尿素对磺酰脲除草剂在三种土壤矿物上的吸附及与过氧化氢酶相互作用的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氯磺隆、甲磺隆、苄嘧磺隆是最重要的磺酰脲类除草剂,在世界范围内被广泛登记应用于麦田、亚麻田、水稻田等的除草,在我国得到大面积应用。土壤中磺酰脲类除草剂降解速率受土壤pH值、土壤水分、温度等因素影响,条件不同,它们的持效期及残留量有很大差异。磺酰脲类除草剂在土壤中的残留对后茬某些作物生长造成影响,甚至造成药害。本课题采用高压液相色谱、平衡吸附法、荧光光谱、傅立叶变换红外光谱(FT-IR)、X-射线衍射(XRD)、原子力显微镜(AFM)等近代分析手段和方法,探讨了土壤黏土矿物及氧化物对三种磺酰脲除草剂的吸附、作用机理及添加尿素后对吸附的影响,土壤过氧化氢酶与三种磺酰脲除草剂的作用等。对了解磺酰脲除草剂的环境行为,推广应用磺酰脲除草剂,降低磺酰脲除草剂的残留对后茬作物的危害具有理论和实践意义。主要结果和进展有:
     1、利用平衡吸附法研究了供试矿物对三种磺酰脲除草剂的吸附及尿素对吸附的影响。对三种磺酰脲除草剂的吸附均符合Langmuir方程,最大吸附量大小顺序为:非晶形氧化铝>针铁矿>高岭土;除草剂在供试矿物和氧化物表面上的最大吸附量大小顺序为:氯磺隆>甲磺隆>苄嘧磺隆。尿素的加入使得磺酰脲除草剂在非晶形氧化铝、针铁矿表面的吸附量都有不同程度的下降,其中非晶形氧化铝降低的幅度最大,但在高岭土表面的吸附量有所增加,且尿素和磺酰脲除草剂同时加入时增加更显著。FTIR、XRD、TG和AFM研究结果显示,三种磺酰脲除草剂和尿素同时施用,可能导致在高岭土表面上形成除草剂和尿素结合物的微晶。
     2、通过傅立叶变换红外光谱技术(FTIR)探讨了三种磺酰脲除草剂与尿素相互作用。结果表明,三种磺酰脲除草剂与尿素混用,除草剂与尿素通过-NH-,C=O和O=S=O之间氢键作用,倾向于以偶极矩增大的构象形式存在,除草剂在尿素水溶液中溶解性增强。
     3、采用荧光光谱和紫外可见吸收光谱法研究了三种磺酰脲类除草剂与过氧化氢酶(CAT)的相互作用及尿素对磺酰脲类除草剂与CAT的相互作用的影响。三种除草剂对过氧化氢酶的荧光均有较强的猝灭作用,且形成复合物所产生的静态猝灭是引起CAT荧光猝灭的主要原因。根据荧光猝灭结果进一步确定除草剂-酶复合物的形成常数和结合位点数,氯磺隆:K=8.69×10~5 L·mol~(-1),n=1.16;甲磺隆:K=1.01×10~6L·mol~(-1),n=1.21;苄嘧磺隆:K=3.52×10~6,n=0.77。根据能量转移理论,求出了氯磺隆、甲磺隆、苄嘧磺隆分别和CAT相互结合时,其给体-受体间距离r分别为5.60、4.26nm和3.95nm。由此可见,三种除草剂与CAT的结合作用顺序:氯磺隆<甲磺隆<苄嘧磺隆,并推测出除草剂与CAT的Tyr-214发生结合作用。尿素存在下氯磺隆、甲磺隆、苄嘧磺隆与CAT结合作用增强。三种除草剂与CAT作用后,除草剂对CAT的活性没有影响,而CAT的存在使除草剂容易被植物体吸收,从而使除草剂与受体作用增强。
     4、通过水培实验,以油菜作为指示生物,研究了不同条件下氯磺隆、甲磺隆和苄嘧磺隆对后茬敏感作物危害的影响。结果显示,除草剂的浓度、尿素溶液的浓度、pH与油菜平均根长之间符合多元线性方程:氯磺隆y=6.30929-0.07049x_1-0.128579x_2-0.33333x_3(R~2=0.9968),甲磺隆y=18.37279-0.22005x_1-0.29842x_2-1.47667x_3(R~2=0.9951),苄嘧磺隆y=7.29809-0.10970x_1-0.10179x_2-0.05500x_3(R~2=0.9978);氯磺隆、甲磺隆、苄嘧磺隆隆的浓度越大、添加尿素溶液的浓度越大、pH越大,对后茬作物的危害越大,油菜平均根长越短。
Chlorsulfuron,metsulfuron-methyl and bensulfuron-methyl,the most important sulfonlurea herbicides,which are widely used in China,are widely used for controlling grasses,broadleaf and brush weeds in crops.The rate of degradation of them in soil is strongly dependent upon pH,moisture content,temperature of the soil and so on. Residue of them in soil can significantly influence the growth rates of some crops,and even do great harm to next crops.Adsorption of sulfonlurea herbicides by soil minerals and effects of urea,interaction between sulfonlurea herbicides and catalase and phytotoxicity of the