drivensuperhydrophilicity: A means to create multifunctional antifogging coatings [J].Langmuir,2006,22(6):2856-2862
    [13] N. Hasirci. T. Endogan, E. Vardar, A. Kiziltayc, V. Hasirci, Effect of oxygenplasma on surface properties and biocompatibility of PLGA films [J]. Surf. InterfaceAnal.,2010,42:486-491
    [14] S. Minko, M. Muller, M. Motornov, M. Nitschke, K. Grundke, M. Stamm,Two-level structured self-adaptive surfaces with reversibly tunable properties [J]. J.Am. Chem. Soc,2003,125(13):3896-3900
    [15] D. Oner, T. McCarthy, Ultrahydrophobic surfaces. Effects of topography lengthscales on wettability [J].Langmuir,2000,16(20):7777-7782
    [16] X. Zhang, F. Shi, X. Yu, H. Liu, Y. Fu, Z. Wang, L. Jiang, X. Li, Polyelectrolytemultilayer as matrix for electrochemical deposition of gold clusters: towardsuper-hydrophobic surface [J]. J. Am. Chem. Soc.,2004,126(10):3064-3065
    [17] X. Yu, Z. Wang, Y. Jiang, X. Zhang, Surface gradient material: fromsuperhydrophobicity to superhydrophilicity [J]. Langmuir,2006.22(10):4483-4486
    [18] X.J. Feng, L. Jiang. Design and creation of super-wetting/antiwetting surfaces [J].Adv. Mater.2006,18:3063-3078
    [19] W. St ber, A. Fink, E. Bohn. Controlled growth of monodisperse silica spheres inthe micron size range [J]. J. Colloid Interface Sci,1968,26(1):62-69
    [20] A.B.D. Cassie, S. Baxter. Wettability of porous surfaces [J]. Trans. Faraday Soc.,1944,40:546-551
    [21] T. Martini, J. Steinkirchner, U. Gosele. The crack opening method in siliconwafer bonding—how useful is it?[J]. J. Electrochem. Soc.,1997,144:354-357
    [22] A. Vesel, I. Junkar, U. Cvelbar, J. Kovac, M.Mozetic. Surfacemodification ofpolyester by oxygen-and nitrogen-plasma treatment [J].Surf. Interface Anal.,2008,40,1444-1453
    [23] T. Vrlinic, A. Vesel, U. Cvelbar, M. Krajnc, M. Mozetic. Rapid surfacefunctionalization of poly(ethersulphone) foils using a highly reactive oxygen-plasmatreatment [J].Surf. Interface Anal.,2007,39:476-481
    [24] A.Vesel. Modification of polystyrene with a highly reactive cold oxygen plasma[J].Surface&Coatings Technology,2010,205:490-497
    [25] G. Beamson, D. Briggs. High resolution XPS of organic polymers-The ScientaESCA300Database [M]. Chichester: Wiley,1992
    [26] J. Chai, F. Lu, B. Li, D. Y. Kwok. Wettability Interpretation of Oxygen PlasmaModified Poly(methyl methacrylate)[J].Langmuir,2004,20:10919-10927
    [27] T. Homola, J. Matou ek, B. Hergelová, M. Kormunda, L.Y. L. Wu, M. ernák.Activation of poly(methyl methacrylate) surfaces by atmospheric pressure plasma [J].Polymer Degradation and Stability2012,97:886-892
    [28]A. Vesel, M. Mozetic. Surface modification and ageing of PMMA polymer byoxygen plasma treatment [J]. Vacuum,2012,86:634-637
    [29] K. E. Schmalenberg, H. M. Buettner, K. E. Uhrich. Microcontact printing ofproteins on oxygen plasma-activated poly(methyl methacrylate)[J]. Biomaterials,2004,25:1851-1857
    [30] K. Tsougeni, P. S. Petrou, A. Tserepi, S. E. Kakabakos, E. Gogolides.Nano-texturing of poly(methyl methacrylate) polymer using plasma processes andapplications in wetting control and protein adsorption [J]. Microelectron. Eng.,2009,86:1424-1427
    [31] K. Tsougeni, N. Vourdas, A. Tserepi, E. Gogolides, C. Cardinaud. Mechanismsof oxygen plasma nanotexturing of organic polymer surfaces from stable superhydrophilic to super hydrophobic surfaces [J]. Langmuir,2009,25:11748-117459
    [32] R. Morent, N. De Geyter, C. Leys, L. Gengembre, E. Payen. Study of the ageingbehaviour of polymer films treated with a dielectric discharge in air, helium and argonat medium pressure [J]. Surf Coat Technol,2007,201:7847-7854
    [33] R. Foerch, G. Kill, M. J. Walzak. Plasma surface modification of polyethylene:short-term vs. long-term plasma treatment [J]. J Adhes Sci. Technol1993;7:1077-1089.
