基于多波动鳍推进的仿生水下机器人设计、建模与控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鱼类波动鳍推进模式具有流体扰动小、可产生矢量推力并且易于向水下机器人移植等显著优点,为未来水下机器人的仿生设计提供了新的选择,具有广阔的应用前景和理论研究价值。本文以波动鳍推进模式为研究对象,提出将模仿鱼类波动鳍结构、运动特征及推进功能的仿生波动鳍作为基本推进单元设计水下机器人推进控制系统的基本思想。论文主要围绕“基于多波动鳍推进的仿生水下机器人”仿生设计、多鳍推进控制系统动力学建模、多鳍协同波动推进控制技术三方面展开研究,主要研究内容及创新点如下:
     1.提出了“基于多波动鳍推进的仿生水下机器人”设计方案。论文在国内率先研究波动鳍仿生推进方式并将其应用于水下机器人的推进控制系统设计。基于四鳍正交平行配置结构的多波动鳍推进控制系统设计方案在原理上能够通过四条仿生鳍的波动主动产生沿载体轴向的推进力和用于姿态控制的偏航力矩与俯仰力矩,并且推进力与操控力矩的大小与方向可以通过改变仿生鳍波动参数及多鳍之间波动运动的协同关系进行控制。这种不依赖于任何舵翼装置主动产生推进力与操控力矩的能力不仅能够用于水下航行器的推进与姿态控制,而且有利于增强载体的低速稳定性和快速机动能力。基于波动鳍推进模式的多鳍推进控制系统设计方案为水下机器人的仿生设计提供了一个新的思路和选择。
     2.根据波动鳍的仿生学研究结果,并基于流体力学中的阻力模型,建立了波动鳍运动学模型与动力学模型。波动鳍运动学模型综合考虑了鳍面基线形态与运动特征、鳍面静态形状、鳍条运动规律、鳍面纵向与侧向位移等因素,能够用统一的数学形式描述波动鳍的形态特征与运动特征,具有较强的适应性。波动鳍动力学模型能够揭示波动鳍波动产生的六分量流体动力/力矩与鳍面波动参数、几何参数以及随载体运动速度之间的基本关系,并用于建立多波动鳍推进控制系统动力学模型以及分析其推进速度、能耗与推进效率。波动鳍动力学模型的正确性在基于多波动鳍推进的仿生水下机器人试验系统的推力、力矩以及推进速度测试试验中得到了验证。3.针对“基于多波动鳍推进的仿生水下机器人”推进系统与控制系统一体化设计
     的技术特点,提出了波动鳍推进模式用于水下机器人推进与姿态控制的多鳍协同波动推进控制方法。多鳍协同波动推进控制方法将水下机器人控制系统划分为多鳍协同波动控制与水下机器人运动/姿态控制两个层级。在多鳍协同波动控制层级,分别针对载体低速与稳速条件下的操控要求提出不同的多鳍协同控制算法,以产生期望的推力与操控力矩,并消除或抑制波动鳍产生的周期性力矩分量的不利影响。根据运动与姿态控制目标的不同,将仿生水下机器人控制系统的运动与姿态控制层级设计为双环控制系统。由于多波动鳍推进控制系统只能主动产生推进力、偏航力矩与俯仰力矩,因此将航速、航向与俯仰控制作为基本控制通道处于控制内环,其控制器采用模糊自适应PID控制策略进行非耦合分离设计;控制任务分解模块作为控制外环,其任务是将非基本控制通道的控制目标转化或分解为航速、偏航角与俯仰角控制目标,控制量的转化策略采用专家PID控制策略。在此基础上,根据多波动鳍推进控制系统动力学模型,提出相应的航速通道前馈补偿算法以及横滚姿态修正算法。通过在仿生水下机器人仿真系统上进行航速、航向、俯仰以及定深控制系统的阶跃响应、抗干扰性能和跟踪性能仿真,初步验证了多鳍协同波动推进控制方法用于水下机器人推进与姿态控制的有效性。
The propulsion mode of fish’s undulatory fin has advantages on less swimming disturbance, generations of vector thrust and convenience of being transplanted to underwater vehicles. Generally speaking, such a bio-propulsion mode provides a novel scheme for future aquatic robots, so it possesses values of theoretical research and prospective for wide applications. This thesis presents the fish-inspired robot which is propelled by cooperative undulation of the multi-fin bio-propulsor, including bionic design scheme, dynamic modeling of the undulatory multi-fin propulsion system and the cooperative control mechanism of the multi-fin propulsor. And we may draw the following innovative points.
     1. The thesis proposes the design scheme for a novel bionic underwater vehicle which is propelled by undulatory multiple fish-like fin. In terms of existing reports and published literature, it is the first time to imitate propulsion mechanism of undulatory fins and apply that into the design and implementation of propulsion and control system for the novel underwater vehicle. This propulsion and control scheme with four orthogonal-parallel-deployed undulatory fins has been verified to generate thrust as well as yawing and pitching moments via active multi-fin undulations. In addition, the thrust and moments can be controlled by coordinating undulatory parameters of each fin or varying cooperative undulations among the four fins. This bionic multi-fin propulsor can actively generate thrust and operational moments without any rudders, so it may not only be applicable in propulsion and gesture control, but also it is good at enhancing maneuverability at low speed and high-speed agility. The propulsion and control system design scheme based on the undulatory multi-fin propulsor provides an innovative idea and another choice for the bionic design of underwater vehicles.