sulfonlurea herbicides to next crops were studied by high pressure liquid chromatography(HPLC),batch,fluorescence spectroscopy,fourier transform infrared spectroscopy(FTIR),X-ray diffraction(XRD),atomic force microscope(AFM) etc.These studies have important significances in theory field and practice for probe into environment action of sulfonlurea herbicides in soil,as well as for degrading the harm of the residue of sulfonlurea herbicides in soil to next crops.Some main results and progressions are illustrated as follows:
     1.The adsorption of sulfonylurea herbicides by kaolinite,goethite,amorphous alumina and the effects of urea on the adsorption were examined with equilibrium adsorption method.The results indicated that the adsorption was according to the Langmuir equation,the maximum absorbing capacities were that amorphous alumina>goethite>kaolinite,the maximum absorbing capacities for three kind of sulfonylurea herbicides in the same minerals were that chlorsulfuron>metsulfuron-methyle>bensulfulon-methyl.When urea was used,the absorbing capacities on the goethite and amorphous alumina decreased by all different order of urea used;but increased on the kaolinite,especially by adding urea with sulfonylurea herbicides simultaneously.The results studied by FTIR,XRD,TG and AFM showed that compounds of the sulfonylurea herbicides binding respectively with urea will be formed when three sulfonylurea herbicides used respectively with urea simultaneously.
     2.FTIR spectroscopy was applied to investigate the interaction of Sulfonlurea herbicides and urea.It was shown that sulfonlurea herbicides and urea form compounds through hydrogen bind between the C=O,O=S=O and N-H,and compounds exist in the more polar conformation,which make the solubility of sulfonlurea herbicides bigger,and sulfonlurea herbicides do good to action of herbicide and do great harm to next crops.
     3.The binding of sulfonlyurea herbicides to CAT and effects of urea in aqueous were studied using fluorescence spectroscopy and UV-vis absorption spectroscopy.It was shown that herbicides have a strong ability to quench the CAT fluorescence mainly through a static quenching procedure.The binding constant K and the number of binding site n were calculated according to the