    [34] G. Borcia, C.A. Anderson, N.M.D. Dielectric barrier discharge for surfacetreatment: application to selected polymers in film and fibre form [J]. Brown. PlasmaSources Sci Technol.,2003,12:335-344
    [35] G. Borcia, C.A. Anderson, N.M.D. Brown. The sur-face oxidation of selectedpolymers using an atmospheric pressure air dielectric barrier discharge [J]. Appl. Surf.Sci.,2004,225:186-197
    [36] D.K. Owens, R.C. Wendt. Estimation of the surface free energy of polymers [J]. J.Appl. Polym. Sci.1969,13:1741
    [37] M. Sasou, S. Sugiyama, T. Ishida, T. Ohtani, K. Miyake. Influence of the surfacefree energy of silane-coupled mica substrate on the fixing and straightening of DNA[J]. Thin Solid Films,2009,517:4425-4431
    [38] B. Cortesea, M. C. Mowlemb, H. Morgana. Characterisation of an irreversiblebonding process for COC-COC and COC-PDMS-COC sandwich structures andapplication to microvalves [J]. Sen. Actuators, B,2011,160:1473-1480
    [39] V. Sunkara, D.-K. Park, H. Hwang, R. Chantiwas, S. A. Soper, Y.-K. Cho. Simpleroom temperature bonding of thermoplastics and poly(dimethylsiloxane)[J]. LabChip,2011,11:962–965
    [1] G. S. Jeong, S. Chung, C. B. Kim, S. H. Lee. Applications of micromixingtechnology [J]. Analyst,2010,135:460–73
    [2] R. Vargas-Bernal. Selection of Micromixers for Biochemical Detection ofPesticides, Proceedings of robotics and automotive mechanics conference,2006,2:176–181
    [3] P.A. Auroux, D. Iossifidis, D. R. Reyes, A. Manz, Micro Total Analysis Systems.2. Analytical Standard Operations and Applications,[J]. Anal. Chem.,2002,74:2637-2652
    [4] M. Kakuta, P. Hinsmann, A. Manz, B. Lendl. Time-resolved Fourier transforminfrared spectrometry using a microfabricated continuous flow mixer: application toprotein conformation study using the example of ubiquitin,[J]. Lab Chip,2003,3:82–85
    [5] M. Kakuta, D. A. Jayawickrama, A. M. Wolters. Micromixer-based time-resolvedNMR: applications to ubiquitin protein conformation,[J].Anal. Chem.,2003,75:956-960
    [6] A. de Mello, R. Wootton. But what is it good for? Applications of microreactortechnology for the fine chemical industry [J]. Lab Chip,2002,2:7N–13N
    [7] C. Wiles, P. Watts, S. J. Haswell, E. Pombo-Villar. The aldol reaction of silyl enolethers within a micro reactor [J]. Lab Chip,2001,1:100–101
    [8] C. Wiles, P. Watts, S. J. Haswell, E. Pombo-Villar.1,4-Addition of enolates toα,β-unsaturated ketones within a micro reactor [J]. Lab Chip,2002,2:62–64
    [9] D. H. Kelley, N. T. Ouellette. Separating stretching from folding in fluid mixing[J]. Nat. Phys.,2011,7:477–80
    [10] N. T. Nguyen, Z. Wu. Micromixers—a review [J]. J. Micromech. Microeng.,2005,15: R1–R16
    [11] C. Y. Lee, C. L. Chang, Y. N. Wang, L. M. Fu. Microfluidic mixing: a review [J].Int. J. Mol. Sci.,2011,12:3263–87
    [12] A. D. Stroock, S. K. W. Dertinger, A. Ajdari, I. Mezi, H. A. Stone, G. M.Whitesides. Chaotic mixer for microchannels [J]. Science,2002,295:647–51
    [13] D. S. Kim, S. W. Lee, T. H. Kwon, S. S. Lee. A barrier embedded chaoticmicromixer [J]. J. Micromech. Microeng.,2004,14:798–805