     2. The kinematic and dynamic models are established on the basis of bionic inspirations in Balistiform fish’s undulatory fins and the drag model in fluid mechanics. The kinematic model can describe morphological and kinematic characteristics of the undulatory fins under a uniform expression, and is more feasible with comprehensive considerations in morphology in company with locomotion of the fin base line, the natural shape, the fin ray oscillation, and the lateral as well as vertical displacements. Additionally, the dynamic model of bionic undulatory fin can uncover the relation between the forces/moments and propulsive wave parameters, geometric parameters as well as swimming velocity. And it has been used to construct the dynamic model of the propulsion and control system and to analyze its motion velocity, energy consumption and propulsion efficiency. To be more important, this undulatory fin dynamic model has been validated by experimental tests in thrust, moments and propulsive velocity of the underwater vehicle.
     3. In terms of the incorporation between propulsion and control in the bionic underwater vehicle, we present the multi-fin cooperative control mechanism for applying the undulatory fin mode into propulsion and gesture control. To be concrete, this method classifies the robotic control system into two levels: multi-fin cooperative control and motion/gesture control. On the level of multi-fin cooperation control, we propose and design the corresponding control algorithms to generate appropriate thrust in company with moments and to eliminate or decrease disadvantageous influences of the periodic moments, so as to satisfy manipulation requirements at low speed or others. The motion/gesture control system adopts the dual loop architecture to cope with various objectives in motion and gesture control. We select velocity, yawing and pitching as the three basic control channels in view of the fact that the multi-fin propulsor may only actively generate thrust, yawing moment and pitching moment. All the three basic control channels in the inner loop utilize fuzzy adaptive PID controller for non-coupling departure. The mission decomposition module in the outer loop answers for converting or decomposing the non-basic objectives into the basic objectives in velocity, yawing angle and pitching angle according to expert PID strategies. In succession, we propose corresponding forward-feedback compensatory algorithms and rolling correcting algorithms based on the dynamic model of the multi-fin propulsor. It is validated that the cooperative undulatory multi-fin propulsion and control approach is applicable into the motion/gesture control of underwater vehicles through abundant simulation in step responses, anti-disturbance and tracking performance of velocity, yawing, pitching and depth-keeping control systems.
引文
[1] Yuh J. Design and control of autonomous underwater robots: A survey[J]. Autonomous Robots. 2000,8:7-24.
    [2] Webb PW. Maneuverability—General Issues[J]. IEEE Journal of Oceanic Engineering. 2004,29(3):547-555.
    [3] 任福君. 水下机器人的发展现状[J]. 佳木斯大学学报(自然科学版). 2000,18(4).
    [4] 彭学伦. 水下机器人的研究现状与发展趋势[J]. 机器人技术与应用. 2004,4:43-47.
    [5] 封锡盛, 刘永宽. 自治水下机器人研究开发的现状和趋势[J]. 高技术通讯. 1999,9:55-59.
    [6] Williams SB, Newman PM, Rosenblatt J, Dissanayake G, Durrant-Whyte HF. Autonomous Underwater Navigation and Control [J]. Robotica. 2001,19(5):481-496.
    [7] 蒋新松, 封锡盛, 王棣棠. 水下机器人[M]. 沈阳: 辽宁科技出版社, 2000.
    [8] Blidberg DR. Autonomous underwater vehicles:A tool for the ocean[J]. Unmanned Systems. 1991,9(2):10-15.
    [9] Bandyopadhyay R. Trends in Biorobotic Autonomous Undersea Vehicles Promode[J]. IEEE Journal of Oceanic Engineering. 2005,30(1):109-139.
    [10] Colgate JE, Lynch KM. Mechanics and Control of Swimming: A Review [J]. IEEE Journal of Oceanic Engineering. 2004,29(3):660-673.
    [11] Sfakiotakis M, Lane DM, Davies JBC. Review of Fish Swimming Modes for Aquatic Locomotion[J]. IEEE Journal of Oceanic Engineering. 1999,24(2):237-252.
    [12] 吉爱红, 戴振东, 周来水. 仿生.机器人的研究进展[J]. 机器人 ROBOT. 2005,27(3).
    [13] 郭策, 戴振东, 孙久荣. 生物机器人的研究现状及其未来发展[J]. 机器人 ROBOT. 2005,27(2).
    [14] 许宏岩, 付宜利, 王树国, 刘建国. 仿生机器人的研究[J]. 机器人ROBOT. 2004,26(3).
    [15] 童秉纲, 陆夕云. 关于飞行和游动的生物力学研究[J]. Advances in Mechanics(力学进展). 2004,34(1):1-8.
    [16] 喻俊志, 陈尔奎, 王硕, 谭民. 仿生机器鱼研究的进展与分析[J]. 控制理论与应用. 2003,20(4):485-491.
    [17] 梁建宏, 王田苗, 魏宏兴. 仿生机器鱼技术研究进展及关键问题探讨[J]. 机器人技术与应用. 2003,3.