flurescence quenching results.For clorsufuron, K=8.69×10~5 L·mol~(-1) and n=1.16;for metsufuron methyl,K=1.01×10~6 L·mol~(-1) and n=1.20, for bensulfulon-methyl,K=3.52×10~6 and n=0.77.Based on the mechanism of energy transfer,the distances between accepter herbicide and CAT were obtained.The distance r(clorsufuron)=5.60nm,r(metsufuron methyl)=4.26nm and r(bensulfulon methyl)=3.95nm.It is clear that the binding of metsufuron methyl with catalase is stronger than that of clorsufuron and bensulfulon methyl stronger than that of metsufuron methyl.It is inferred that binding site between herbicides and CAT was Tyr-214.After interaction between herbicides and CAT,the hebicides don't influence on the activity of CAT;on the contrary,the CAT make herbicides be easily adsorbed by plants and make the interaction between herbicides and acceptor stronger.
     4.The toxicity of the clorsufuron,metsufuron methyl and bensulfuron methyl to next crops were tested by average length using rap e(Brassica juncea).Results showed that the concentration of herbicides and urea,the pH of buffer,and the average root length of rape conform to equations,for clorsufuron y=6.30929-0.07049x_1-0.128379x_2 -0.33333x_3(R~2=0.9968),for metsufuron methyl y=18.37279-0.22005x_1-0.29842x_2 -1.47667x_3(R~2=0.9951),for bensulfuron methyl y=7.29809-0.10970x_1-0.10179x_2-0.05500x_3(R~2=0.9978),and greater of the concentration of sulfonlyurea herbicides,urea and the pH,shorter of the average root length of rape,sulfonlyurea herbicides do greater harm to next crops.
引文
1.马庆立,陈鹤鑫,徐进,陆贻通.土壤中农药吸附-解吸的研究方法.1989,18(4):45-48。
    2.王琪全,刘维屏。乙草胺和异丙甲草胺在土壤中吸附的研究.土壤学报,2000,37(1):95-101
    3.王忠义.磺酰脲类在农业上的应用及归趋.农药译丛,1990,12(4):8-11
    4.王能武.新的高效除草剂-磺酰脲类.农药译丛,1986,8(3):13-16
    5.王贵启.氯磺隆在河北省麦田的除草效果及对后茬作物的影响.杂草科学,1997,2:13-14
    6.王律先.我国农药工业概况及发展趋势.农药,1999,38(10):1-8
    7.王进海,张连仲,戴广茂.农药在土壤中的吸附.环境化学,1989,8(5):21-27。
    8.韦珍棣,高周明,朱文龙.水稻对氯磺隆残留的反应.杂草科学,1997,1:4-6
    9.韦丽萍,冯建舫,于红霞,王连生.磺酰脲类除草剂及其主要降解产物分配系数的测定与预测.环境化学,1998,17(5):457-460
    10.方允中,李文杰.自由基与酶—基础理论及其在生物学和医学中的应用.北京:科学出版社,1989.129-133
    11.邓金保.磺酰脲类除草剂的综述.世界农药,2003,25(3):24-29
    12.叶发兵,欧阳天贽,胡先文,董元彦.氯磺隆的提纯及作为标准物质的定值与表征.农药,2001,40(12):23-24
    13.艾应伟,范志全,钱传范.磺酰脲类除草剂特点及环境归趋.沈阳农业大学学报,1999,30(5):539-543
    14.冯维屏,吴建良.我国南方主要作物田的化学除草.农药,2000,39(11):1-7
