新型氧氮化物荧光材料的开发及优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
进入21世纪以来,环境污染和能源的过渡消耗日益严重,节能环保成为了这个时期的主题。在照明显示领域,同样掀起了节能热潮,传统的照明器具(白炽灯、高压钠灯等)和显示技术(CRT、FED等)已逐渐被人们所抛弃,取而代之的是白光LED显示照明器件,白光LED以其能耗少、寿命长、污染小、工作电压低等特点逐渐受到人们的亲睐。
     传统实现白光LED的方案为蓝光LED芯片复合YAG:Ce3+黄色荧光粉体,此方案从研发成功一直沿用至今已有十几年历史,但是随着人们将LED应用在大规模显示技术上,传统方案的显色指数(75)已不能满足人们的需求,以三基色为配色方式的白光LED方案逐渐进入高端显示领域,考虑到成本因素,一般不采取纯芯片结构,采取的方案主要有两种:用蓝光芯片复合可被蓝光激发的黄绿色荧光粉与红色荧光粉方案;紫外芯片复合可被紫外激发的红绿蓝三色荧光粉方案。从中我们可以看到,不管是哪一种方案,作为光转换材料的荧光粉都是必不可少的,荧光材料的性质直接影响到LED器件的成本和质量。因此,开发出成本廉价、制备简单、性质优异的荧光材料是白光LED照明显示领域的重要课题。
     随着显色指数和节能环保要求的不断提高,稳定性差、色度单一的传统稀土掺杂的氧化物、硫化物体系荧光粉体的参数已不能满足技术需求,稀土掺杂的(氧)氮化物材料以其稳定的化学性质、多样化的晶体结构、丰富的光谱性质、高量子效率、较小温度猝灭等优异的性质逐渐崭露头角。但在此领域一直有一个阻碍其发展和商业化的因素:传统(氧)氮化物材料合成条件苛刻。特殊的原材料、高温、高压、保护气氛等条件大大的提高了合成成本,而且过高的合成温度导致的粉体团聚也给荧光材料在LED封装上带来了不便。本论文立足于解决目前LED用(氧)氮化物荧光材料商业化的症结来开展课题,通过研发新型低温(氧)氮化物物相和开发有效、廉价制备工艺来解决业界的难点问题。为新型荧光粉体的开发提供了新的思路,也为(氧)氮化物粉体商业化提供了新的解决方案,
     本论文分为六章:
     第一章绪论,介绍了发光以及人造光源的历史和发展,对发光材料的常用参数做了简介,对目前几种常用的稀土掺杂(氧)氮化物荧光材料的晶体结构、光致发光性能、科学前研进行了简单的介绍和分析,结合目前商业化的难点和科学发展的热点提出本论文的立足点和和工作思路。
     第二章为实验部分,主要介绍了文章中所用的试剂、合成方案、制备设备、测试方案及仪器。
     第三章报道了,通过寻找中间相的方法,成功开发出了适合稀土掺杂的Ca2AlSi3O2N5和Ca2Si3O2N4氧氮化物物相,并利用能量转移原理对Ca2AlSi3O2N5:Eu2+荧光粉体进行了优化。研究表明:该两种粉体均可以在1450℃的烧结温度下呈相,这相比于传统SiAlON基材料的烧结温度降低了300℃之多,它们优秀的光致发光性能和与紫外LED光谱的高度匹配性,使它们具有应用在紫外LED用三基色荧光粉的潜质;我们通过能量转移原理用Ce3+作为敏化剂对Ca2AlSi3O2N5:Eu2+进行了优化,将其发射光谱强度提高了近50%,通过实验和理论计算拟合的方法,明确了能量传递机理和临界距离。
     第四章报道了一种新型制备纳米AIN:Eu2+荧光粉体的方案,这是学术界首次制备出具有如此小粒径(15nm)的纳米氮化物荧光粉体。我们模仿制备纳米氧化物的溶胶凝胶法,成功利用AlCl3为原料,三乙胺为氮源制备有机前驱体后直接分解为AlN,这种方案可以在1200℃即制备出结晶良好的AlN:Eu2+纳米荧光粉体,克服了学术界中Eu2+难以掺入AlN晶格的难题,我们对反应条件进行了适当的优化,对反应机理给出了合理的解释。纳米氮化物荧光粉体的问世将为荧光粉体的封装提供便利,也为氮化物荧光粉体在荧光示踪领域的应用开启新的篇章。
     第五章以目前商业化最广泛的红色氮化物荧光粉CaAlSiN3:Eu2+荧光粉体为目标产物,设计开发了一种利用廉价电石制备此种粉体的方案,该方案相比于传统的金属氮化等方案,具有可操作性强,制备成本低的优势。我们利用气相氮化还原和加入添加剂的办法克服了反应中的不利因素:碳。有效的制备出该种红色荧光粉体,并对其光致发光性能、寿命等进行了测试,对发光机理和化学合成机理进行了深入的探索。此方案的研究成功将对CaAlSiN3:Eu2+红粉的大规模商业化具有指导性意义。
     第六章为本论文的总结和展望,也指出了论文的不足和可以在今后继续深入探讨的问题。
In the wake of21st century, environment pollution and energy problem become more and more serious, energy saving and environmental protection turn into time's theme. Energy saving has also attracted more attention in the light and display field, traditional lighting and displaying equipments are abanded, instead, the white LEDs(light-emitting diodes) come to us due to the superior lifetime, efficiency, reliability and low pollution effect.
     The traditional way generating white light is combining a blue LED chip with YAG:Ce3+yellow phosphor. This way has ten more years'history, but as the LED is applied in large-scale display field, it is not adapt because of its low color rendering index. People tend to use the other two methods:(1) combing an ultravioled (UV) LED with blue, green and red phosphors;(2) using a blue LED to pump green and red phosphors. In these two methods, phosphors used for luminescence convertionare very essential, the quality of phosphors impacts the property of LED device directly. So, development of novel phosphors with easily synthesis, low cost, good properties is one of the important subjects in white LEDs lighting and display field.
     The requirement of CRI and environment protection becomes higher and higher, oxide and sulfide phosphors can not meet the conditions owning to their unstable chemical properties and single color. Recently,(oxy)nitrides phosphors are very attractive because of their high efficiency, wide range of emission, high chemical and thermal stability. However, few of them can be used in commercial, due to (i) their critical preparation conditions (air-sensitive starting powders high temperature and pressure, etc.);(ii) the lack of general synthesis method. So finding some novel phosphors prepared under soft condition and cost-effective synthetic routes is very necessary and urgent.
     This dissertation is divided into six chapters:
     Chapter1introduces the history of artificial light, common used parameter and properties of some representative (oxy)nitrides phosphors. At the end, based on the requirement of science and industrial manufacture, main purpose of this dissertation is put forward.
     Chapter2is about the experimental procedure and instruments used in synthesis and test.
     In Chapter3, rare earth doped Ca2AlSi3O2N5and Ca2Si3O2N4phosphors have been synthesized via solid-state reaction. The luminescence properties, sintering temperature, morphology and atmosphere etc. have been studied. Besides, we improve the photoluminescence intensity of Ca2AlSi3O2N5:Eu2+by150%via energy transfer mechanism. Ce3+is used as the sensitizer, and the energy transfer has been demonstrated to be a resonant type via an electric dipole-dipole mechanism and the critical distance has been estimated, which is consistent with that from spectral overlap approach.
     In Chapter4, Nano-sized Eu doped AlN phosphor powder was successfully synthesized by a metal-organic precursor method. Aluminum and europium chlorides were simultaneously reacted with triethylamine in acetonitrile media to yield solid precipitates, which were transformed into nano-sized AlN:Eu2+phosphor powders upon calcination in an ammonia gas atmosphere. The formation of Al-N bonds through a coordination reaction in solution is a key factor in the formation of well-crystallized AlN:Eu2+grains at a moderately low temperature (1200℃), which significantly suppresses abnormal grain growth and favors the formation of nano-crystalline (~15nm) particles with a homogeneous particle size distribution. The nano-phosphors were effectively excited by UV light and featured an intense green emission band with a peak at506nm.
     In Chapter5, we reports a cost-effective synthetic route to synthesis red-emitting CaAlSiN3:Eu2+phosphors for white light-emitting diodes. Pure CaAlSiN3:Eu2+phosphors could be achieved at1550℃under NH3atmosphere from CaC2, CaCO3, Si3N4, AlN and Eu2O3starting powders, rather than the air-sensitive starting powders. CaC2was selected as the reduction agent and calcium resource, while the carbon contamination from CaC2was suppressed by the addition of CaCO3and the NH3atmosphere. The obtained CaAlSiN3:Eu2+phosphors are orange in color and emit strong red light under450nm excitation.
     Chapter6is the conclusion of this dissertation. Besides, we point out something insufficient and development of related direction.
引文
[1]Tsao J Y. Solid-state lighting-Lamps, chips, and materials for tomorrow[J]. Ieee Circuits & Devices,2004,20(3):28-37.