    [14] Howell P B Jr, D. R. Mott, F. S. Ligler, J. P. Golden, C. R. Kaplan, E. S. Oran.2008A combinatorial approach to microfluidic mixing [J]. J. Micromech. Microeng,.18:115019
    [15] R. Choudhary, T. Bhakat, R. K. Singh, A. Ghubade, S. Mandal, A. Ghosh, A.Rammohan, A. Sharma, S. Bhattacharya. Bilayer staggered herringbone micro-mixerswith symmetric and asymmetric geometries [J]. Microfluid Nanofluid,2011,10271–86
    [16] N. S. Lynn, D. S. Dandy, Geometrical optimization of helical flow in groovedmicromixers [J]. Lab Chip2007,7:580–587
    [17] C. A. Cortes-Quiroza, M. Zangeneh, A. Goto. On multi-objective optimization ofgeometry of staggered herringbone micromixer [J]. Microfluid Nanofluid,2009,7:29–43
    [18] M. K. Singh, T. G. Kang, H. E. H. Meijer, P. D. Anderson. The mapping methodas a toolbox to analyze, design, and optimize micromixers [J]. Microfluid Nanofluid,2008,5:313–25
    [19] D. R. Mott, Howell P B Jr, J. P. Golden, C. R. Kaplan, F. S. Ligler, E, S, Oran.Toolbox for the design of optimized microfluidic components [J]. Lab Chip,2006,6:540–9
    [20] Y. B. Deng, Z. Y. Liu, P. Zhang, Y. S. Liu, Q. Y. Gao, Y. H. Wu. A flexiblelayout design method for passive micromixers [J]. Biomed Microdevices,2012,14:925–49
    [21] D. Li. Encyclopedia of microfluidics and nanofluidics [M]. New York: Springer,2008
    [22] P. V. Danckwerts. The difinition and measurement of some characteristics ofmixtures [J]. Appl. Sci. Res.,1952, A3:279–96
    [23] T. Borrvall, J. Petersson. Topology optimization of fluid in Stokes flow [J]. Int. J.Numer. Meth. Fluids,2003,41:77–107
    [24] L. H. Olesen, F. Okkels, H. Bruus. A high-level programming-languageimplementation of topology optimization applied to steady-state Navier–Stokes flow[J]. Int. J. Numer. Methods Eng,2006,65:975–1001
    [25] J. Nocedal, S. J. Wright. Numerical Optimization [M]. New York: Springer,1998
    [26] M. Hinze, R. Pinnau, M. Ulbrich, S. Ulbrich. Optimization with PDE constraints[M]. New York: Springer,2009
    [27] J. Donea, A. Hureta. Finite Element Methods for Flow Problems [M]. WestSussex: Wiley,2003
    [28] R. H. Byrd, P. Lu, J. Nocedal. A limited memory algorithm for boundconstrained optimization [J]. SIAM J. Sci. Statist. Comput.1995,16:1190–208
    [29] A. P. Sudarsan, V. M. Ugaz. Multivortex micromixing [J]. PNAS,2006,103:7228–33
    [30] M. S. Williams, K. J. Longmuirb, P. Yager. A practical guide to the staggeredherringbone mixer [J]. Lab Chip,2008,81121–9
    [31] R. H. Liu, M. A. Stremler, K. V. Sharp, M. G. Olsen, J. G. Santiago, R. J. Adrian,H. Aref, D. J. Beebe. Passive mixing in a three-dimensional serpentine microchannel[J]. J. Microelectromech. Syst.2000,9:190–7
    [32] J. M. Park, D. S. Kim, T. G. Kang, T. H.Kwon. Improved serpentine laminatingmicromixer with enhanced local advection [J]. Microfluid Nanofluid,2008,4513–23
    [33] K. Malecha, L. J. Golonka, J. Baldyga, M. Jasi′nska, P. Sobieszuk. Serpentinemicrofluidic mixer made in LTCC [J]. Sen. and Actuators B,2009,143:400–13
    [34] C. K. Chung, T. R. Shih. Effect of geometry on fluid mixing of the rhombicmicromixers [J]. Microfluid Nanofluid,2008,4:419–25
    [35] C. K. Chung, T. R. Shih, B. H. Wu, C. K. Chang. Design and mixing efficiencyof rhombic micromixer with flat angles [J]. Microsyst Technol,2010,161595–600