    15.冯喜增,白春礼,林章,王乃新,王琛.吖啶橙与牛血清蛋白的相互结合反应.分析化学,1998,26(2):154-157.
    16.田宝珍,汤鸿霄.聚合铁的红外光谱和电导特性.环境化学,1990,9(6):70-76
    17.司友斌,岳永德,曹德菊.苄嘧磺隆对Cu~(2+)在粘土矿物上吸附—脱附的影响.环境科学学报,2001,21(5):487-591
    18.司友斌,张瑾,岳永德,周东美.除草剂苄嘧磺隆在环境中的降解转化研究进展(综述).安徽农业大学学报,2002,29(4):359-362
    19.司友斌,周静,王兴祥,周东美.除草剂苄嘧磺隆在土壤中的吸附.环境科学,2003,24(3):122-125
    20.孙丙耀,叶建强,黄建中,李扬汉.磺酰脲类除草剂在土壤中的行为.农药译丛,1996,18(2):35-39
    21.单正军,蔡道基.绿磺隆在小麦及土壤中的残留动态研究.农药,37(11):27-29
    22.刘维屏,王其全,李克斌.近代分析技术研究农药与土壤活性组分作用机理.中国环境科学,1998,18(2):102-106
    23.刘维屏,季瑾.农药在土壤-水环境中的主要支配因素-吸附和脱附.中国环境科学,1996,16(1):26-30
    24.刘维屏,王琪全,方卓.新农药环境化学行为研究—除草剂绿草定在土壤-水环境中的吸附和光解.中国环境科学,1995,15(4):311-315
    25.刘维屏.农药环境化学,北京:化学工业出版社,2006.24.
    26.刘小红,颜消慈,罗明道,李伟.原子力显微镜及其应用,科技进展,2001,24(1):36-40
    27.刘乃识,张子明.新编农药手册(续集).北京:中国农业出版社,1998,403-407
    28.刘才群.用红外光谱法研究铝矾土矿物.中国陶瓷,1994,1:12-16
    29.刘祥英,柏连阳.土壤微生物降解磺酰脲类除草剂的研究进展.现代农药,2006,5(1):29-32
    30.刘辉,陶波.土壤微生物对氯磺隆降解的研究.农业与技术,2003,23(1):36-39,55.
    31.许光辉,郑洪元.土壤微生物分析方法手册.北京:农业出版社,1986,255-258.
    32.闫晋钢,赵杰,艾勇,史知奇.氧化铝生产中物料的红外光谱分析研究.轻金属,2001,2:14-18
    33.向文胜,苏少泉.土壤中氯磺隆残留量分析方法的研究.分析化学,1994,22(3):605
    34.李克斌,王小芳,季谨.苯达松在单离子蒙脱石上的吸附机理研究.环境科学与技术,1998(3):5-7
    35.李克斌,刘维屏,邵颖.重金属离子在腐植酸上吸附的研究.环境污染与防治,1997,19(1):9-11
    36.李克斌,刘维屏,许中坚.灭草松在腐植酸上的吸附及其机理.环境科学学报,2002,22(6):754-758
    37.李铮,戴育明,黄循一.甲磺隆等4种磺酰脲类除草剂残留量生物测定方法的研究.上海农学院学报,1995,13(2):124-128
    38.余柳青,周洪杰,叶贵标,黄世文.苄嘧磺隆与尿素混用对陌上菜吸收除草剂的影响.核农学报,1998,12(3):161-164
    39.江苏省宜兴市植保站.氯磺隆的要害与安全使用技术初探.杂草科学,1998,3:16-18
    40.苏允兰,莫汉雄,杨克武.土壤中结合态农药环境毒理研究进展.环境科学进展,1999,7(3):45-50
    41.苏少泉.除草剂发展近况.农药,1999,38(10):11-15
    42.苏少泉.氯磺隆的生物测定.农药科学与管理,1990,2:10
    43.邵颖,刘维屏.除草剂普杀特在粘土矿物上的作用行为研究.上海环境科学,1996, 15(12):40-41
    44.张玉聚,陈国参.除草剂混用原理与应用技术.北京:中国农业科技出版社,1999,156-190
    45.张炳炎,陈海贵,周天旺.春麦田使用氯磺隆对当茬小麦和后茬作物影响的研究.杂草科学,1993,4:17-20
    46.张敏恒.国外农药发展的一些新特点.农药,1999,38(10):27-30
    47.张绍明.浅谈氯磺隆等长残留除草剂药害及治理对策.杂草科学,2005,4:1-2
    48.陈大梅,姜泽春,蒋九余.贵州高岭土的物质成分和热物理特性研究.高校地质学报,2000,6(2):288-305
    49.陈国珍,黄贤智,郑朱梓等.荧光分析法,第二版,北京:科学出版社,1990,16-17.
    50.陈祖义,程薇,成冰.~(14)C-氯磺隆的土壤结合残留及其有效性.南京农业大学学报1995,19(2):78-83
    51.陈怀满,郑春荣.复合污染与交互作用研究.农业环境保护,2002,192-194
    52.郑建斌,刘辉.Fourier自去卷积及其在化学信号处理中的应用.西北大学学报(自然科学版),2000,30(6):496-500
    53.郑巍,刘惠君,刘维屏.吡虫啉农药及代谢产物对土壤.水环境过氧化氢酶活性的影响.中国环境科学,2000,20(6):524-527.