    [2]Paulose P I, Jose G, Thomas V, et al. Sensitized fluorescence of Ce3+/Mn2+ system in phosphate glass[J]. J Phys Chem Solids,2003,64(5):841-846.
    [3]Feldmann C, Justel T, Ronda C R, et al. Inorganic luminescent materials:100 years of research and application[J]. Adv Funct Mater,2003,13(7):511-516.
    [4]Ponce F A, Bour D P. NItride-based semiconductors for blue and green light-emitting devices[J]. Nature,1997,386(6623):351-359.
    [5]祁康成,曹贵川.发光原理与发光材料[M].电子科技大学出版社,2012.
    [6]余宪恩.实用发光材料[M].中国轻工业出版社,2008.
    [7]李建宇.稀土发光材料及其应用[M].化学工业出版社材料科学与工程出版中心,2003.
    [8]张中太,张俊英.无机光致发光材料及应用[M].化学工业出版社,2005.
    [9]Schubert E F, Kim J K. Solid-state light sources getting smart[J]. Science,2005,308(5726): 1274-1278.
    [10]Schlotter P, Schmidt R, Schneider J. Luminescence conversion of blue light emitting diodes[J]. Applied Physics a-Materials Science & Processing,1997,64(4):417-418.
    [11]孙家跃,杜海燕,胡文祥.固体发光材料[M].化学工业出版社,2003.
    [12]Blasse G, Grabmaier B. Luminescent materials[M].44. Springer,1994.
    [13]张思远.稀土离子的光谱学:光谱性质和光谱理论[M].科学出版社,2008.
    [14]Dorenbos P. Energy of the first 4f(7)-> 4f(6)5d transition of Eu2+in inorganic compounds[J]. J Lumin,2003,104(4):239-260.
    [15]Blasse G. ENERGY TRANSFER IN OXIDIC PHOSPHORS[J]. Philips Research Reports, 1969,24(2):131-&.
    [16]Dexter D L. A THEORY OF SENSITIZED LUMINESCENCE IN SOLIDS[J]. J Chem Phys, 1953,21(5):836-850.
    [17]Sun J, Lai J, Xia Z, et al. Luminescence properties and energy transfer in Ba2Y(BO3)2Cl:Ce3+,Tb3+ phosphors[J]. Appl Phys B,2012,107(3):827-831.
    [18]Turos-Matysiak R, Gryk W, Grinberg M, et al. energy transfer in Ce3+-doped Y3-xTbxGd0.65A15O12[J]. J Phys:Condens Matter,2006,18(47):10531-10543.
    [19]Yang Z, Zhao Z, Shi Y, et al. Luminescence Properties and Energy Transfer of Ce3+,Tb3+-Coactivated-SiAlON Phosphors[J]. J Am Ceram Soc,2013,96(6):1815-1820.
    [20]Shi Y, Zhu G, Mikami M, et al. Color-tunable LaCaA13O7:Ce3+,Tb3+ phosphors for UV light-emitting diodes[J]. Mater Res Bull,2013,48(1):114-117.
    [21]Hu W-W, Zhu Q-Q, Hao L-Y, et al. Luminescence properties and energy transfer in A15O6N:Ce3+,Tb3+phosphors[J]. J Lumin,2014,149:155-158.
    [22]Wei-Wei H, Qiang-Qiang Z, Lu-Yuan H, et al. Luminescence properties and energy transfer in AlN:Ce 3+,Tb 3+phosphors[J]. Mater Res Bull,2014,51:224-7.
    [23]Zhang X M, Park B, Kim J, et al. Orange emission enhancement by energy transfer in Sr3A12O5Cl2:Ce3+, Eu2+ phosphor for solid-state lighting[J]. J Lumin,2010,130(1): 117-120.
    [24]Guo C, Xu Y, Ren Z, et al. Blue-White-Yellow Tunable Emission from Ce3+ and Eu2+ Co-Doped BaSiO3 Phosphors[J]. J Electrochem Soc,2011,158(12):J373.
    [25]Fu R, Agathopoulos S, Song X, et al. Influence of energy transfer from Ce3+to Eu2+ on luminescence properties of CaSi2O2N2:Ce3+, Eu2+phosphors[J]. Opt Mater,2010,33(1): 99-102.
    [26]Lv W, Guo N, Jia Y, et al. A potential single-phased emission-tunable silicate phosphor Ca3Si2O7:Ce3+,Eu2+ excited by ultraviolet light for white light emitting diodes[J]. Opt Mater,2013,35(5):1013-1018.
    [27]Jia Y, Qiao H, Zheng Y, et al. Synthesis and photoluminescence properties of Ce3+ and Eu2+-activated Ca7Mg(SiO4)(4) phosphors for solid state lighting[J]. PCCP,2012,14(10): 3537-3542.
    [28]Kim J S, Jeon P E, Choi J C, et al. Warm-white-light emitting diode utilizing a single-phase full-color Ba3MgSi2O8:Eu2+, Mn2+ phosphor[J]. Appl Phys Lett,2004,84(15): 2931-2933.
    [29]Guo N, Huang Y, Jia Y, et al. A novel orange-yellow-emitting Ba3Lu(PO4)3:Eu2+,Mn2+ phosphor with energy transfer for UV-excited white LEDs[J]. Dalton Trans,2013,42(4):941.
    [30]Ju G, Hu Y, Chen L, et al. Photoluminescence properties of color-tunable SrMgA110O17:Eu2+,Mn2+ phosphors for UV LEDs[J]. J Lumin,2012,132(7):1792-1797.
    [31]Lee G-Y, Im W B, Kirakosyan A, et al. Tunable emission from blue to white light in single-phase Na0.34Ca(0.66-x-y)A11.66Si2.34O8:xEu(2+),yMn(2+) (x=0.07) phosphor for white-light UV LEDs[J]. Opt Express,2013,21(3):3287-3297.
    [32]Guo N, Huang Y, Yang M, et al. A tunable single-component warm white-light Sr3Y(PO4)3:Eu2+,Mn2+ phosphor for white-light emitting diodes[J]. PCCP,2011,13(33): 15077.
    [33]Xie R J, Hintzen H T. Optical Properties of (Oxy)Nitride Materials:A Review[J]. J Am Ceram Soc,2013,96(3):665-687.
    [34]Zeuner M, Pagano S, Schnick W. Nitridosilicates and Oxonitridosilicates:From Ceramic Materials to Structural and Functional Diversity[J]. Angewandte Chemie-International Edition,2011,50(34):7754-7775.
    [35]Ye S, Xiao F, Pan Y X, et al. Phosphors in phosphor-converted white light-emitting diodes Recent advances in materials, techniques and properties[J]. Materials Science & Engineering R-Reports,2010,71(1):1-34.
    [36]Xie R-J, Hirosaki N, Li Y, et al. Rare-Earth Activated Nitride Phosphors:Synthesis, Luminescence and Applications[J]. Materials,2010,3(6):3777-3793.
    [37]Xie R-J, Hirosaki N. Silicon-based oxynitride and nitride phosphors for white LEDs-A review[J]. Sci Technol Adv Mater,2007,8(7-8):588-600.
    [38]Zhang Z-J, Ten Kate O M, Delsing A, et al. Preparation, Electronic structure and Photoluminescence properties of RE (RE=Ce, Yb)-activated SrAlSi4N7 yellow-red emitting phosphors for white-LEDs[J]. Journal of Materials Chemistry C,2013.
    [39]Hintze F, Johnson N W, Seibald M, et al. Magnesium Double Nitride Mg3GaN3as New Host Lattice for Eu2+Doping:Synthesis, Structural Studies, Luminescence, and Band-Gap Determination[J]. Chem Mater,2013,25(20):4044-4052.
    [40]Anoop G, Lee D W, Suh D W, et al. Solid-state synthesis, structure, second-harmonic generation, and luminescent properties of noncentrosymmetric BaSi7N10:Eu2+ phosphors[J]. Journal of Materials Chemistry C,2013,1(31):4705-4712.
    [41]Yin L-J, Zhu Q-Q, Yu W, et al. Europium location in the A1N:Eu green phosphor prepared by a gas-reduction-nitridation route[J]. J Appl Phys,2012,111 (5).
    [42]Liu T-C, Kominami H, Greer H F, et al. Blue Emission by Interstitial Site Occupation of Ce3+in AlN[J]. Chem Mater,2012,24(17):3486-3492.
    [43]Hintze F, Hummel F, Schmidt P J, et al. Ba3Ga3N5-A Novel Host Lattice for Eu2+-Doped Luminescent Materials with Unexpected Nitridogallate Substructure[J]. Chem Mater,2012, 24(2):402-407.
    [44]Yin L-J, Xu X, Yu W, et al. Synthesis of Eu2+-Doped AlN Phosphors by Carbothermal Reduction[J]. J Am Ceram Soc,2010,93(6):1702-1707.
    [45]Takeda T, Hirosaki N, Xie R J, et al. Anomalous Eu layer doping in Eu, Si co-doped aluminium nitride based phosphor and its direct observation[J]. J Mater Chem,2010,20(44): 9948-9953.