    [18] 张秀丽, 郑浩峻, 陈恳, 段广洪. 机器人仿生学研究综述[J]. 机器人ROBOT. 2002,24(2):188-192.
    [19] Webb PW. The biology of fish swimming. In Mechanics and Physiology of Animal Swimming (ed. L. Maddock, Q. Bone and J. M. V. Rayner)[M]. Cambridge: Cambridge University Press, 1994.
    [20] Videler JJ. Fish Swimming[M]. Chapman & Hall. 1993.
    [21] Webb PW. Form and Function in Fish Swimming[J]. Sci Amer. 1984,251(1):58-68.
    [22] Blake RW. Fish locomotion[M]. Cambridge: Cambridge University Press, 1983.
    [23] 沈林成, 王光明. 仿鱼长鳍波动推进器研究的进展与分析[J]. 国防科技大学学报. 2005,27(4):96-100.
    [24] Epstein M, Colgate JE, MacIver MA. A biologically inspired robotic ribbon fin[C].IEEE/RSJ International Conference on Intelligent Robots and Systems, workshop on Morphology, Control, and Passive Dynamics. Edmonton Alberta Canada, 2005.
    [25] Yates G. Fish propulsion mechanics[M]. New York: Praeger Publishers, 1983.
    [26] Lighthill MJ. Aquatic Animal Propulsion of High Hydromechanical Efficiency[J]. J Fluid Mech. 1970,44:265-301.
    [27] Lighthill MJ. Hydromechanics of aquatic animal propulsion[J]. Ann Rev Fluid Mech. 1969,1:413-446.
    [28] Fish FE. Performance constraints on the maneuverability of flexible and rigid biological systems[C]. Eleventh International Symposium on Unmanned Untethered Submersible Technology. Durham, NH: Autonomous Undersea Systems Institute., 1999, pp 394-406.
    [29] Schrank AJ, Webb PW. Do body and fin form affect the abilities of fish to stabilize swimming during maneuvers through vertical and horizontal tubes? [J]. Env Biol Fish 1998,53:365-371.
    [30] Blake RW. Fish functional design and swimming performance[J]. Journal of Fish Biology. 2004,65(5):1193-1222.
    [31] Wang G, Shen L, Hu T. Kinematic Modeling and Dynamic Analysis of the Long-based Undulation Fin[C]. The 9th International Conference on Control, Automation, Robotics and Vision(ICARCV06). Singapore, IEEE Xplore, 2006, pp 639-643.
    [32] Wang G, Shen L, Hu T. Kinematic Modeling and Dynamic Analysis of the Long-based Undulation Fin of Gymnarchus Niloticus[C]. The 9th International Conference on the Simulation of Adaptive Behavior (SAB'06). Roma, Italy, 2006.
    [33] 王硕, 谭民. 机器鱼[M]. 北京: 北京邮电大学出版社, 2006.
    [34] Fish FE, Lauder GV, Mittal R, Techet AH, Triantafyllou MS, Walker JA,Webb. PW. Conceptual Design for the Construction of a Biorobotic AUV Based on Biological Hydrodynamics[J]. Proceedings of 13th International Symposium on Unmanned Submersible Technology, New Hampshire, . 2003.
    [35] 王光明, 胡天江, 李非, 沈林成. 长背鳍波动推进游动研究[J]. 机械工程学报. 2006,42(3):88-92.
    [36] MacIver MA, Fontaine E, Burdick JW. Designing Future Underwater Vehicles: Principles and Mechanisms of the Weakly Electric Fish[J]. Journal of Oceanic Engineering. 2004,39(3):651-659.
    [37] Toda Y, Fukui K, Uto S, Tanaka N. Fundamental Study on Swimming of a Fish-Like Body With Two Undulating Side Fins[C]. Second International Symposium on Aqua Bio-Mechanism (CD-ROM). Japan, 2003.
    [38] 高峰 . 机构学研究现状与发展趋势的思考 [J]. 机械工程学报 . 2005,41(8):3-17.
    [39] 童秉纲, 庄礼贤, 程健宇. 鱼类波状摆动推进的流体力学研究[J]. 力学与实践. 1991,13(3):17-26
    [40] 童秉纲, 庄礼贤. 描述鱼类波状游动的流体力学模型及其应用[J]. 自然杂志. 1998,20(1):1-7.
    [41] 童秉纲. 鱼类波状游动的推进机制[J]. 力学与实践. 2000,22(3):69-74.
    [42] 刘军考. 仿鱼水下推进器理论与实验研究, 哈尔滨工业大学, 2001.
    [43] 刘军考, 陈维山, 陈在礼. 仿生机器鱼的运动学参数及试验研究[J]. 中国机械工程. 2002,13(16):1354-1357.
    [44] 刘军考, 陈在礼, 陈维山, 王力刚. 水下机器人新型仿鱼鳍推进器[J]. 机器人. 2000,22(5):427-432.
    [45] 成巍, 苏玉民, 秦再白, 万磊, 徐玉如. 一种仿生水下机器人的研究进展[J]. 船舶工程. 2004,26(1):5-8.