    54.荆国芳,韦珍棣,陈恒喜.氯磺隆残留对水稻的影响.农村生态环境,1996,12(3):24-26
    55.荆国芳,陈恒喜,韦珍棣.氯磺隆及其复配剂对稻麦产量的影响.杂草科学,1997,2:10-12
    56.姚东瑞,陈杰,宋晓玲.麦田后茬作物对氯磺隆残留敏感性研究.江苏农业科学,1997,4:42-45
    57.姚东瑞,宋小玲,陈杰.氯磺隆对春播轮作作物的影响.杂草科学,1998,14(3):154-158
    58.胡继业,范志全,刘光茂.磺酰脲除草剂残留的分析方法.莱阳农学院学报,1999,16(1):50-55
    59.胡继业,范志金,钱传范.新磺酰脲类除草剂单嘧磺隆的HPLC分析及在土壤中的吸附性能的研究.农业环境保护,2001,20(1):12-14
    60.胡先文.甲磺隆的提纯、表征及定值.湖北农业科学,2003,5:51-52
    61.钱永康,程功.氯磺隆、甲磺隆残留对水稻药害的研究.杂草科学,1991,1:1-3
    62.俞天智,陶祖贻.水杨酸与人血清白蛋白相互作用的荧光光谱研究.光谱学与光谱分析,1999,19(3)453-455.
    63.俞天智,杨女栋.芦丁与血清蛋白的作用研究.光谱学与光谱分析,2003,23(4)763-765.
    64.徐晓峰,赵明生,胡竞饶.傅氏去卷积和小波理论用于谱图分峰的对比研究.计算机与应用化学,1998,15(3):153-157
    65.崔季方,魏晓丽,林长福.氯磺隆的作用特性和应用研究.农药,1990,29(4):60-63
    66.韩农.农药土壤降解的研究方法.农药译丛,1987,9(1):28-23
    67.程慕如.氯磺隆光解的研究.杂草学报,1989,3(4):8-13
    68.谢晶曦.红外光谱在有机化学和药物化学中的应用.北京:科学出版社,1987,37-59
    69.蒋木庚,程薇,陈道文.磺酰脲类除草剂的高效液相色谱分析.南京农业大学学报,1989,12(2):102-106
    70.赖成明,袁满雪,李正名.磺酰脲除草剂分子与受体作用的初级模型.高等学校化学学报,1994,5,693-694
    71.蔡立,蒋梅茵.氯磺隆在土壤中的残留与危害.农村生态环境,1995,11(2):39-42
    72.蔡道基 主编.农药环境毒理学研究.北京:中国环境科学出版社,1998
    73.谭文峰,刘永红,吴金明.应用原子力显微镜在黑云母表面吸附的形貌.土壤学报,2004,41(6):976-977.
    74.廖立兵,马折生,施倪承.方解石表面的原子力显微镜研究.科学通报,1993,38(17):1591-1593
    75.魏东斌,张爱茜,韩塑暌.磺酰脲类除草剂研究进展.环境科学进展,1999,7(5),34-42
    76.魏亦男,李宗元,常文保,慈云祥.荧光共振能量转移技术在生物分析中的应用.分析化学,1998,26(4):477-484.
    77.魏晓芳,刘会洲.Triton X-100与牛血清蛋白的相互作用.分析化学2001,29:699-701.
    78.戴树桂,承雪琨.SDBS及腐殖酸对涕灭威及其氧化产物水解的影响.中国环境科学,22(3):193-197
    79.Banerjee,Seth,Bhattacharya,Pasha.Chakraborty.Biochemical effects of some pesticides on lipid peroxidationand free-radical scavengers.Toxicology letters,1999,107:33-47
    80.Bassi A,Erbicidi solfunilureici.Informatore Fitopatolofico,1987,10:19-30.
    81.Battaglin W A,Furlong E T,Burkhardt M R,Peter C J.Occurrence of sulfonylurea,sulfonamide,imidazolinone,and other herbicides in rivers,reservoir sand ground water in the Midwestern United States,1995.Science of the Total Environment.2000,248(2-3):123-133.
    82.Barry Bickmore.Real-time Observation of Semectite Dissolution with the Atomic Force Microscope/www.geol.vt.edu/gradstu/bickmore/#1998
    83.Berdeaux O,De Alencastro L F,Grandiean D,Tarradellas J.Supercritical fluid extraction of sulfonylurea herbicides in soil samples. International Journal of Environmental Analytical Chemistry, 1994,56(2): 109-117.
    