    [46]Li Y Q, Hirosaki N, Xie R J, et al. Photoluminescence properties of rare earth doped a-Si3N4[J].J Lumin,2010,130(7):1147-1153.
    [47]Kurushima T, Gundiah G, Shimomura Y, et al. Synthesis of Eu2+-Activated MYSi4N7 (M=Ca,Sr,Ba) and SrYSi4-xAlxN7-xOx (x=0-1) Green Phosphors by Carbothermal Reduction and Nitridation[J]. J Electrochem Soc,2010,157(3):J64-J68.
    [48]Zeuner M, Hintze F, Schnick W. Low Temperature Precursor Route for Highly Efficient Spherically Shaped LED-Phosphors M2Si5N8:Eu2+(M=Eu, Sr, Ba)[J]. Chem Mater,2009, 21(2):336-342.
    [49]Roemer S R, Kroll P, Schnick W. High-pressure phases and transitions of the layered alkaline earth nitridosilicates SrSiN2 and BaSiN2[J]. Journal of Physics-Condensed Matter,2009, 21(27).
    [50]Inoue K, Hirosaki N, Xie R J, et al. Highly Efficient and Thermally Stable Blue-Emitting AlN:Eu2+ Phosphor for Ultraviolet White Light-Emitting Diodes[J]. J Phys Chem C,2009, 113(21):9392-9397.
    [51]Shioi K, Hirosaki N, Xie R-J, et al. Luminescence properties of SrSi6N8:EU2+[J]. Journal of Materials Science,2008,43(16):5659-5661.
    [52]Jinwang L, Watanabe T, Sakamoto N, et al. Synthesis of a multinary nitride, Eu-Doped CaAlSiN 3, from alloy at low temperatures[J]. Chem Mater,2008,20(6):2095-105.
    [53]Duan C J, Wang X J, Otten W M, et al. Preparation, electronic structure, and photoluminescence properties of Eu2+ and Ce3+/Li+-activated alkaline earth silicon nitride MSiN2 (M=Sr, Ba)[J]. Chem Mater,2008,20(4):1597-1605.
    [54]Li J W, Watanabe T, Wada H, et al. Low-temperature crystallization of Eu-doped red-emitting CaAlSiN3 from alloy-derived ammonometallates[J]. Chem Mater,2007,19(15):3592-3594.
    [55]Xie R J, Hirosaki N, Suehiro T, et al. A simple, efficient synthetic route to Sr2Si5N8: Eu2+-based red phosphors for white light-emitting diodes[J]. Chem Mater,2006,18(23): 5578-5583.
    [56]Gal Z A, Mallinson P M, Orchard H J, et al. Synthesis and structure of alkaline earth silicon nitrides:BaSiN2, SrSiN2, and CaSiN2[J]. Inorg Chem,2004,43(13):3998-4006.
    [57]Hoppe H A, Lutz H, Morys P, et al. Luminescence in Eu2+-doped Ba2Si5N8:fluorescence, thermoluminescence, and upconversion[J]. J Phys Chem Solids,2000,61(12):2001-2006.
    [58]Schlieper T, Milius W, Schnick W. NITRIDO-SILICATES.2. HIGH-TEMPERATURE SYNTHESES AND CRYSTAL-STRUCTURES OF SR2SI5N8 AND BA2SI5N8[J]. Z Anorg Allg Chem,1995,621(8):1380-1384.
    [59]Chen C, Chen W, Rainwater B, et al. M2Si5N8:Eu2+-based (M=Ca, Sr) red-emitting phosphors fabricated by nitrate reduction process[J].Opt Mater, In Press, Corrected Proof.
    [60]Seibald M, Rosenthal T, Oeckler O, et al. New Polymorph of the Highly Efficient LED-Phosphor SrSi2O2N2:Eu2+-Polytypism of a Layered Oxonitridosilicate[J]. Chem Mater,2013,25(9):1852-1857.
    [61]Yang X-F, Liu C, Yang L-X, et al. Cost-effective synthesis of Ca-a-sialon:Eu2+ phosphors by a direct silicon nitridation route[J]. Ceram Int,2012,38(6):5239-5242.
    [62]Wang X-M, Wang C-H, Kuang X-J, et al. Promising Oxonitridosilicate Phosphor Host Sr3Si2O4N2:Synthesis, Structure, and Luminescence Properties Activated by Eu2+ and Ce3+/Li+ for pc-LEDs[J]. Inorg Chem,2012,51(6):3540-3547.
    [63]Tang J-Y, Xie W-J, Huang K, et al. A High Stable Blue BaSi(3)Al(3)O(4)N(5):Eu(2+) Phosphor for White LEDs and Display Applications[J]. Electrochemical and Solid State Letters,2011,14(8):J45-J47.
    [64]Tang J, Chen J, Hao L, et al. Green Eu(2+)-doped Ba(3)Si(6)O(12)N(2) phosphor for white light-emitting diodes:Synthesis, characterization and theoretical simulation[J]. J Lumin, 2011,131(6):1101-1106.
    [65]Shioi K, Michiue Y, Hirosaki N, et al. Synthesis and photoluminescence of a novel Sr-SiAlON:Eu(2+) blue-green phosphor (Sr(14)Si(68-s)Al(6+s)O(s)N(106-s):Eu(2+) (s approximate to 7))[J]. J Alloys Compd,2011,509(2):332-337.
    [66]Liu W-R, Yeh C-W, Huang C-H, et al. (Ba,Sr)Y(2)Si(2)Al(2)O(2)N(5):Eu(2+):a novel near-ultraviolet converting green phosphor for white light-emitting diodes[J]. J Mater Chem, 2011,21(11):3740-3744.
    [67]Chiu Y-C, Huang C-H, Lee T-J, et al. Eu(2+)-activated silicon-oxynitride Ca(3)Si(2)O(4)N(2): a green-emitting phosphor for white LEDs[J]. Opt Express,2011,19(10):A331-A339.
    [68]Ryu J H, Won H S, Park Y-G, et al. Photoluminescence of Ce[sup 3+]-Activated β-SiAlON Blue Phosphor for UV-LED[J]. Electrochem Solid-State Lett,2010,13(2):H30.
    [69]Suehiro T, Hirosaki N, Xie R J, et al. One-step preparation of Ca-alpha-SiAlON:Eu2+ fine powder phosphors for white light-emitting diodes[J]. Appl Phys Lett,2008,92(19).
    [70]Duan C J, Otten W M, Delsing A C A, et al. Photoluminescence properties of Eu2+-activated sialon S-phase BaAlSi5O2N7[J]. J Alloys Compd,2008,461(1-2):454-458.
    [71]Suehiro T, Hirosaki N, Xie R J, et al. Powder synthesis of Ca-alpha'-SiAlON as a host material for phosphors[J]. Chem Mater,2005,17(2):308-314.
    [72]Li Y Q, Delsing A C A, De With G, et al. Luminescence properties of Eu2+-activated alkaline-earth silicon-oxynitride MSi2O2-delta N2+2/3 delta (M=Ca, Sr, Ba):A promising class of novel LED conversion phosphors[J]. Chem Mater,2005,17(12):3242-3248.
    [73]Xie R J, Hirosaki N, Sakuma K, et al. Eu2+-doped Ca-alpha-SiAlON:A yellow phosphor for white light-emitting diodes[J]. Appl Phys Lett,2004,84(26):5404-5406.
    [74]Taniyasu Y, Kasu M, Makimoto T. An aluminium nitride light-emitting diode with a wavelength of 210 nanometres[J]. Nature,2006,441(7091):325-328.
    [75]Li M K, Li C B, Liu C S, et al. Optical and magnetic measurements of Mn+-implanted A1N[J]. J Appl Phys,2004,95(2):755-757.
    [76]Richardson H H, Van Patten P G, Richardson D R, et al. Thin-film electroluminescent devices grown on plastic substrates using an amorphous A1N:Tb3+phosphor[J]. Appl Phys Lett, 2002,80(12):2207-2209.
    [77]Hirosaki N, Xie R J, Inoue K, et al. Blue-emitting A1N:Eu2+nitride phosphor for field emission displays[J]. Appl Phys Lett,2007,91(6).
    [78]Liu X J, Chen F, Zhang F, et al. Hard transparent A1ON ceramic for visible/IR windows[J]. International Journal of Refractory Metals & Hard Materials,2013,39:38-43.
    [79]Li Y Q, De With G, Hintzen H T. Luminescence properties of Ce3+-activated alkaline earth silicon nitride M2Si5N8 (M=Ca, Sr, Ba) materials[J]. J Lumin,2006,116(1-2):107-116.
    [80]Li Y Q, Van Steen J E J, Van Krevel J W H, et al. Luminescence properties of red-emitting M2Si5N8:Eu2+(M=Ca, Sr, Ba) LED conversion phosphors[J]. J Alloys Compd,2006, 417(1-2):273-279.
    [81]Piao X Q, Horikawa T, Hanzawa H, et al. Characterization and luminescence properties of Sr2Si5N8:Eu2+phosphor for white light-emitting-diode illumination[J]. Appl Phys Lett, 2006,88(16).