    [46] 童 秉 纲 . 游 动 和 飞 行 的 仿 生 力 学 问 题 [J]. 科 学 中 国 人 . 2004,2004(4):39-40.
    [47] 王振东. 漫话动物运动对仿生力学的启示[J]. 力学与实践. 2005,27(2).
    [48] Arreola VI, Westneat MW. Mechanics of propulsion by multiple fins: Kinematics of aquatic locomotion in the burrfish (Chilomycterus schoepfi)[C]. in Proc R Soc Lond B. 1996,263:1689-1696.
    [49] Daniel TL. Forward Flapping Flight From Flexible Fins[J]. Canadian Journal of Zoology. 1988,66:630-638.
    [50] Blake RW. Undulatory Median Fin Propulsion of Two Teleosts with Different Modes of Life[J]. Can J Zool. 1980,58:2116-2119.
    [51] 王光明, 沈林成. 柔性长鳍波动推进机理分析[C]. 第 24 届中国控制会议. 2005, vol 2, pp 1563-1566.
    [52] Long JH, Nipper KS. The importance of body stiffness in undulatory propulsion[J]. Am Zool. 1996,36:678-694.
    [53] Wu TY. Mathematical bio-uiddynamics and mechanophysiology of fish locomotion[J]. Math Meth Appl Sci. 2001,24:1541-1564.
    [54] Wu TY. Hydromechanics of swimming propulsion. Part 1: Swimming of a two-dimensional flexible plate at variable forward speeds in an inviscid fluid.[J]. J Fluid Mech. 1971,46(2):337-355.
    [55] Wu TY. Hydromechanics of swimming propulsion. Part 2: Some optimum shape problems.[J]. J Fluid Mech. 1971,46(3):521-544.
    [56] Wu TY. Hydromechanics of swimming propulsion. Part 3: swimming and optimum movements of slender fish with side fins.[J]. J Fluid Mech. 1971,46(3):545-568.
    [57] Wu TY. Swimming of a Waving Plate[J]. J Fluid Mech. 1961,10:321-344.
    [58] Lighthill MJ. Waves in fluids[M]. Cambridge, UK ; New York: Cambridge University Press, 2001.
    [59] Lighthill MJ. An informal introduction to theoretical fluid mechanics[M]. Oxford, New York: Clarendon Press and Oxford University Press, 1986.
    [60] Lighthill MJ. Mathematical biofluiddynamics[M]. Philadelphia: Society for Industrial and Applied Mathematics, 1975.
    [61] Lighthill MJ. Large-amplitude elongated-body theory of fish locomotion[J]. Proc R Soc Long B. 1971,179:125-138.
    [62] Lighthill MJ. Waves in liquids and gases[M]. Leeds: Leeds U.P., 1966.
    [63] Lighthill MJ. Higher approximations in aerodynamic theory[M]. Princeton, N.J.: Princeton University Press, 1960.
    [64] Lighthill MJ. Note on the swimming of slender fish[J]. J Fluid Mech. 1960,9:305-317.
    [65] Lighthill J, Blake R. Biofluiddynamics of balistiform and gymnotiform locomotion. Part 1. Biological background, and analysis by elongated-body theory[J]. Journal of Fluid Mechanics. 1990,212:183-207.
    [66] Lighthill J. Biofluiddynamics of balistiform and gymnotiform locomotion. Part 2. The pressure distribution arising in two-dimensional irrotational flow from a general symmetrical motion of a flexible flat plate normal to itself[J]. Journal of Fluid Mechanics. 1990,213:1-10.
    [67] Lighthill J. Biofluiddynamics of balistiform and gymnotiform locomotion. Part 3. Momentum enhancement in the presence of a body of elliptic cross-section[J]. Journal of Fluid Mechanics. 1990,213:11-20.
    [68] Lighthill J. Biofluiddynamics of balistiform and gymnotiform locomotion.Part 4. Short-wavelength limitations on momentum enhancement[J]. Journal of Fluid Mechanics. 1990,213:21-28.
    [69] Cheng JY, Zhuang LX, Tong BG. Analysis of swimming three-dimensional waving plate[J]. J Fluid Mech 1991,232:341-355.
    [70] Long JH, Adcock JB, Root RG. Force Transmission Via Axial Tendons in Undulating Fish: a Dynamic Analysis [J]. Comp Biochem Physiol. 2002,133A:911-929.
    [71] Mchenry MJ, Pell CA, Long JH. Mechanical Control of Swimming Speed:Stiffness and Axial Wave Form in Undulating Fish Models[J]. J exp Biol. 1995,198:2293-2305.
    [72] Miriam AA. Mechanical Properties of the Dorsal Fin Muscle of Seahorse (Hippocampus) and Pipefish[J]. J Exp Zoo. 2002,293:561-577.
    [73] Mittal R. Computational Modeling in Biohydrodynamics: Trends, Challenges, and Recent Advances[J]. IEEE Journal of Oceanic Engineering. 2004,29(3):595-604.
    [74] Perry YL, Saroj S. Modeling and Estimation of Hydrodynamic Potentials[R]. Research supported by The University of Minnesota Grant-in-aid program. 1999, pp 1-6.