    84. Berghmans P A, Muir I J, Adams F C. Surface analysis of chrysophosphate materials. Surface and Interface Analysis, 1990,16: 575—579.
    
    85. Berglof T, Koskinen W C, Kylin H. Supercritical fluid extraction of metsulfuron methyl, sulfometuron methyl, and nicosulfuron from soils. International Journal of Environmental Analytical Chemistry, 1998, 70(1): 37-45.
    
    86. Bernal J L , Jimenez J J , Herguedas A . Determination of chlorsulfuron and tribenuron-methyl in agricultural soils. J Chtomatography, 1997 , 778: 119-125 .
    
    87. Betz L R., Anderson G A, McNally M E. Supercritical fluid extraction of sulfonylureas from aqueous matrices. Journal of Environmental Science and Health. Part B. Pesticides, Food contaminants and Agricultural Wastes. 1999, 34B (2):171-192.
    
    88 .Binning G, Quate C F, Gerber Ch. Atomic force microscope. Physical Review Letters, 1986, 56: 930-933.
    
    89. Blacklow W, pheloung P. Sulfonylurea Herbicides Applied to Acidic Sandy soil :Movement,Persistence and Activity Within the Growing Season. Aust J Agric Res, 1992,43: 1157-1167
    
    90. Blair A M, Marten D . A review of the activity, fate and mode of action of sulfonylurea herbicides. Pestic Sci, 1988, 22(3): 195—219
    
    91. Bondarev V, Spridonov Y, Shstakov V. Determination of chlorsulfuron. Khim. Sol'sk. Khoz, 1989,9:51-52
    
    92. Bosetto M, Arfaioli P. Interactions of alachlor with homoionic montmorillonites.Soil Sci, 1993,155(2): 105-113
    93.Cambicr P. Infrared Study of Goethite of Varying Crystallinity and Particle Size:1.Interpellation of Vibration Frequencies. Clay Minerals, 1988,21:191-200.
    94. Cation A And Zimdahl R. Persistence and Mobility of Chlorsulfuron and metsulfuro -n under Different Soil and Climte Conditions. Weed Research, 1994,34: 147-155
    95.Cavanna S, Garatti E, Rastelli E, Molinari G P. Adsorption and Desorption of Bensulfuron-methyl on Italian Paddy Field Soils. Chemosphere, 1998, 37(8): 1547-1555.
    
    96. Celi L, Presta M, Ajmore F, Barberis E. Effects of pH and Electrolytes on Inositol Hexaphosphate Interaction with Geothite. Soil Sci Soc Am J, 2001, 65: 753-760.
    
    97. Cotterill E GD. etermination of Sulfonylurea Herbicides Chlorsulfuron and Metsul -furon methyl in Soil, Water and Plant Material by Gas Chromatography of Their Pe -ntafluorobenzyl Derivatves. Pestic Sci, 1992, 34: 291-296
    
    98. Cox L, Koskinen W C, Celis, R., Yen P Y, Hermosin M C, Cornejo J. Sorption of imidacloprid on soil clay mineral and organic components . Soil Sci Soc of Am J, 1998, 62 (4): 911-915.
    
    99. Dinelli G ,Vicari A ,Bonetti A. Trisulfuron,Chlorsulfuron and Metsulfuron Hydrolys -is and Triasulfuron Degradation in Soil.Mobility Degrad. Xenobiot, Proc Simp Pestic Chem, 9th 1993,411-20(Eng). Edited by Del re,Attilio A.M. Ed. C.Biagini; Lucca, Italy.
    
    100. Dinelli G ,Vicari A. Hydrolytic Dissipation of Four Sulfonlurea Herbicides. J Agric Food Chem, 1997,45: 1940-1945
    
    101. Edward T F, Mark R B, Paul M G, Stephen L W, William A B. Routine determin -ation of sulfonylurea, imidazolinone,and sulfonamide herbicides at nanogram per liter concentrations by solid-phase extraction and liquid chromatography mass spec -trometry. Sci of the Total Enviro, 2000, 248(2-3): 135-146
    
    102. Nilve G. Liquid chromatographic of sulfonylurea herbicide in natural waters after automated sample pretreatment using supported liquid membranes. J Chromatogr, 1994, 688(1-2): 75-82
    
    103. Ferrero A , Vidotto F , Gennari M , Negre M . Behavior of cinosulfuron in paddy surface waters sediments and ground water . Journal of Environmental quality, 2001, 30(1): 131-140.
    
    104. Ganor J, Nir S, Cama J. The effect of kaolinite on oxalate (bio) degra -dation at 25℃ ,and possible implications for adsorption isotherm measurements . Chemical Geology, 2001, 177: 431-442.
    
    105.Gonzalez J , Ukrainczyk L . Organic Chemicals in the Environment Transport of Nicosulfuron in Soil Columns. J Enviro Quality, 1999,28(1): 101-107.
    106.Gordon A V, Henderson G S, Fawcett J J, et al. Structural relaxation of the chlorite surface by the atomic force microscope. American Mineralogist, 1994, 79:107- 112.
    107. Govi M , Sarti A, Martino E, Ciavatta C , Rossi N . Sorption and Desorption of Herbicides by Soil Humic Acid Fractions. Soil Science, 1996,161(5): 265-269.
    108.Hansma P K, Elings V B, Marti O, et al. Scanning tunneling microscopy and atomic force microscope: Application to biology and technology.Science, 1988, 242: 209- 216.
    109. Hartvig P. Electron-capture gas chromatography of plasma sulfonylureas after exteractive methylation. J Chromatogr, 1980, 1811 17-23.
    110. Harter R D. Curve-fit errors in Langmuir adsorption maxima. Soil Sci Soc Am J, 1984,48 (4): 749-752.
    111 .Hemmada S,Calmon M,Calmon P. Kinetics and Hydrolysis Mechanism of Chlorsulfuron dnd Metsulfuron-methyl. Pestic Sci, 1994,40: 71-76
    
    122. Hnste S. Verponck L, Vander C P : IR study on the solid state reaction between iron hydroxide and KCN. Ball Soc Chim Belg. 1982,91 : 597-604
    