    [82]Piao X, Machida K-Ⅰ, Horikawa T, et al. Acetate reduction synthesis of Sr2Si5N8:Eu2+ phosphor and its luminescence properties [J]. J Lumin,2010,130(1):8-12.
    [83]Luong V D, Zhang W, Lee H-R. Preparation of Sr2Si5N8:Eu2+ for white light-emitting diodes by multi-step heat treatment[J]. J Alloys Compd,2011,509(27):7525-7528.
    [84]Nersisyan H, Ⅱ Won H, Won C W. Highly effective synthesis and photoluminescence of Sr2Si5N8:Eu2+ red-emitting phosphor for LEDs[J]. Chem Commun,2011,47(43): 11897-11899.
    [85]Piao X, Machida K-Ⅰ, Horikawa T, et al. Preparation of CaAlSiN3:Eu2+phosphors by the self-propagating high-temperature synthesis and their luminescent properties[J]. Chem Mater, 2007,19(18):4592-4599.
    [86]Li Y Q, Hirosaki N, Xie R J, et al. Yellow-Orange-Emitting CaAlSiN3:Ce3+Phosphor: Structure, Photoluminescence, and Application in White LEDs[J]. Chem Mater,2008,20(21): 6704-6714.
    [87]Zhang Z, Ten Kate O M, Delsing A C A, et al. Photoluminescence properties of Yb2+ in CaAlSiN3 as a novel red-emitting phosphor for white LEDs[J]. J Mater Chem,2012,22(45): 23871.
    [88]Yang J, Wang T, Chen D, et al. An investigation of Eu2+-doped CaAlSiN3 fabricated by an alloy-nitridation method[J]. Materials Science and Engineering:B,2012,177(18): 1596-1604.
    [89]Kim H S, Horikawa T, Hanzawa H, et al. Luminescence properties of CaAlSiN3:Eu2+mixed nitrides prepared by carbothermal process[J]. J Phys:Conf Ser,2012,379:012016.
    [90]Watanabe H, Kijima N. Crystal structure and luminescence properties of SrxCal-xAlSiN3:Eu2+mixed nitride phosphors[J]. J Alloys Compd,2009,475(1-2): 434-439.
    [91]Uheda K, Hirosaki N, Yamamoto H. Host lattice materials in the system Ca3N2-A1N-Si3N4for white light emitting diode[J]. physica status solidi (a),2006,203(11): 2712-2717.
    [92]Uheda K, Hirosaki N, Yamamoto Y, et al. Luminescence properties of a red phosphor, CaAlSiN3:Eu2+, for white light-emitting diodes[J]. Electrochemical and Solid State Letters, 2006,9(4):H22-H25.
    [93]Kubus M, Meyer H J. A Low-Temperature Synthesis Route for CaAlSiN3Doped with Eu2+[J]. Z Anorg Allg Chem,2013,639(5):669-671.
    [94]Lei B, Machida K-I, Horikawa T, et al. Synthesis and Photoluminescence Properties of CaAlSiN3:Eu2+ Nanocrystals[J]. Chem Lett,2010,39(2):104-105.
    [95]Li J, Watanabe T, Wada H, et al. Synthesis of Eu-Doped CaAlSiN3from Ammonometallates: Effects of Sodium Content and Pressure[J]. J Am Ceram Soc,2009,92(2):344-349.
    [96]Hoeppe H A. Recent Developments in the Field of Inorganic Phosphors[J]. Angewandte Chemie-International Edition,2009,48(20):3572-3582.
    [97]Li W, Xie R-J, Zhou T, et al. Synthesis of the phase pure Ba3Si6O12N2:Eu(2+) green phosphor and its application in high color rendition white LEDs[J]. Dalton transactions (Cambridge, England:2003),2014,43(16):6132-8.
    [98]Qin J, Zhang H, Lei B, et al. Thermoluminescence and Temperature-Dependent Afterglow Properties in BaSi2O2N2:Eu2+[J]. J Am Ceram Soc,2013:n/a-n/a.
    [99]Tang J-Y, Yang X-F, Zhan C, et al. Synthesis and luminescence properties of highly uniform spherical SiO2@SrSi2O2N2:Eu2+ core-shell structured phosphors[J]. J Mater Chem,2012, 22(2):488.
    [100]Yang X, Song H, Yang L, et al. Reaction Mechanism of SrSi2O2N2:Eu2+ 6Phosphor Prepared by a Direct Silicon Nitridation Method[J]. J Am Ceram Soc,2011,94(1):164-171.
    [101]Zhang M, Wang J, Zhang Z, et al. A tunable green alkaline-earth silicon-oxynitride solid solution (Ca(1-x)Sr(x))Si(2)O(2)N(2):Eu(2+) and its application in LED[J]. Applied Physics B-Lasers and Optics,2008,93(4):829-835.
    [102]Guo C F, Xu Y, Lv F, et al. Luminescent properties of Sr2SiO4:Eu2+ nanorods for near-UV white LED[J]. J Alloys Compd,2010,497(1-2):L21-L24.
    [103]Shen Z, Nygren M, Wang P, et al. Eu-doped alpha-sialon and related phases[J]. J Mater Sci Lett,1998,17(20):1703-1706.
    [104]Karunaratne B S B, Lumby R J, Lewis M H. Rare-earth-doped alpha'-Sialon ceramics with novel optical properties[J]. J Mater Res,1996,11(11):2790-2794.
    [105]Fukuda V, Okada A, Albessard A K. Luminescence properties of Eu 2+-doped red-emitting Sr-containing SiAlON phosphor[J]. Applied Physics Express,2012,5(6):062102 (3 pp.)-062102(3pp.).
    [106]Xu X, Tang J Y, Nishimura T, et al. Synthesis of Ca-alpha-SiAlON phosphors by a mechanochemical activation route[J]. Acta Mater,2011,59(4):1570-1576.
    [107]Shioi K, Hirosaki N, Xie R-J, et al. Photoluminescence and thermal stability of yellow-emitting Sr-alpha-SiAlON:Eu2+ phosphor[J]. Journal of Materials Science,2010, 45(12):3198-3203.
    [108]Shioi K, Hirosaki N, Xie R J, et al. Synthesis, crystal structure and photoluminescence of Eu-alpha-SiAlON[J]. J Alloys Compd,2010,504(2):579-584.
    [109]Zhang H C, Horikawa T, Hanzawa H, et al. Photoluminescence properties of alpha-SiAlON: Eu2+ prepared by carbothermal reduction and nitridation method[J]. J Electrochem Soc, 2007,154(2):J59-J61.
    [110]Hirosaki N, Xie R J, Kimoto K, et al. Characterization and properties of green-emitting beta-SiAlON:Eu2+ powder phosphors for white light-emitting diodes[J]. Appl Phys Lett, 2005,86(21).
    [111]Xie W, Tang J, Hao L, et al. Blue and red luminescence from Mn2+-Ce3+ co-doped MgYSi2O5N phosphors[J]. Opt Mater,2009,32(2):274-276.
    [112]Kim H-G, Kang E-H, Kim B-H, et al. Preparation and luminescence properties of Ba3Si6O9N4:Eu2+ phosphor[J]. Opt Mater,2013,35(6):1279-1282.
    [113]Lihong L, Rong-Jun X, Hirosaki N, et al. Photoluminescence properties of beta-SiAlON: Yb 2+, a novel green-emitting phosphor for white light-emitting diodes[J]. Sci Technol Adv Mater,2011,12(3):034404 (6 pp.)-034404 (6 pp.).
    [114]Xu X, Cai C, Hao L Y, et al. The photoluminescence of Ce-doped Lu4Si2O7N2 green phosphors[J]. Mater Chem Phys,2009,118(2-3):270-272.
    [115]Yin L-J, Yu W, Xu X, et al. The Effects of Fluxes on A1N:Eu2+ Blue Phosphors Synthesized by a Carbothermal Reduction Method[J]. J Am Ceram Soc,2011,94(11):3842-3846.
    [116]Joo H U, Chae S A, Jung W S. Is it possible to synthesize cubic aluminum nitride by the carbothermal reduction and nitridation method?[J]. Diamond Relat Mater,2008,17(3): 352-355.
    [117]Kuang J C, Zhang C R, Zhou X G, et al. Formation and characterization of cubic A1N crystalline in a carbothermal reduction reaction[J]. Mater Lett,2005,59(16):2006-2010.
    [1]Fukuda V, Okada A, Albessard A K. Luminescence properties of Eu 2+-doped red-emitting Sr-containing SiAlON phosphor[J]. Applied Physics Express,2012,5(6):062102 (3 pp.)-062102(3pp.).
    [2]Shioi K, Michiue Y, Hirosaki N, et al. Synthesis and photoluminescence of a novel Sr-SiAlON:Eu(2+) blue-green phosphor (Sr(14)Si(68-s)Al(6+s)O(s)N(106-s):Eu(2+) (s approximate to 7))[J]. J Alloys Compd,2011,509(2):332-337.
    [3]Li H-L, Zhou G-H, Xie R-J, et al. Optical properties of green-blue-emitting Ca-a-Sialon:Ce3+,Li+ phosphors for white light-emitting diodes (LEDs)[J]. J Solid State Chem,2011,184(5):1036-1042.
