分析流固耦振的新方法及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本学位论文针对界面耦合的流固耦振系统,结合目前的几种主要数值方法——有限元法、边界元法及有限元-边界元混合法、半数值半解析方法以及新兴的数值流形方法,开展一些具有创新性的理论及应用研究,主要成果如下:
     (1)首先对常规边界元法进行改进,重新构造新的Green函数,使求解半无限域流场中物体附连水质量得到了简化,通过映象法和迭加原理修改常用的Laplace方程基本解,使自由液面边界无需进行边界单元离散,减少了计算量。此外还应用有限元-边界元混合法分析无限大等深度的片状域流场中三维结构的自由耦振问题,借助四面体单元的自动网格剖分技术形成结构网格,并推导了与之配套的混合法计算格式;同样由于采用了合适的流场Green函数,仍只需对流固交界面进行边界元剖分,从而大大减少了方程的自由度数目;在此基础上,实现了与大型有限元分析软件的接口技术,简化了编程,提高了工作效率。
     (2)针对二维无限域流场中一般结构的流固耦合问题,提出局部变分原理。用圆形的人工边界将无限域分成两部分,在人工边界内的结构及其附近流场采用有限元法的数值解,人工边界外采用解析解。通过构造泛函,使提出的变分方程和所研究耦振的边值问题完全等价,并推导出杂交元算式,保证了在人工边界上数值解和解析解的场函数及其导数的连续性。文中用不可压缩流场的算例验证了方法的有效性及较高的计算效率。
     (3)基于一般旋转薄壳的基本方程首次推导出状态向量的一阶常微分矩阵方程,这为传递矩阵法解决这类壳体的耦振创造了重要条件。同时应用新型的齐次扩容精细积分法进行求解,实现了传递矩阵法简便分析旋转壳的静动力问题。在此基础上进一步研究了等深度流场中旋转壳的流固耦合简谐响应。本文方法扩展了传递矩阵法的应用范围,为旋转壳声弹耦合的半数值半解析分析奠定了基础。
     (4)本文开展了高阶数值流形法及其在流固耦合谐振分析中的应用研究。首先推导了基于单纯形积分的高阶流形元公式,并研究了程序自动生成方法,编制了二维和三维流形元线弹性静力分析程序,通过一些算例探讨高阶流形法在连续体静力分析中的计算精度及其适应性;在此基础上,发挥流形法的独特优势将其应用于流固耦合谐振分析中,从而扩展了流形法的应用范围,并提出将近场数值解、远场解析解用覆盖方式联系起来的简便方法,文中算例体现了流形法前处理方便、计算精度高的特点,表明了其在数值解和解析解联合运用上的优势。
     (5)本文详细讨论了固定数学网格的流形法相对于现有大变形描述方法的优势,提出了用其解决非线性流固耦合分析的初步思路;提出应力系数反推法,在拉格朗日描述下得到了与理论解符合很好的计算结果;在此基础上初步研究了固定数学网格的流形法,采用固定的矩形数学网格和1阶多项式覆盖函数,实现材料在网格中移动,文中的悬臂梁算例表明了方法的可行性,但现阶段还未解决初应力荷载的准确计算和由此带来的计算稳定性问题。这项研究为将来将固体和流体统一到欧拉描述下进行非线性流固耦合分析打下了基础。
In this dissertation, new theories and applications on solving fluid-solid coupling vibration are studied, concerning some popular numerical approaches -- finite element method (FEM), boundary element method (BEM) and mixed FE-BE method, semi-analytical and semi-numerical method,and numerical manifold method (NMM) which is new developed. The major achievements obtained are summarized as follows:
     (1) Ordinary BEM has been improved by modifying or reconstructing the fundamental solution of Laplace equation. A novel approach for solving added mass of structure embedded in semi-infinite liquid field is presented. Using mirror method and superposition method to modify the ordinary Green function, free surfaces of fluid do not need to divide into the boundary elements and then computation time is saved. A mixed FE-BE method is also used to analyze coupling vibration of three dimensional structure in a liquid with constant depth. Tetrahedral meshes of the structure are formed by automatic subdivision, and the corresponding coupling equations are derived. Based on the Green function corresponding to a wave in a liquid with constant depth issuing from any source, only surfaces of the structure need to divide into the boundary elements, and the number of freedoms decreases greatly. Besides, interface of general FEM software is also adopted to improve the efficiency of programming and computation.
     (2) A localized variational principle is presented for analyzing fluid-structure interaction problems in two-dimensional infinite liquid field. The infinite liquid field is divided into two parts by an auxiliary circle, inside which the structure and its neighboring liquid are computed by FEM and outside which an analytical solution is used. By means of this variational principle, all governing equations and boundary conditions are satisfied automatically, and the numerical solutions are incorporated with the analytical solution via hybrid element equations derived. Given examples for incompressible liquid case demonstrate validity and high efficiency of the approach.