    113. Huamin Gan, Bailey G W, Yu Y S. Morphology of Lead(II) and Chromium (III) reaction products on phyllosilicate surfaces as determined by atomic force microscope. Clays and Clay Minerals, 1996,44(6): 734-743.
    114 .Hochella M F, Eggleston C M, Elings V B. Atomic structure and morphology of albite {010} surface: An atomic force microscope and electron diffraction study. American Mineralogist, 1990, 75: 723-730.
    115. IjazA. Capillary column gas chromatographic determination of trace residues of the herbicide chlorsulfuron in agri- cultural runoff water. J Assoc Off Anal Chem, 1987, 8: 70:745
    116.IjazA,Crawford G. Trace residue anaylsis of the herbicide chlorsulfuron in soil by gas chromatography-electron capture detection. J Agric Food Chem, 1990, 38:138-141
    
    117. James. Chemistry of Sulfonylurea Herbicides. Pesticide Science. 1990,29:247-254.
    
    118. Jing-bo Chao , Jing-fu Liu, Mei-juan Wen, Jie-min Liu, Ya-qi Cai, Gui-bin Jiang. Determination of sulfonylurea herbicides by continuous-flow liquidmembrane extraction on-line coupled with high-performance liquidchromatography. Journal of Chromatography A ,2002, 955: 183-189
    
    119.Joshi M M. Degradation of Chlorsulfuron by Soil Microorganism. Weed Sci, 1985, 33: 888-893
    120.Kelley M,Zahnow W, Christian W. Chlorsulfuron determination in soil extracts by enzyme immunoassay. J Agric Food Chem, 1985, 33: 962-966
    121 .Klaffenbach P,Holland T. Analysis of sulfonylurea herbicides by Gs-Liquid chrom -atography.2.determination of chlorsulfuron and metsulfuron-methyl in soil and water sample. J Agric Food Chem, 1993,41: 396-401
    122.Klaffenbach P,Holland T. Analysis of sulfonylurea Herbicides by Gs-Liquid chromat -ography.1. Formation of thmostable derivetives of chlorsulfuron and metsulfuron methyle. J Agric Food Chem, 1993: 388-395
    
    123. Kleber J W. GLC determination of acetohexamide and hydroxyhexamide in biological fluids. J Pharm Sci, 1977, 66: 635-641.
    124. Knopp A, Knopp D . ELISA Determintion of the Sulfonylurea Herbicide Metsul -furon Methyl in Different Water Types. Environmental Science and Technology, 1999, 33(2): 358-361.
    125.Koskinen W C, Harper S S. The retention process : mechanisms .In Cheng H H (ed) .Pesticides in the Soil Environment; Process Impacts, and Modeling. Soil Soc Amer, Book Series 2.Madison,WI.1990, 51-57.
    126.Levitty G, Phoeg H, Russell C, Dauid J. 2-chlor-N-[(4-methoxy- 6- methyl -1,3,5- trizan - 2- yl)aminocarbonyl] benzenesulfonamide,a new herbicide. J. Agric. Food Chem. ,1981,29:415-419
    
    127. Liu feng. Observing the "wings" of Atoms: Study Indicates It Is Possible To See Electrons' Orbital Paths Around Atoms /www.sciencedaily. com/releases /2003/ 06/030603083525.htm
    128. Long A, Hsien L, Marsha S. Isolation and gas chromatographic determination of chlorsulfuron in milk. J Assoc Off Anal Chem , 1989, 72: 813-815
    
    129.Long A. Characterization of the thermal decomposition products of the sulfonylurea herbicide chlorsulfuron. J Chromatagr, 1990, 505: 395-401
    130. Maqueda C, Morillo J. Adsorption of chlordimeform by humic substances from different soils. Soil Science, 1990,150(1): 431-437
    
    131.Marucchini C, Vischetti C, Businelli M. Kinetics and Degradation Mechanism of Chlorsulfuron in soils.Agrochimical,1991, 35(1-2-3): 69-77(Ital)
    132. McBride M B. Environmental chemistry of soils . Oxford University. Press, New York. 1994,186-195.
    133. Mellini M. The crystal structure of lizardite 1T: hydrogen bonds and ploytypism. American Mineralogist, 1982,67: 1442-1445.
    134. Miano T M, Senesi. Synchronous excitation fluorescence spectroscopy applied to soil humic substances chemistry. Science of the total environment, 1992, 123/124:83-92
    135.Oppong F K, Sagar G R.The activity and mobility of triasulfuron in soils as influenced by organic matter, duration, amount and frequency of rain. Weed Res, 1992,32:157-165.
    136.Parfitt R L, Russel J D, Farmer V C. Confirmation of the surface structure of goethite (α-OOH) and phosphated goethite by infrared spectroscopy . J Chem. Soc Faraday ,1976, 72: 1082-1087.
    