    [4]Shioi K, Hirosaki N, Xie R-J, et al. Photoluminescence and thermal stability of yellow-emitting Sr-alpha-SiAlON:Eu2+phosphor[J]. Journal of Materials Science,2010, 45(12):3198-3203.
    [5]Ryu J H, Won H S, Park Y-G, et al. Photoluminescence of Ce[sup 3+]-Activated β-SiAlON Blue Phosphor for UV-LED[J]. Electrochem Solid-State Lett,2010,13(2):H30.
    [6]Zhang H C, Horikawa T, Hanzawa H, et al. Photoluminescence properties of alpha-SiAlON: Eu2+ prepared by carbothermal reduction and nitridation method[J]. J Electrochem Soc, 2007,154(2):J59-J61.
    [7]Hirosaki N, Xie R J, Kimoto K, et al. Characterization and properties of green-emitting beta-SiAlON:Eu2+ powder phosphors for white light-emitting diodes[J]. Appl Phys Lett, 2005,86(21).
    [8]Xie R J, Hirosaki N, Sakuma K, et al. Eu2+-doped Ca-alpha-SiAlON:A yellow phosphor for white light-emitting diodes[J]. Appl Phys Lett,2004,84(26):5404-5406.
    [9]Huang Z K, Sun W Y. Phase relations of the Si3N4-AIN-CaO system[J]. J Mater Sci Lett, 1985,4:255-259.
    [10]Xie R J, Hintzen H T. Optical Properties of (Oxy)Nitride Materials:A Review[J]. J Am Ceram Soc,2013,96(3):665-687.
    [11]Zeuner M, Pagano S, Schnick W. Nitridosilicates and Oxonitridosilicates:From Ceramic Materials to Structural and Functional Diversity[J]. Angewandte Chemie-International Edition,2011,50(34):7754-7775.
    [12]Cai C, Xie W, Hao L, et al. Synthesis and photoluminescence properties of Eu2+-doped Ca2AlSi3O2N5 green phosphors[J]. Materials Science and Engineering B-Advanced Functional Solid-State Materials,2012,177(8):635-638.
    [13]Suehiro T, Hirosaki N, Xie R J, et al. Powder synthesis of Ca-alpha'-SiAlON as a host material for phosphors[J]. Chem Mater,2005,17(2):308-314.
    [14]Xu F, Sourty E, Shi W, et al. Direct Observation of Rare-Earth Ions in a-Sialon:Ce Phosphors[J]. Inorg Chem,2011,50(7):2905-2910.
    [15]Xu X, Tang J Y, Nishimura T, et al. Synthesis of Ca-alpha-SiAlON phosphors by a mechanochemical activation route[J]. Acta Mater,2011,59(4):1570-1576.
    [16]Suehiro T, Hirosaki N, Xie R J, et al. One-step preparation of Ca-alpha-SiAlON:Eu2+fine powder phosphors for white light-emitting diodes[J]. Appl Phys Lett,2008,92(19).
    [17]Dorenbos P. Energy of the first 4f(7)-> 4f(6)5d transition of Eu2+ in inorganic compounds[J]. J Lumin,2003,104(4):239-260.
    [18]Sakuma K, Hirosaki N, Xie R J, et al. Luminescence properties of (Ca,Y)-alpha-SiAlON:Eu phosphors[J]. Mater Lett,2007,61(2):547-550.
    [19]Xie R J, Hirosaki N, Mitomo M, et al. Optical properties of Eu2+ in alpha-SiAION[J]. J Phys Chem B,2004,108(32):12027-12031.
    [20]Sakuma K, Hirosaki N, Xie R J. Red-shift of emission wavelength caused by reabsorption mechanism of europium activated Ca-alpha-SiAlON ceramic phosphors[J]. J Lumin,2007, 126(2):843-852.
    [21]Wang Y-F, Zhu Q-Q, Hao L-Y, et al. Luminescence and Structural Properties of High Stable Si-N-Doped BaMgA110O17:Eu2+ Phosphors Synthesized by a Mechanochemical Activation Route[J]. J Am Ceram Soc,2013,96(8):2562-2569.
    [22]Wang Y-F, Gao J-K, Lee M-H, et al. First-principles Study on Enhanced Optical Stability of BaMgA110O17:Eu2+Phosphor by SiN Doping[J]. Chin J Chem Phys,2012,25(4):398-402.
    [23]Nag A, Kutty T R N. Role of B2O3 on the phase stability and long phosphorescence of SrA12O4:Eu, Dy[J]. J Alloys Compd,2003,354(1-2):221-231.
    [24]Yin L-J, Yu W, Xu X, et al. The Effects of Fluxes on AlN:Eu2+ Blue Phosphors Synthesized by a Carbothermal Reduction Method[J]. J Am Ceram Soc,2011,94(11):3842-3846.
    [25]Guo H, Wang X, Zhang X, et al. Effect of NH4F Flux on Structural and Luminescent Properties of Sr2SiO4:Eu2+ Phosphors Prepared by Solid-State Reaction Method[J]. J Electrochem Soc,2010,157(8):J310-J314.
    [26]Rao R P. Morphology and stability of flux grown blue emitting BAM phosphors for plasma display panels applications[J]. J Electrochem Soc,2005,152(7):H115-H119.
    [27]Tang J-Y, He Y-M, Hao L-Y, et al. Fine-sized BaSi3A13O4N5:Eu2+ phosphors prepared by solid-state reaction using BaF2 flux[J]. J Mater Res,2013,28(18):2598-2604.
    [28]Turos-Matysiak R, Gryk W, Grinberg M, et al. energy transfer in Ce3+-doped Y3-xTbxGd0.65A15O12[J]. J Phys:Condens Matter,2006,18(47):10531-10543.
    [29]Yang X-F, Liu C, Yang L-X, et al. Cost-effective synthesis of Ca-a-sialon:Eu2+ phosphors by a direct silicon nitridation route[J]. Ceram Int,2012,38(6):5239-5242.
    [30]Li W, Xie R-J, Zhou T, et al. Synthesis of the phase pure Ba3Si6O12N2:Eu(2+) green phosphor and its application in high color rendition white LEDs[J]. Dalton transactions (Cambridge, England:2003),2014,43(16):6132-8.
    [31]Jang H S, Bin Im W, Lee D C, et al. Enhancement of red spectral emission intensity of Y3A15O12:Ce3+ phosphor via Pr co-doping and Tb substitution for the application to white LEDs[J]. J Lumin,2007,126(2):371-377.
    [32]Fu R, Agathopoulos S, Song X, et al. Influence of energy transfer from Ce3+ to Eu2+ on luminescence properties of CaSi2O2N2:Ce3(?), Eu2+ phosphors[J]. Opt Mater,2010,33(1): 99-102.
    [33]Sokolnicki J. Enhanced luminescence of Tb3 +due to efficient energy transfer from Ce3 +in a nanocrystalline Lu2Si2O7host lattice[J]. J Phys:Condens Matter,2010,22(27):275301.
    [34]Guo C, Xu Y, Ren Z, et al. Blue-White-Yellow Tunable Emission from Ce3+and Eu2+ Co-Doped BaSiO3 Phosphors[J]. J Electrochem Soc,2011,158(12):J373.
    [35]Sun J, Lai J, Xia Z, et al. Luminescence properties and energy transfer in Ba2Y(BO3)2Cl:Ce3+,Tb3+ phosphors[J]. Appl Phys B,2012,107(3):827-831.
    [36]Lv W, Guo N, Jia Y, et al. A potential single-phased emission-tunable silicate phosphor Ca3Si2O7:Ce3+,Eu2+ excited by ultraviolet light for white light emitting diodes[J]. Opt Mater,2013,35(5):1013-1018.
    [37]Shi Y, Zhu G, Mikami M, et al. Color-tunable LaCaA13O7:Ce3+,Tb3+ phosphors for UV light-emitting diodes[J]. Mater Res Bull,2013,48(1):114-117.
    [38]Yang Z, Zhao Z, Shi Y, et al. Luminescence Properties and Energy Transfer of Ce3+,Tb3+-Coactivated-SiAlON Phosphors[J]. J Am Ceram Soc,2013,96(6):1815-1820.
    [39]Hou J, Yin X, Fang Y, et al. Emission-tunable phosphors Ca9MgM'(PO4)7:Eu2+,Mn2+ (M'=Li, Na, K) for white light-emitting diodes[J]. J Lumin,2012,132(5):1307-1310.
    [40]Wu Y, Deng D, Xu S, et al. Enhanced luminescence of Sr3Si6O3N8:Eu2+ phosphors by co-doping with Ce3+[J]. J Lumin,2013,136(0):204-207.
    [41]Zhang X M, Park B, Kim J, et al. Orange emission enhancement by energy transfer in Sr3A12O5Cl2:Ce3+, Eu2+ phosphor for solid-state lighting[J]. J Lumin,2010,130(1): 117-120.