     (3) Based on the general governing equations of revolution thin shells, the 1-order ordinary differential matrix about state parameter vector of revolution shells is firstly derived in this dissertation. This matrix is the important basis for solving interaction problems about revolution shells using the transfer matrix method. By means of the extended homogeneous capacity high precision integration method, static and dynamic solutions are given conveniently, and harmonic responses of revolution shells in a liquid with constant depth are computed. This approach extends the applications of the transfer matrix method, and lays the foundation of semi-analytical and semi-numerical researches on structural vibration and acoustics for revolution shells.
     (4) High-order NMM and its applications in fluid-solid interaction harmonic analysis are also studied. A simple method is presented for automatically producing the expressions and writing subroutine codes based on simplex integration. Two and three dimensional programs of high-order NMM are further developed respectively for static analysis. Some examples are given to analyze the precision and the adaptability of NMM. This dissertation also presents two dimensional high-order NMM equations of fluid-solid interaction harmonic analysis based on rectangular mathematical meshes. The given results of computing frequencies and harmonic response prove the validity of the approach, and indicate that high-order NMM has high precision and convenient preprocessing. The approach of using covers of analytical solution to simulate special infinite fluid field is also proposed, and the given example suggests that NMM should be very suitable for combination of numerical solutions and analytical solutions, and more convenient than other approaches.
     (5) NMM with fixed mathematical meshes is proposed in this dissertation, which has more advantages than other methods in solving fluid-solid coupling problems considering large deformation of structure and large disturbance of fluid, because it may be convenient to solve the nonlinear coupling problems when treating both fluid field and solid structure in the same background meshes. As the fundamental research, an attempt is made to compute large displacements of structures using fixed rectangular mathematical meshes and 1-order polynomial cover functions, and it is implemented that material particle moves in fixed meshes. The results of large deflection of a cantilever beam show the feasibility of NMM with fixed meshes, and indicate that more research should be further done on the approach of precisely computing initial stresses in the structures.
引文
[1] 邢景棠, 周盛, 崔尔杰.流固耦合力学概述. 力学进展, 1997(1): 19-38
    [2] Westergaard H M.Water pressures on dams during earthquakes.Trans.A.S.C. E., 1933: 418-433
    [3] Chopra A K. Earthquake Response of Concrete Gravity Dams.AD 709640,California University, Berkeley (1970)
    [4] 郑哲敏, 马宗魁. 悬臂梁在一侧有水时的自由振动. 力学学报, 1959, 3(2): 111-119
    [5] 居荣初, 曾心传.弹性结构与液体的耦联振动理论(第一版). 北京: 地震出版社, 1983
    [6] 张悉德, 张文. 部分埋入水中椭圆柱体的弯曲自由振动. 应用数学与力学, 1986, 7(9)
    [7] 王和慧, 黄玉盈, 刘忠族等. 水中圆锥形柱腿的自振特性分析. 应用力学学报, 1996, 13(2): 64-70
    [8] 金涛, 黄玉盈. 地面运动激励下水中椭圆柱体的弯曲响应. 海军工程学院学报, 1998(1): 17-21
    [9] Paidoussis M P.Flow-induced Instabilities of cylindrical structures.Applied Mechanics Reviews, 1987, 40:163-175
    [10] Paidoussis M P, Li G X. Pipes conveying fluid: a model dynamical problem. Journal of Fluids and Structures, 1993,8:853-876
    [11] 黄玉盈等. 输液管的非线性振动、分叉与混沌—现状与展望. 力学进展, 1998, 28(1):30-42
    [12] 倪樵. 输液管稳定性与动力特性分析及算法研究. [博士学位论文]. 武汉: 华中科技大学, 2000
    [13] Bishop R E D, Price W G. Hydroelasticity of Ships.Univ. Press, Cambridge, 1979
    [14] Bishop R E D, Price W G, Wu Y. General linear hydroelasticity theory of floating structures moving in a seaway. Phil. Trans. R. Soc. Lond. A 316(1985): 375-426
    [15] 汤渭霖, 何兵蓉. 水中有限长加肋圆柱壳振动和声辐射近似解析解. 声学学报, 2001, 25(1): 1-5