    137. Patrizia M, Francesco B, Anita G. Adsorption and desorption of imazosulfuron by soil. J Agric Food Chem, 2000 ,48(12): 6132-6137.
    138.Pons N, Barriubo E. Fate of metsulfuron-methyl in soils in relation to pedo-climatic conditions. Pesticide Science, 1998,53 : 311-323.
    139. Powley R,Patrica A. Screening method for nine sulfonylurea herbicides in soil and water by liquid chromatography with ultraviolet detection. J Agric Food Chem, 1998,46:514-519
    140. Qingxiang Zhou, Junping Xiao, Weidong Wang. Trace analysis of triasulfuron and bensulfuron-methyl in water samples using a carbon nanotubes packed cartridge in combination with high-performance liquid chromatography. Microchimica Acta, 2007,157(1): 93-98
    141 .Russell J D , Parfitt R L, Fraser A R, Farmer V C . Surface Structures of Gibbsite, Goethite and Phosphated Goethite. Nature. 1975,248: 200-221
    142.Russell J D. Infrared methods. In: Wilson M J . A handbook of Determinative Methods in Clay Mineralogy. Blackie, New York, 1986:163-164
    143. Schwertmann U , Taylor R M. Iron Oxides Minerals in Soil Environments. Dixon J B. Ed, Soil Sci Soc Am J Madison . WI, 1989:78-96.
    144. Senesi N. Adsorption of alachlor by humic acids from sewage sludge and amended. Soil Science, 1994,157(3): 176-184
    145.Stevens M,Duxburg T.Aspergillus niger and a Penicillium sp.are not Directly Involved in the Degradation of Chlorsulfuron. Pestic Sci, 1992,36: 287-291
    146. Suitch R R . Atom position in highly ordered kaolinite . Clays and Clay Minerals . 1983, 31(5): 357-366.
    147. Sunderland S L. A rapid, sensiltive soil bioassay for sulfonylurea herbicides. Weed Sci,1991, 39(2): 296-298.
    148. Slates R,Watson M. Chlorsulfuron.Anal.Methods Pestic. Plant Growth Regul. 1988, 16:53-67
    
    149.Smith A. Persistence of the Herbicides [~(14)C] Chlorsulfuron and [~(14)C] Metsulfuron methyle in Praire Soils under Laboratory Conditions. Bull Environ Conam Toxicol, 1986, 37(5): 698-704
    150.Strek J. Fate of Chlorsulfuron in the Enviroment. l.Labora- tory Evaluations. Pestic Sci ,1998,53:29-51
    151.Strek J. Fate of Chlorsulfuron in the Enviroment. 2.Field Evaluations. Pestic Sci, 1998,53:52-70
    152.Sun X H, Harvey E D . An Investigation of Arsenate and Arsenite Bonding Structures on Goethite by FTIR. Soil Science, 1996,161(12): 865-872.
    153.Schloss J V. Acetolactate Synthase, Mechanism of Action and its Herbicide Binding Site.Pestic Sci ,1990,29: 283-292
    154. Senesi N. Binding mechanisms of pesticides to soil humic substances. Sci Total Environ. 1992, 124:63-76.
    155. Volker , Eval, Rolf et al. Primary sequence and analyses of a catalase from Ascaris suum .Molecular and Biochemical Parasitology, 1998,95: 203-214.
    156. Wicks F J, Kjoller K, Henderson G S. Imaging of the hydroxyl surface of lizardite at atomic resolution with the atomic force microscope.Canadian Mineralogist, 1992, 30: 83-91.
    157.Yang x,wang X S,Kong L R et al. Photolysis of Chlorsulfuron and Metsulfuron-methyl in Methanol. Pestic Sci, 1999, 55: 751-754
    158.Zahnow W.Analysis of the herbicide chlorsulfuron in soil by liquid chromatography. J Agric Food Chem, 1982,30: 854-857
    159.Zahnow W. On the analysis of the herbicide chlorsulfuron in soil by liquid chromatography. J Agric Food Chem, 1984, 34: 953-958