    [42]Guo N, Huang Y, Yang M, et al. A tunable single-component warm white-light Sr3Y(PO4)3:Eu2+,Mn2+phosphor for white-light emitting diodes[J]. PCCP,2011,13(33): 15077.
    [43]Jia Y, Qiao H, Zheng Y, et al. Synthesis and photoluminescence properties of Ce3+and Eu2+-activated Ca7Mg(SiO4)(4) phosphors for solid state lighting[J]. PCCP,2012,14(10): 3537-3542.
    [44]Blasse G. ENERGY TRANSFER IN OXIDIC PHOSPHORS[J]. Philips Research Reports, 1969,24(2):131-&.
    [45]Dexter D L. A THEORY OF SENSITIZED LUMINESCENCE IN SOLIDS[J]. J Chem Phys, 1953,21(5):836-850.
    [46]Dexter D L, Schulman J H. THEORY OF CONCENTRATION QUENCHING IN INORGANIC PHOSPHORS[J]. J Chem Phys,1954,22(6):1063-1070.
    [47]Reisfeld R, Lieblichsoffer N. ENERGY-TRANSFER FROM UO22+ TO SM-3(+) IN PHOSPHATE-GLASS[J]. J Solid State Chem,1979,28(3):391-395.
    [1]Tang J-Y, Zhan C, Yang L-X, et al. Synthesis of h-BN encapsulated spherical core-shell structured SiO2@Sr2Si5N8:Eu2+ red phosphors[J]. Mater Chem Phys,2012,132(2-3): 1089-1094.
    [2]Barillaro G, Strambini L M. Color tuning of light-emitting-diodes by modulating the concentration of red-emitting silicon nanocrystal phosphors[J]. Appl Phys Lett,2014,104(9): 091102(5 pp.)-091102(5 pp.).
    [3]Lojpur V, Mancic L, Vulic P, et al. Structural, morphological and up-converting luminescence characteristics of nanocrystalline Y2O3:Yb/Er powders obtained via spray pyrolysis[J]. Ceram Int,2014,40(2):3089-3095.
    [4]Kshatri D S, Khare A. Characterization and optical properties of Dy3+doped nanocrystalline SrAl2O4:Eu2+ phosphor[J]. J Alloys Compd,2014,588:488-495.
    [5]Tao Z, Zhang W, Qin L, et al. A yellow-emitting nanophosphor of Ce3+-activated aluminate Sr3LuA12O7.5[J]. J Alloys Compd,2014,588:540-545.
    [6]Sharma V, Das A, Kumar V, et al. Potential of Sr4A114O25:Eu2+,Dy3+ inorganic oxide-based nanophosphor in Latent fingermark detection[J]. Journal of Materials Science,2014,49(5): 2225-2234.
    [7]Hoeppe H A. Recent Developments in the Field of Inorganic Phosphors[J]. Angewandte Chemie-International Edition,2009,48(20):3572-3582.
    [8]Zeuner M, Pagano S, Schnick W. Nitridosilicates and Oxonitridosilicates:From Ceramic Materials to Structural and Functional Diversity [J]. Angewandte Chemie-International Edition,2011,50(34):7754-7775.
    [9]Xie R-J, Hirosaki N, Li Y, et al. Rare-Earth Activated Nitride Phosphors:Synthesis, Luminescence and Applications[J]. Materials,2010,3(6):3777-3793.
    [10]Ye S, Xiao F, Pan Y X, et al. Phosphors in phosphor-converted white light-emitting diodes Recent advances in materials, techniques and properties[J]. Materials Science & Engineering R-Reports,2010,71(1):1-34.
    [11]Xie R-J, Hirosaki N. Silicon-based oxynitride and nitride phosphors for white LEDs-A review[J]. Sci Technol Adv Mater,2007,8(7-8):588-600.
    [12]Xie R J, Hintzen H T. Optical Properties of (Oxy)Nitride Materials:A Review[J]. J Am Ceram Soc,2013,96(3):665-687.
    [13]Frazier R M, Stapleton J, Thaler G T, et al. Properties of Co-, Cr-, or Mn-implanted AIN[J]. J Appl Phys,2003,94(3):1592-1596.
    [14]Li M K, Li C B, Liu C S, et al. Optical and magnetic measurements of Mn+-implanted A1N[J]. J Appl Phys,2004,95(2):755-757.
    [15]Dimitrova V Ⅰ, Van Patten P G, Richardson H H, et al. Visible emission from electroluminescent devices using an amorphous A1N:Er3+ thin-film phosphor[J]. Appl Phys Lett,2000,77(4):478-479.
    [16]Richardson H H, Van Patten P G, Richardson D R, et al. Thin-film electroluminescent devices grown on plastic substrates using an amorphous A1N:Tb3+ phosphor[J]. Appl Phys Lett, 2002,80(12):2207-2209.
    [17]Peres M, Cruz A, Soares M J, et al. Optical and structural studies in Eu-implanted A1N films[J]. Superlattices Microstruct,2006,40(4-6):537-544.
    [18]Hirosaki N, Xie R J, Inoue K, et al. Blue-emitting A1N:Eu2+ nitride phosphor for field emission displays[J]. Appl Phys Lett,2007,91(6).
    [19]Zhongqi S, Wanli Y, Shujie B, et al. Preparation of Eu 2+-doped A1N phosphors by plasma activated sintering[J]. Ceram Int,2011,37(6):2051-4.
    [20]Wang X-J, Xie R-J, Dierre B, et al. A novel and high brightness A1N:Mn(2+) red phosphor for field emission displays[J]. Dalton transactions (Cambridge, England:2003),2014,43(16): 6120-7.
    [21]Dierre B, Zhang X M, Fukata N, et al. Growth Temperature Influence on the Luminescence of Eu, Si-Codoped A1N Phosphors[J]. Ecs Journal of Solid State Science and Technology, 2013,2(7):R126-R130.
    [22]Zhang H, Zheng M, Lei B, et al. Luminescence Properties of Red Long-Lasting Phosphorescence Phosphor A1N:Mn2+[J]. Ecs Journal of Solid State Science and Technology, 2013,2(7):R117-R120.
    [23]Dierre B, Yuan X L, Inoue K, et al. Role of Si in the Luminescence of A1N:Eu,Si Phosphors[J]. J Am Ceram Soc,2009,92(6):1272-1275.
    [24]Hyoung-Seok D, Sung-Woo C, Seong-Hyeon H. Blue-emitting A1N:Eu 2+ powder phosphor prepared by spark plasma sintering[J]. J Am Ceram Soc,2010,93(2):356-8.
    [25]Yin L-J, Yu W, Xu X, et al. The Effects of Fluxes on A1N:Eu2+ Blue Phosphors Synthesized by a Carbothermal Reduction Method[J]. J Am Ceram Soc,2011,94(11):3842-3846.
    [26]Liu T-C, Kominami H, Greer H F, et al. Blue Emission by Interstitial Site Occupation of Ce3+ in A1N[J]. Chem Mater,2012,24(17):3486-3492.
    [27]Yin L-J, Zhu Q-Q, Yu W, et al. Europium location in the A1N:Eu green phosphor prepared by a gas-reduction-nitridation route[J]. J Appl Phys,2012,111(5).
    [28]Inoue K, Hirosaki N, Xie R J, et al. Highly Efficient and Thermally Stable Blue-Emitting A1N:Eu2+Phosphor for Ultraviolet White Light-Emitting Diodes[J]. J Phys Chem C,2009, 113(21):9392-9397.
    [29]Friedman H, Briks L S. A GEIGER COUNTER SPECTROMETER FOR X-RAY FLUORESCENCE ANALYSIS[J]. Rev Sci Instrum,1948,19(5):323-330.
    [30]Weil K S, Kumta P N. Synthesis of ternary transition metal nitrides using chemically complexed precursors[J]. Materials Science and Engineering B-Solid State Materials for Advanced Technology,1996,38(1-2):109-117.
    [31]Walton R A. REACTIONS OF METAL HALIDES WITH ALKYL CYANIDES[J]. Quarterly Reviews,1965,19(2):126-&.
    [32]Storhoff B N, Lewis H C. Organonitrile Complexes of Transition-Metals[J]. Coord Chem Rev, 1977,23(1):1-29.
    [33]Sriram M A, Kumta P N, Ko E I. Interaction of Solvent And The Nature of Adducts on The Chemical Synthesis of Molybdenum Nitride Powders[J]. Chem Mater,1995,7(5):859-864.
    [34]Colque S, Grange P. PROPOSAL FOR A NEW MECHANISM FOR THE TRANSFORMATION OF ALUMINA INTO ALUMINUM NITRIDE[J]. J Mater Sci Lett, 1994,13(9):621-622.
    [35]Kim I S, Kumta P N. Hydrazide sol-gel synthesis of nanostructured titanium nitride: precursor chemistry and phase evolution[J]. J Mater Chem,2003,13(8):2028-2035.
    [36]Kim I S, Kumta P N. Hydrazide sol-gel process:A novel approach, for synthesizing nanostructured titanium nitride[J]. Materials Science and Engineering B-Solid State Materials for Advanced Technology,2003,98(2):123-134.