    [75] Triantafyllou MS, Triantafyllou GS, Yue DKP. Hydrodynamics of Fishlike Swimming[J]. Annual Review of Fluid Mechanics. 2000,32:33-53.
    [76] LIU H, Kawachi K. A numerical study of undulatory swimming[J]. Journal of Computational Physics. 1999,vol. 155:223-247.
    [77] Sfakiotakis M, Lane DM, Davies BC. An experimental undulating-fin device using the Parallel Bellows Actuator[C]. IEEE Internatioal Conference on Robotics and Automation. Seoul, Korea, IEEE eXplore, 2001, pp 2356-2362.
    [78] 王光明, 沈林成. 柔性长鳍波动推进动量传递的有效性分析[C]. 第 25届中国控制会议. 2006.
    [79] 谢海斌, 张代兵, 沈林成. 基于柔性长鳍波动推进的仿生水下机器人设计与实现[J]. 机器人. 2006,28(5):525-529.
    [80] 谢海斌, 沈林成, 胡天江. 柔性长鳍仿生装置波动控制技术研究[J]. 国防科技大学学报. 2006,28(3):99-103.
    [81] 谢海斌, 沈林成, 薛宏涛. 仿鱼鳍推进水下机器人流体动力测试系统研究[J]. 测试技术学报. 2006.
    [82] 谢海斌. 柔性长鳍波动推进流体动力测试平台研究[C]. 第 25 届中国控制会议. 哈尔滨, 2006, pp 1905-1909.
    [83] Latombe J-C. Robot Motion Planning: Kluwer Academic Publishers, 1991.
    [84] Kamon I, Rivlin E. Sensory-based motion planning with global proofs[J]. IEEE Transaction on Robotics and Automation. 1997,13(6).
    [85] Chen C, Trivedi M. Tesk Planning and Action Coordination in Integrated Sensor-Based Robots[J]. IEEE Trans System, Man and Cyber. 1995,25(4):569-591.
    [86] Sugihara K, Yuh J. GA-Based Motion Planning For Underwater Robotic Vehicle[C]. Tenth Int Symposium on Unmanned untethered Submersible Technology. 1997, pp 406-416.
    [87] Zhang M, Ura T. Motion Optimization of Autonomous Underwater Vehicles by Genetic Algorithm[J]. Journal of the Society of Naval Architects of Japan. 1997,182:491-497.
    [88] Kanayama, Yutaka, Bruce I, Hartman. Smooth Local Path Planning for Autonomous Vehicles[J]. Autonomous Robot Vehicles, Springer-Verlag. 1990:62-67.
    [89] Cox R, Wei S. Advances in the state of the Art for AUV intertial Sensors and Navigation System[J]. IEEE Journal of Oceanic Engineering. 1995,20(4):361-366.
    [90] Sarkar N, Podder TK, Antonelli G. Fault-Accommodating Thruster Force Allocation of an AUV Considering Thruster Redundancy and Saturation[J]. IEEE Transaction on Robotics and Automation. 2002,18(2):223-233.
    [91] Albus JS. System Description and Design Architeture for Multiple Autonomus Undersea Vehicles[J]. NIST Technical Note 1251. 1998.
    [92] Kuroda Y, Ura, Aramaki K. Vehicle Control Architecture for Operating Multiple Vhicles[C]. Procs, Symp AUV Tech. Cambridge,MA, 1994, pp 323-330.
    [93] Borges J, Lobo F. A Generalized Vehicle Control Architecture for Multiple Autonomous Vehicles[C]. Proceedings of the IEEE AUV'96 Conference. Monterey, CA, USA, 1996, pp 223-230.
    [94] Martin A. Obstacle Detection by a Forward Looking Sonar Intergrated in a Autonomous Underwater Vehicle[D]. Florida Atlantic University, 2000.
    [95] Gill, Zomaya. Obstacle Avoidance in Multi-Robot System[J]. Word Scientific 1998.
    [96] Conte G, Zaoli S. A Sonar Based Obstacle Avoidance System for AUVs[J]. AUV'94. 1994.
    [97] Borenstein J, Koren Y. Real-Time Obstacle Avoidance for Fast Mobile Robots[C]. IEEE Transaction on System, Man,and Cybernetics. 1989, pp 1179-1187.
    [98] Martinez A, Tunstel E, Jamshidi M. Fuzzy Logic Based Collision Avoidance for a Moble Robot[J]. Robotica. 1994,(12):521-527.
    [99] Reignier P. Fuzzy Logic Techniques for Mobile Robot Obstace Avoidance[J]. Robotics and Autonomous System. 1994,12:143-153.
    [100] Fodrea, Lynn. Obstacle Avoidance Control for the REMUS Autonomous Underwater Vehicle[D]. Naval Postgraduate School, 2002.
    [101] Fujii T, Arai Y, Asama H, Endo I. Multilayered Reinforcement Learning for Complicated Collision Avoidance Problem[C]. Proceeding of the 1998 IEEE Int Conference on Robotics & Automation. Leuven,Belgium, 1998, pp 2186-2191.
    [102] 邢志伟. 复杂海洋环境下水下机器人控制问题研究[D]. 中国科学院沈阳自动化研究所, 2003, vol 博士.