    [36] C. K. Chung, T. R. Shih. A rhombic micromixer with asymmetrical flow forenhancing mixing [J]. J. Micromech. Microeng.,2007,17:2495–504
    [37] B. Jo, L. M. Van Lerberghe, K. M. Motsegood, D. J. Beebe. Three-dimensionalmicro-channel fabrication in polydimethylsiloxane (PDMS) elastomer [J]. J.Microelectromech Syst,2000,9:76–81
    [1] M. Z. Islam, J. N. McMullin, Y. Y. Tsui. Rapid and Cheap Prototyping of aMicrofluidic Cell Sorter [J]. Cytometry,2001, Part A79A:361-367
    [2] N. C. Nayak, Y. C. Lam, C. Y. Yue and A. T. Sinha. CO2-laser micromachining ofPMMA the effect of polymer molecular weight,[J]. J. Micromech. Microeng.,2008,18:095020
    [3]马德柱,高聚物的结构与性能[M],北京:科学出版社,1995
    [4] J. Powell. CO2Laser Cutting [M],1998, Springer-Verlag, Berlin, Germany
    [5] C. K. Chung, Y. C. Lin, G. R. Huang. Bulge formation and improvement of thepolymer in CO2laser micromachining [J]. J. Micromech. Microeng.,2005,15:1878–1884
    [6]申雪飞,陈涛. CO2激光直写PMMA微通道工艺改进的实验研究[J].中国激光,2011,38(6):0603030
    [7] C. K. Chung and S. L. Lin. On the fabrication of minimizing bulges and reducingthe feature dimensions of microchannels using novel CO2laser micromachining [J]. J.Micromech. Microeng.,2011,21:065023
    [8] J. Siegrist, R. Gorkin, M. Bastien, G. Stewart, R. Peytavi, H. Kido, M. Bergeron,M. Madou. Validation of a centrifugal microfluidic sample lysis and homogenizationplatform for nucleic acid extraction with clinical samples [J]. Lab Chip,2010,10:363—371
    [9]邓永波,张平,杜新,吴一辉,刘震宇,刘永顺.亲/疏水性不同壁面组成微通道的深宽比与通道内液体的自发毛细流动[J].光学精密工程,2010,18(7):1562-1567
    [10] Yulii D. Shikhmurzaev. Capillary Flows with forming interfaces [M]. CRC,2007
    [11] Lung-Jieh Y, Tze-Jung Y, Yu-Chong T. The marching velocity of the capillarymeniscus in a microchannel [J]. J. Micromech. Microeng.,2004,14:220-225
    [12]朱步瑶,赵振国.界面化学基础[M],化学工业出版社,2003
    [13]张平,徐磊,邓永波.微通道内台阶阀截止过程中的毛细流动动态效应[J].光学精密工程,2011,19(12):2919-2926.
    [14] X. Du, P. Zhang, Y. S. Liu, Y. H. Wu. A passive through hole microvalve forcapillary flow control in microfluidic systems [J]. Sensors and Actuators A: Physical,2011,165:288–293
    [15]张平,胡亮红,吴一辉,刘震宇,刘永顺,邓永波.主辅通道型微混合器的设计与制作[J].光学精密工程,2010,18(4):872-879
    [16] D. Chakraborty, M. Madou, S. Chakraborty. Anomalous mixing behaviour inrotationally actuated microfluidic devices [J]. Lab chip,2011,11(17):2823-2826
    [17] Y. H. Wu, X. H. Deng, F. Li, X. Y. Zhuang. Less-mode optic fiber evanescentwave absorbing sensor: Parameter design for high sensitivity liquid detection [J]. Sens.Actuators B,2007,122:127–133
    [18]庄须叶,吴一辉,王淑荣,张平,刘永顺,基于微加工工艺的光纤消逝场传感器及其长度特性研究[J].物理学报,2009,58(4):2501-2506
    [19] G. G. Liu, Y. H. Wu, K. W. Li, P. Hao, M. Xuan. Silica nanospheres for filteringhigher-order optical fiber modes [J]. Appl. Opt.,2013,52(4):775-779
    [20] G. G. Liu, K. W. Li, P. Hao, W. C. Zhou, Y. H. Wu, M. Xuan. Bent optical fibertaper for refractive index detection with a high sensitivity [J]. Sens. Actuators A,2013,201:352–356
    [21] A. G. Mignani, R. Falciai, L. Ciaccheri. Evanescent wave absorptionspectroscopy by means of Bi-tapered multimode optical fibers [J]. Appl. Spectrosc.,1998,52:546–551