    [37]Hirosaki N. Xie R J, Kimoto K, et al. Characterization and properties of green-emitting beta-SiAlON:Eu2+ powder phosphors for white light-emitting diodes[J]. Appl Phys Lett, 2005,86(21):211905.
    [38]Chiu Y-C, Huang C-H, Lee T-J, et al. Eu(2+)-activated silicon-oxynitride Ca(3)Si(2)O(4)N(2): a green-emitting phosphor for white LEDs[J]. Opt Express,2011,19(10):A331-A339.
    [39]Fukuda V, Okada A, Albessard A K. Luminescence properties of Eu 2+-doped red-emitting Sr-containing SiAlON phosphor[J]. Applied Physics Express,2012,5(6):062102 (3 pp.)-062102 (3 pp.).
    [40]Yang J J, Song Z, Bian L, et al. An investigation of crystal chemistry and luminescence properties of Eu-doped pure-nitride alpha-sialon fabricated by the alloy-nitridation method[J]. J Lumin,2012,132(9):2390-2397.
    [41]Cai C, Xie W, Hao L, et al. Synthesis and photoluminescence properties of Eu2+-doped Ca2AlSi3O2N5 green phosphors[J]. Materials Science and Engineering B-Advanced Functional Solid-State Materials,2012,177(8):635-638.
    [42]Sakuma K, Hirosaki N, Xie R J. Red-shift of emission wavelength caused by reabsorption mechanism of europium activated Ca-alpha-SiAlON ceramic phosphors[J]. J Lumin,2007, 126(2):843-852.
    [43]Xie R J, Hirosaki N, Sakuma K, et al. Eu2+-doped Ca-alpha-SiAlON:A yellow phosphor for white light-emitting diodes[J]. Appl Phys Lett,2004,84(26):5404-5406.
    [44]Yin L-J, Xu X, Yu W, et al. Synthesis of Eu2+-Doped A1N Phosphors by Carbothermal Reduction[J]. J Am Ceram Soc,2010,93(6):1702-1707.
    [45]Lorenz K, Magalhaes S, Alves E, et al. High temperature annealing of Europium implanted A1N[J]. Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms,2010,268(19):2907-2910.
    [1]Radkov E, Bompiedi R, Srivastava A M, et al.:White light with UV LEDs, Ferguson I T, Narendran N, Denbaars S P, Carrano J C, editor, Third International Conference on Solid State Lighting,2004:171-177.
    [2]Feldmann C, Justel T, Ronda C R, et al. Inorganic luminescent materials:100 years of research and application[J]. Adv Funct Mater,2003,13(7):511-516.
    [3]Hoeppe H A. Recent Developments in the Field of Inorganic Phosphors[J]. Angewandte Chemie-International Edition,2009,48(20):3572-3582.
    [4]Zeuner M, Pagano S, Schnick W. Nitridosilicates and Oxonitridosilicates:From Ceramic Materials to Structural and Functional Diversity [J]. Angewandte Chemie-International Edition,2011,50(34):7754-7775.
    [5]Schlotter P, Schmidt R, Schneider J. Luminescence conversion of blue light emitting diodes[J]. Applied Physics a-Materials Science & Processing,1997,64(4):417-418.
    [6]Xie R J, Hintzen H T. Optical Properties of (Oxy)Nitride Materials:A Review[J]. J Am Ceram Soc,2013,96(3):665-687.
    [7]Xie R-J, Hirosaki N, Li Y, et al. Rare-Earth Activated Nitride Phosphors:Synthesis, Luminescence and Applications[J]. Materials,2010,3(6):3777-3793.
    [8]Xie R-J, Hirosaki N. Silicon-based oxynitride and nitride phosphors for white LEDs-A review[J]. Sci Technol Adv Mater,2007,8(7-8):588-600.
    [9]Yu M, Lin J, Fang J. Silica spheres coated with YVO4:Eu3+ layers via sol-gel process:A simple method to obtain spherical core-shell phosphors[J]. Chem Mater,2005,17(7): 1783-1791.
    [10]Nagabhushana H, Sunitha D V, Sharma S C, et al. Enhanced luminescence by monovalent alkali metal ions in Sr2SiO4:Eu3+ nanophosphor prepared by low temperature solution combustion method[J]. J Alloys Compd,2014,595:192-199.
    [11]Bin G, Jing Y, Zhi-Yong M, et al. Synthesis and photoluminescence of blue LED excitable La 4Ti 9O 24:Eu 3+ phosphor for red-light emission[J]. Mater Res Bull,2014,51:185-8.
    [12]Gao G, Wondraczek L. Spectral asymmetry and deep red photoluminescence in Eu3+-activated Na3YSi3O9 glass ceramics[J]. Optical Materials Express,2014,4(3): 476-485.
    [13]Jia P Y, Liu X M, Yu M, et al. Luminescence properties of sol-gel derived spherical SiO2@Gd-2(WO4)(3):Eu3+particles with core-shell structure[J]. Chem Phys Lett,2006, 424(4-6):358-363.
    [14]Liu Y, Jiang Y-Y, Liu G-X, et al. Preparation and Luminescence Properties of NaY(WO4)(2):Eu3+/Tb3+/Tm3+ White Light Phosphors[J]. Chinese Journal of Inorganic Chemistry,2013,29(2):277-282.
    [15]He X, Guan M, Zhang C, et al. Multiwavelength excited novel red-emitting phosphor Eu3+-activated Li2Zn2(MoO4)(3)[J]. J Alloys Compd,2011,509(38):L341-L343.
    [16]Huang D, Zhou Y, Xu W, et al. Photoluminescence properties of M3+(M3+=Bi3+, Sm3+) activated Na5Eu(WO4)(4) red-emitting phosphors for white LEDs[J]. J Alloys Compd,2013, 554:312-318.
    [17]Balaji D, Durairajan A, Rasu K K, et al. Sol-gel synthesis and luminescent properties of Eu3+:CsGd(WO4)(2) red emitting phosphors[J]. J Lumin,2014,146:458-463.
    [18]Grobelna B, Szabelski M, Kledzik K, et al. Luminescent properties of Sm(III) ions in Ln(2)(WO4)(3) entrapped in silica xerogel[J]. J Non-Cryst Solids,2007,353(30-31): 2861-2866.
    [19]Wang Z, Zhong J, Liang H, et al. Luminescence properties of lutetium based red-emitting phosphor NaLu(WO4)(2):Eu3+[J]. Optical Materials Express,2013,3(3):418-425.
    [20]Wang M, Zhang H, Li L, et al. Charge transfer bands of Mo-O and photoluminescence properties of micro-material Y2MoO6:Eu3+red phosphor[J]. J Alloys Compd,2014,585: 138-145.
    [21]Yang Y-L, Li X-M, Feng W-L, et al. Co-precipitation synthesis and photoluminescence properties of (Cal-x-y,Ln(y))MoO4:xEu(3+) (Ln= Y, Gd) red phosphors[J]. J Alloys Compd, 2010,505(1):239-242.
    [22]Thangaraju D, Durairajan A, Balaji D, et al. Novel KGdl-(x plus y)EuxBiy (Wl-zMozO4)(2) nanocrystalline red phosphors for tricolor white LEDs[J]. J Lumin,2013,134:244-250.
    [23]Xu B, Liu J, Song C, et al. Synthesis and Tunable Luminescent Properties of Red Phosphor Li1-mAgmLa0.99-nYnPr0.01(MoO4)2 with Blue Excitation for White LEDs[J]. J Am Ceram Soc,2012,95(1):250-256.
    [24]Naidu S A, Boudin S, Varadaraju U V, et al. Eu3+ and Tb3+ Emission in Molybdenophosphate Na2Y(MoO4)(P04)[J]. J Electrochem Soc,2012,159(4):J122-J126.
    [25]Wu Q, Li H, Xia W, et al. Investigation of the Structure and Photoluminescence Properties of Ln(3+)(Eu3+, Dy3+, Sm3+) Ion-Doped NaY(MoO4)(2)[J]. J Electrochem Soc,2011, 158(12):J387-J393.
    [26]Wang X-X, Xian Y-L, Shi J-X, et al. The potential red emitting Gd2-yEuy (WO4)(3-x)(MoO4)(x) phosphors for UVInGaN-based light-emitting diode[J]. Materials Science and Engineering B-Solid State Materials for Advanced Technology,2007,140(1-2): 69-72.
    [27]Sun J, Lan Y, Xia Z, et al. Sol-gel synthesis and green upconversion luminescence in BaGd2(MoO4)(4):Yb3+,Er3+ phosphors[J]. Opt Mater,2011,33(3):576-581.
    [28]Qiu Z, Rong C, Zhou W, et al. A Strategy for Synthesizing CaZnOS:Eu2+ Phosphor and Comparison of Optical Properties with CaS:Eu2+[J]. J Alloys Compd,2014,583:335-339.
    [29]Hu Y S, Zhuang W D, Ye H Q, et al. Preparation and luminescent properties of (Cal-xSr,)S: Eu2+red-emitting phosphor for white LED[J]. J Lumin,2005,111(3):139-145.