    [103] 陆军. 自适应模糊系统与联想记忆神经网络及其在 UOV 中的应用[D]. 哈尔滨工程大学, 2001, vol 博士.
    [104] 成巍. 仿生水下机器人仿真与控制技术研究[D]. 哈尔滨工程大学, 2004, vol 博士.
    [105] Santos A, Robert RB. Nonlinear Control for an Autonomous Underwater Vehicle(AUV) Preserving Linear Design Capabilities[C]. Proceedings of the 34th Conference on Decision & Control New Orieans,LA. 1995, pp 3817-3822.
    [106] Kristi AM, Vincent D, Richard JM, Joel WB, Richard MM. Nonlinear Control Methods for Plannar Carangiform Robot Fish Locomotion[C]. Proceeding of the 2001 IEEE Internaltional Conference on Robotics & Automation. Seoul, Korea, 2001, pp 427-434.
    [107] Fossen TI, Blanke M. Nonlinear output feedback control of underwater vehicle propellers using feedback form estimated axial flow velocity[J]. IEEE Journal of Oceanic Engineering. 2000,25(2):241-255.
    [108] White BA. Robust Control of an Unmanned Underwater Vehicle[C]. Proceedings of the 37th IEEE Conference on Decision & Control. Tampa, Florida USA, 1998, pp 2533-2534.
    [109] Healey AJ, Lienard D. Multivariable Sliding Mode Control for Autonomous Diving and Steering of Unmanned Underwater Vehicles[J]. IEEE Journal of Oceanic Engineering. 1993,18:327-339.
    [110] Cristi R, Fotis AP, Anthony JH. Adaptive sliding mode control of autonomous underwater vehicles in the dive plane[J]. IEEE Journal of Oceanic Engineering. 1990,15(3):152-160.
    [111] Zhao S, Yuh J, Choi SK. Adaptive DOB control for AUVs[C]. Proceeding of the 2004 IEEE International Conference on Robotics & Automation. New Orleans,LA, 2004, pp 4899-4904.
    [112] Li JH, Lee PM, Jun BH. Application of a robust adaptive controller to autonomous diving control of an AUV[C]. The 30th Annual Conference of the IEEE Industrial Electronics Society. Busan,Korea, 2004, pp 419-424.
    [113] Li JH, Lee PM, Lee SJ. Neural net based nonlinear adaptive control for autonomous underwater vehicles[C]. Proceedings of the 2002 IEEE International Conference on Robotics & Automation. Washington,DC, 2002, pp 1075-1080.
    [114] Jagannathan S, Galan G. One-layer neural-network controller with preprocessed inputs for autonomous underwater vehicles[J]. IEEE Transaction on Vehicular Technology 2003,52(5):1342-1355.
    [115] Ishii K, Fujii T, Ura T. An On-line Adaptation Method in a NeuralNetwork Based Control System for AUV's[J]. IEEE Journal of Oceanic Engineering. 1995,20(3):221-228.
    [116] Kim TW, Yuh J. A novel neuro-fuzzy controller for autonomous underwater vehicles[C]. Proceedings of the 2001 IEEE International Conference on Robotics & Automation. Seoul,Korea, 2001, pp 2350-2355.
    [117] DeBitetto PA. Fuzzy logic for depth control of Unmanned Undersea Vehicles[J]. IEEE Journal of Oceanic Engineering. 1995,20(3):242-248.
    [118] Wang JS, Lee CS, Yuh J. Self-adaptive neuro-fuzzy systems with fast parameter learning for autonomous underwater vehicle control[C]. Proceedings of the 2000 IEEE international Conference on Robotics & Automation. San Francisco,CA, 2000, pp 3861-3866.
    [119] 谢海斌, 张代兵, 沈林成. 柔性长鳍波动推进仿生水下机器人控制系统设计与实现[J]. 微计算机信息. 2006.
    [120] 成巍, 李喜斌, 孙俊岭, 袁建平, 徐玉如. 仿生水下机器人运动控制方法研究[J]. 机器人技术与应用. 2004,4:37-42.
    [121] 张志华. 机器鱼尾鳍运动学研究与控制系统设计[C]. 硕士学位论文, 中国海洋大学, 2003.
    [122] Fish FE. Biological designs for enhanced maneuverability: analysis of marine mammal performance[C]. Tenth International Symposium on Unmanned Untethered Submersible Technology. Durham, NH: Autonomous Undersea Systems Institute, 1997, pp 109-117.
    [123] Bandyopadhay PR, Castano JM, Rice JQ, Philips B, Nedderman WH, Macy WK. Low speed maneuvering hydrodynamics of fish and small underwater vehicles.[J]. J Fluids Eng 1997,119:136-144.
    [124] Triantafyllou MS, Barrett DS, Yue DKP, Anderson JM, Grosenbaugh MA. A new paradigm of propulsion and maneuvering for marine vehicles[J]. TransSoc Naval Architects Marine Eng. 1996,104:81–100.
    [125] 李非, 王光明, 胡天江, 沈林成. “尼罗河魔鬼”长背鳍波动实验与研究[C]. 国防科技大学第 4 届研究生学术活动节论文集. 2004.
    [126] 李非. 背鳍/背臀鳍波动推进原理实验研究及仿真[D]. 国防科技大学硕士学位论文. 2005:17-20.
    [127] Li F, Hu T, Wang G, Shen L. Locomotion of Gymnarchus Niloticus: Experiment and Kinematics[J]. Journal of Bionics Engineering. 2005,2(3):115-121.
    [128] Hu T, Li F, Wang G, Shen L. Bionic Inspirations of Fish-like Robots from Rhinecanthus Aculeatus[C]. IEEE International Conference on Mechatronics and Automation (IEEE ICMA06). Luoyang, IEEE Xplore, 2006, pp 639-643.
    [129] Hu T, Li F, Wang G, Shen L. Morpholocial Measurement and Analyses ofGymnarchus Niloticus[J]. Journal of Bionics Engineering. 2005,2(1):25-31.
    [130] Lissmann HW, Machin KE. The mechanism of object location in Gymnarchus niloticus and similar fish.[J]. J Exp Biol. 1958,35(451-486).
    [131] George V, Lauder, Eliot GD. Morphology and Experimental Hydrodynamics of Fish Fin Control Surfaces[J]. IEEE Journal of Oceanic Engineering. 2004,29(3):556-571.
    [132] Hu T, Wang G, Li F, Shen L. A Novel Conceptual Fish-Like Robot Inspired by Rhinecanthus Aculeatus[C]. The 9th International Conference on Control, Automation, Robotics and Vision(ICARCV06). Singapore, IEEE Xplore, 2006, pp 639-643.
    [133] Blake RW. On Balistiform Locomotion[J]. J Marine Biol Assoc. 1978,58:73–80.
    [134] Boileau R, Fan L, Moore T. Mechanization of Rajiform Swimming Motion[D]. Engineering Physics Project Laboratory,University of British Columbia, 2002.
    [135] Blake RW. Medain and paired fin propulsion[M]. New York: Praeger Publishers, 1983.
    [136] A.V.奥本海默. 信号与系统[M]. 西安: 西安交通大学出版社, 1990.
    [137] Barrett DS, Triantafyllou MS, Yue DKP, Grosenbauch MA, Wolfgang MJ. Drag reduction in fish-like locmotion.[J]. J Fluid Mech. 1999,392:183—212.
    [138] Long JH, Nipper KS. The Importance of Body Stiffness in Undulatory Propulsion[J]. Am Zool. 1996,36:678-694.
    [139] 张代兵. 仿鱼推进器研究现状与关键技术[C]. 第 25 届中国控制会议. Harbin, 2006.
    [140] 张代兵, 谢海斌. 新型致动器在仿鱼机器人中的应用[C]. 仪器仪表学会第八届青年学术会议. 2006.
    [141] 宋保维. 鱼雷尾部外形优化设计方法研究[J]. 实例分析与经验交流. 1997,(5):35-37,41.
    [142] 宋保维, 徐德民. 基于最小阻力的回转体尾部外形优化设计[J]. 机械科学与技术. 1997,(6).
    [143] 数学手册[M]. 北京: 高等教育出版社, 2002.
    [144] 施法中. 计算机辅助几何设计与非均匀有理 B 样条(CAGD&NURBS)[M]. 北京: 北京航空航天大学出版社, 1994.
    [145] 孙世贤, 黄圳圭. 理论力学教程[M]. 长沙: 国防科技大学出版社, 1997.
    [146] Sfakiotakis M, Tsakiris DP. SIMUUN: A Simulation Environment for Undulatory Locomotion[J]. FORTH-ICS TR-343. 2004.
    [147] McIsaac KA, Ostrowski JP. A geometric approach to anguilliform locomotion: modeling of an underwater eel robot[C]. IEEE Conference on Robotics and Automation (ICRA). 1999.
    [148] Ekeberg O. A Combined Neuronal and Mechanical Model of Fish Swimming[J]. Biological Cybernetics. 1993,69:363-374.
    [149] Schultz WW, Webb PW. Power requirements of swimming: Do new methods resolve old questions?[J]. Integrative and Comparative Biology. 2002, 42:1018-1025.
    [150] Tu X, Terzopoulos D. Artificial Fishes: Physics, Locomotion,Perception, Behavior[C]. ACM SIGGRAPH '94. Orlando,Florida, 1994.
    [151] Kato N. Pectoral Fin Controllers[J]. Neurotechnology for Biomimetic Robots. 2002,:325-347.
    [152] MacIver MA. The computational neuroethology of weakly electric fish: Body modeling, motion analysis, and sensory signal estimation[D]. Neuroscience. Urbana-Champaign, University of Illinois, 2001, p 187.
    [153] 许维德. 流体力学[M]. 北京: 国防工业出版社, 1989.
    [154] Nahon. M. A Simplified Dynamics Model for Autonomous Underwater Vehicle[J]. IEEE[C]. 1996:373-378.
    [155] Ridley. P, Fontan. J, Corke. P. Submarine Dynamic Modeling www.araa.asn.au/acra/acra2003/papers/10.pdf.
    [156] 高剑, 徐德民, 严卫生. 鱼雷 6 自由度空间运动的矢量化模型与仿真[J]. 计算机仿真. 2005,22(5):16-18.