    [30]Kojima Y, Aoyagi K, Yasue T. Afterglow mechanism and thermoluminescence of red-emitting CaS:Eu2+,Pr3+ phosphor with incorporated Li+ ion upon visible light irradiation[J]. J Lumin,2007,126(2):319-322.
    [31]Kojima Y, Takahashi A, Umegaki T. Synthesis of orange-red-emitting Eu2+, Pr3+ codoped SrS long afterglow phosphor[J]. J Lumin,2014,146:42-45.
    [32]Jia D, Wang X-J. Alkali earth sulfide phosphors doped with Eu2+ and Ce3+ for LEDs[J]. Opt Mater,2007,30(3):375-379.
    [33]Wang X, Li J-G, Zhu Q, et al. Facile and green synthesis of (La0.95Eu0.05)(2)O2S red phosphors with sulfate-ion pillared layered hydroxides as a new type of precursor:controlled hydrothermal processing, phase evolution and photoluminescence[J]. Sci Technol Adv Mater, 2014,15(1).
    [34]Xu X, Tang J Y, Nishimura T, et al. Synthesis of Ca-alpha-SiAlON phosphors by a mechanochemical activation route[J]. Acta Mater,2011,59(4):1570-1576.
    [35]Fukuda V, Okada A, Albessard A K. Luminescence properties of Eu 2+-doped red-emitting Sr-containing SiAlON phosphor[J]. Applied Physics Express,2012,5(6):062102 (3 pp.)-062102(3pp.).
    [36]Suehiro T, Hirosaki N, Xie R J, et al. Powder synthesis of Ca-alpha'-SiAlON as a host material for phosphors[J]. Chem Mater,2005,17(2):308-314.
    [37]Wang X-M, Wang C-H, Kuang X-J, et al. Promising Oxonitridosilicate Phosphor Host Sr3Si2O4N2:Synthesis, Structure, and Luminescence Properties Activated by Eu2+ and Ce3+/Li+ for pc-LEDs[J]. Inorg Chem,2012,51(6):3540-3547.
    [38]Shioi K, Hirosaki N, Xie R-J, et al. Photoluminescence and thermal stability of yellow-emitting Sr-alpha-SiAlON:Eu2+phosphor[J]. Journal of Materials Science,2010, 45(12):3198-3203.
    [39]Gal Z A, Mallinson P M, Orchard H J, et al. Synthesis and structure of alkaline earth silicon nitrides:BaSiN2, SrSiN2, and CaSiN2[J]. Inorg Chem,2004,43(13):3998-4006.
    [40]Li Y Q, Van Steen J E J, Van Krevel J W H, et al. Luminescence properties of red-emitting M2Si5N8:Eu2+ (M=Ca, Sr, Ba) LED conversion phosphors[J]. J Alloys Compd,2006, 417(1-2):273-279.
    [41]Xie R J, Hirosaki N, Suehiro T, et al. A simple, efficient synthetic route to Sr2Si5N8: Eu2+-based red phosphors for white light-emitting diodes[J]. Chem Mater,2006,18(23): 5578-5583.
    [42]Li J W, Watanabe T, Wada H, et al. Low-temperature crystallization of Eu-doped red-emitting CaAlSiN3 from alloy-derived ammonometallates[J]. Chem Mater,2007,19(15):3592-3594.
    [43]Shioi K, Hirosaki N, Xie R-J, et al. Luminescence properties of SrSi6N8:EU2+[J]. Journal of Materials Science,2008,43(16):5659-5661.
    [44]Zeuner M, Hintze F, Schnick W. Low Temperature Precursor Route for Highly Efficient Spherically Shaped LED-Phosphors M2Si5N8:Eu2+(M=Eu, Sr, Ba)[J]. Chem Mater,2009, 21(2):336-342.
    [45]Li H L, Xie R J, Hirosaki N, et al. Synthesis and Luminescence Properties of Orange-Red-Emitting M2Si5N8:Eu2+(M=Ca, Sr, Ba) Light-Emitting Diode Conversion Phosphors by a Simple Nitridation of MSi2[J]. Int J Appl Ceram Technol,2009,6(4): 459-464.
    [46]Yang J, Wang T, Chen D, et al. An investigation of Eu2+-doped CaAlSiN3 fabricated by an alloy-nitridation method[J]. Materials Science and Engineering:B,2012,177(18): 1596-1604.
    [47]Piao X, Machida K-I, Horikawa T, et al. Preparation of CaAlSiN3:Eu2+ phosphors by the self-propagating high-temperature synthesis and their luminescent properties[J]. Chem Mater, 2007,19(18):4592-4599.
    [48]Uheda K, Hirosaki N, Yamamoto Y, et al. Luminescence properties of a red phosphor, CaAlSiN3:Eu2+, for white light-emitting diodes[J]. Electrochemical and Solid State Letters, 2006,9(4):H22-H25.
    [49]Uheda K, Hirosaki N, Yamamoto H. Host lattice materials in the system Ca3N2-A1N-Si3N4for white light emitting diode[J]. physica status solidi (a),2006,203(11): 2712-2717.
    [50]Li J W, Watanabe T, Sakamoto N, et al. Synthesis of a multinary nitride, Eu-doped CaAlSiN3, from alloy at low temperatures [J]. Chem Mater,2008,20(6):2095-2105.
    [51]Zhang Z, Ten Kate O M, Delsing A C A, et al. Photoluminescence properties of Yb2+in CaAlSiN3 as a novel red-emitting phosphor for white LEDs[J]. J Mater Chem,2012,22(45): 23871.
    [52]Li J, Watanabe T, Wada H, et al. Synthesis of Eu-Doped CaAlSiN3from Ammonometallates: Effects of Sodium Content and Pressure[J]. J Am Ceram Soc,2009,92(2):344-349.
    [53]Lei B, Machida K-Ⅰ, Horikawa T, et al. Synthesis and Photoluminescence Properties of CaAlSiN3:Eu2+Nanocrystals[J]. Chem Lett,2010,39(2):104-105.
    [54]Kim H S, Horikawa T, Hanzawa H, et al. Luminescence properties of CaAlSiN3:Eu2+mixed nitrides prepared by carbothermal process[J]. J Phys:Conf Ser,2012,379:012016.
    [55]Kubus M, Meyer H J. A Low-Temperature Synthesis Route for CaAlSiN3Doped with Eu2+[J]. Z Anorg Allg Chem,2013,639(5):669-671.
    [56]Knapp M, Ruschewitz U. Structural Phase Transitions in CaC2[J]. Chemistry-A European Journal,2001,7(4):874-880.
    [57]Hahne B, Gordziel W, Meerbote E. Some results of microscopic and X-ray investigations of calcium carbide[J]. Cryst Res Technol,1990,25(3):313-324.
    [58]El-Naas M H, Munz R J, Ajersch F. Solid-Phase Synthesis of Calcium Carbide in a Plasma Reactor[J]. Plasma Chem Plasma Process,1998,18(3):409-427.
    [59]Yin L-J, Xu X, Yu W, et al. Synthesis of Eu2+-Doped A1N Phosphors by Carbothermal Reduction[J]. J Am Ceram Soc,2010,93(6):1702-1707.
    [60]Weil K S, Kumta P N. Synthesis of ternary transition metal nitrides using chemically complexed precursors [J]. Materials Science and Engineering B-Solid State Materials for Advanced Technology,1996,38(1-2):109-117.
    [61]Suehiro T, Xie R-J, Hirosaki N. Facile Synthesis of (Sr,Ca)2Si5N8:Eu2+-Based Red-Emitting Phosphor for Solid-State Lighting[J]. Industrial & Engineering Chemistry Research,2013, 52(22):7453-7456.
    [62]Sakuma K, Hirosaki N, Xie R J. Red-shift of emission wavelength caused by reabsorption mechanism of europium activated Ca-alpha-SiAlON ceramic phosphors[J]. J Lumin,2007, 126(2):843-852.
    [63]Tang J-Y, Xie W-J, Huang K, et al. A High Stable Blue BaSi(3)Al(3)O(4)N(5):Eu(2+) Phosphor for White LEDs and Display Applications[J]. Electrochemical and Solid State Letters,2011,14(8):J45-J47.
    [64]Blasse G. ENERGY TRANSFER IN OXIDIC PHOSPHORS[J]. Philips Research Reports, 1969,24(2):131-&.
    [65]Reisfeld R, Lieblichsoffer N. ENERGY-TRANSFER FROM UO22+ TO SM-3(+) IN PHOSPHATE-GLASS[J]. J Solid State Chem,1979,28(3):391-395.
    [66]Yamanaka M, Fujita Y, Mclean A, et al. A thermodynamic study of CaCN2[J]. High Temp Mater Processes (London),2000,19(3-4):275-279.
    [67]Reckeweg O, Disalvo F J. Calcium carbodiimide compounds revisited-Syntheses, single crystal structure determination and vibrational spectra of CallN6 CN2 (2), Ca4N2 CN2 and Ca CN2[J]. Zeitschrift Fur Naturforschung Section B-a Journal of Chemical Sciences,2008, 63(5):530-536.