    [157] 侯巍, 王树新, 张海根. 小型水下自航行器动力学建模与控制[J]. 天津大学学报. 2004,37(9):769-773.
    [158] 李皓, 康凤举, 杨惠珍, 何军红. 水下自主航行器仿真建模验模方法研究[J]. 船舶工程. 2001,3:55-57.
    [159] 李麓. 潜艇水下六自由度运动数学模型[J]. 计算机仿真. 2001,9:33-38.
    [160] 李天森. 鱼雷操纵性[M]. 北京: 国防工业出版社, 1999.
    [161] 潘瑛, 徐德民. 自主式水下航行器空间运动矢量建模与仿真[J]. 系统仿真学报. 2003,15(4):538-540.
    [162] 潘瑛, 徐德民. 基于 MATLAB 的 AUV 近水面运动模型的建立与仿真[J]. 船舶工程. 2003,25(5):15-18.
    [163] 王树桂. 鱼雷空间运动动力学数学模型[M]. 鱼雷力学研究与进展. 北京, 兵器工业出版社, 1993, pp 7-23.
    [164] 徐德民. 鱼雷自动控制系统(第二版)[M]. 西安: 西北工业大学出版社, 2001.
    [165] 严卫生, 徐德民, 李俊. 远程自主水下航行器建模研究[J]. 西北工业大学学报. 2004,22(4):500-503.
    [166] 刘金琨. 先进PID控制及其MATLAB仿真[M]. 北京: 电子工业出版社, 2003.
    [167] 刘明俊, 于明祁. 自动控制原理[M]. 长沙: 国防科技大学出版社, 1995.
    [168] 胡寿松. 自动控制原理(第三版)[M]. 北京: 国防工业出版社, 1994.
    [169] Zhao ZY, Tomizuka M, Isaka S. Fuzzy gain scheduling of PID controllers [J]. IEEE Transactions on Systems,Man and Cybernetics 1993,23(5):1392-1398.
    [170] Visioli A. Fuzzy logic based set-point weight turning of PID controller[J]. IEEE Transactions on Systems,Man and Cybernetics. 1999,29(6):587-592.
    [171] He SZ, S T, Xu FL. Fuzzy self-tuning of PID controllers[J]. Fuzzy Sets and Systems. 1993,2:37-46.
    [172] Tzafestas SG. Fuzzy systems and fuzzy expert control: An overview[J]. Knowledge Engineering Review 1994,3 229-268.
    [173] He SZ, Wang PZ. PID Self-tuning control using a fuzzy adaptive mechanism[J]. IEEE Trans On Systems,Man and Cyber net. 1993,23:708-713.
    [174] 曾梦雄, 李琳. PID 参数模糊自整定控制算法在运动控制中的应用[J]. 伺服控制技术. 2006,4.
    [175] 李卓, 萧德云, 何世忠. 基于 Fuzzy 推理的自调整 PID 控制器[J]. 控制理论与应用 1997,14(2):238-242.
    [176] 王立新. 自适应模糊系统与控制——设计与稳定性分析[M]. 北京: 国防工业出版社, 1995.
    [177] 李国勇. 智能控制及其 MATLAB 实现[M]. 北京: 电子工业出版社, 2005.
    [178] 魏克新, 王云亮, 陈志敏. MATLAB 语言与自动控制系统设计[M]. 北京: 机械工业出版社, 1999.
    [179] 李国勇. 一种新型的模糊 PID 控制器[J]. 系统仿真学报. 2003,15(10).
    [180] 杨丽娟, 李国勇. 基于高斯函数的非线性自适应 PID 控制器设计[J]. 华北工学院学报. 2003,24.
    [181] 李国勇. 一种改进的自适应 PID 控制器[J]. 太原理工大学学报. 2003,34(1).
    [182] Acosta GG, Mayosky MA, Catalfo JM. An expert PID controller uses refined ziegler and nichols rules and fuzzy logic ideas [J]. Applied Intelligence. 1994, 4(1):53-66.
    [183] 张再兴, 等. 关于专家控制[J]. 信息与控制. 1996,3.
    [184] 刘伯春. 智能 PID 调节器的设计及其应用[J]. 电气自动化. 1998,03.
    [185] 罗安, 路甬祥. 专家 PID 控制器及应用[J]. 信息与控制. 1999,8.
    [186] 张建国. 专家式智能自整定 PID 控制器的研究与实现[J]. 漳州职业技术学院学报. 2005,4.
    [187] 柴霖, 方群. 基于 MATLAB/Simulink 的鱼雷引导弹道仿真[J]. 系统仿真学报. 2003,15(2):231-234.
    [188] 陈桂明. 应用 Matlab 建模与仿真[M]. 北京: 科学出版社, 2001.
    [189] 高立娥, 康凤举, 张金涛. 基于 Simulink 的鱼雷控制系统仿真[J]. 计算机仿真. 2005,22(2):12-14.
    [190] 赵家敏, 秦再白, 庞永杰, 雷磊. 一种水下机器人集成仿真系统的设计[J]. 计算机仿真. 2005,22(10):172-175.
    [191] Aerospace Blockset User's Guide. MATLAB Release 14 MathWorks. 2004.