    [16] 曾革委. 潜艇结构辐射噪声的建模、求解及其声特性研究. [博士学位论文]. 武汉: 华中科技大学, 2002
    [17] Chen Junming, Huang Yuying. Vibration and acoustic radiation from orthogonally stiffened infinite cylindrical shell in water. China Ocean Engineering, 2002,16(4): 437-452
    [18] 向宇. 水下加肋非圆柱壳共振响应的建模、解法和声特性分析. [博士学位论文]. 武汉: 华中科技大学, 2003
    [19] 陈军明. 水下加肋壳结构声振问题的建模、解法和声特性分析研究. [博士后研究工作报告]. 武汉: 华中科技大学, 2003
    [20] Xiang Yu, Huang Yuying. A semi-analytical and semi-numerical method for solving 2-D sound-structure interaction problems. Acta Mechanica Solida Sinica, 2003, 16(2):116-126
    [21] Chen Junming, Huang Yuying. Vibration and acoustic radiation from submerged stiffened spherical shell with deck-type internal plate. Acta Mechanica Solida Sinica, 2003,16(3)
    [22] 温德超, 郑兆昌, 孙焕纯. 储液罐抗震研究的发展.力学进展, 1995, 25(1):60-76
    [23] 黄玉盈. 结构振动分析基础(第一版). 武汉: 华中工学院出版社, 1988
    [24] 戴大农, 王勖成, 杜庆华. 流固耦合系统动力响应的模态分析理论. 固体力学学报, 1990, 11(4): 305-312
    [25] Zienkiewicz O C, Bettess P. Fluid-Structure dynamic interaction and wave force. Introduction to numerical treatment. Int. J. Num. Meth. Engng. , 1978,13:1-16
    [26] Zienkiewicz O C, Bettess P. Fluid-Structure dynamic interaction and some unified approximation processes. Proc. Fifth Int. on Unification of Finite Element, Finite Difference and Calculus of Variales, Univ. of Connecticut, May 2, 1980:119-145
    [27] Chen H C, Taylor R L. Vibration analysis of fluid-solid systems using a finite element displacement formulation. Int. J. Numer. Meth. Engng., 1990, 29:683-698
    [28] 徐昭光, 徐志刚, 韩立朝. 用流体非协调元分析流体结构耦合问题, 中国农村水利水电, 2001(l):32-33
    [29] 李遇春, 楼梦麟, 尚伟等.大型渡槽抗震分析中流体的位移有限元模式. 水利学报, 2003(2): 93-97
    [30] Park K C, et al. Stabilization of staggered solution procedures for fluid-structure interaction. Proc. Conf. On computational methods for fluid-structure interaction problems, edited by T.Belytschto, 1976.
    [31] Lewis R W, Bettess P, Hinton E. Numerical Methods in Coupled Systems. John Wileg and Sons,Chichester, 1984
    [32] Givoli D, Keller J B. A finite element method for large domains. Comput. Methods. Appl. Mech. Eng., 1989,76:41-66
    [33] Keller J B, Givoli D. Exact non-reflecting Boundary conditions. J. Comput. Phys., 1989,82:172-192
    [34] Harari I, Hughes T J R. Studies of domain-based formulations for computing exterior problems of acoustics. Int. J. Numer. Methods Eng., 1994, 37:2935-2950
    [35] Assaad J, Decarpigny J N, Bruneel C. Application of the finite element method to two-dimensional radiation problem. J.Acoust.Soc.Am.,1993,94(1):562-573
    [36] Kallivokas L F, Bielak J. Time-domain analysis of transient structural acoustics problems based on the finite element method and a novel absorbing boundary element. J. Acoust.Soc.Am., 1993,94(6):3480-3492
    [37] Givoli D, Keller J B. Special finite elements for use with high-order boundary conditions. Comput. Methods. Appl. Mech. Eng.,1994,119: 199-213
    [38] Bettess P. Infinite elements. Int.J.Numer. Methods Eng.,1977,11:53-64
    [39] Burnett D S. A three-dimensional acoustic infinite element based on a prolate spheroidal multipole expansion. J.Acoust. Soc.Am.,1994,96(5):2798-2816
    [40] Burnett D S, Holford R L. Prolate and oblate spheroidal acoustic infinite elements. Comput. Methods. Appl. Mech. Eng., 1998,158: 117-141
    [41] 黄玉盈. 变水深环境下中厚度浮板耦振问题的一个变分解.力学学报, 1988, 20(5): 401-410
    [42] Feng Z. X.On the coupling method for coupled problems. Acta Mathematica Scientia, 1987(2)
    [43] Feng Z. X.Three dimensional response of the ship-wave interaction by coupling BE/FE.Boundary elements.Edited by Du Qinghua, Pergamon Press, 1986
    [44] 黄玉盈, 金涛. 变水深坝-库系统耦振分析的边界元-有限元混合法. 固体力学学报, 1998,19(3):245-251
    [45] Morand H J P, Ohayon R. Fluid Structure Interaction. John Wiley and Sons, Chichester, 1995
    [46] Hirt C W, Amsden A A,Cook J L. An arbitrary lagrangian-eulerian computing method for all flow speeds. J. of Comp. Phys., 1974,14:227-253
    [47] Shi Genhua. Manifold method of material analysis. Transactions of the Ninth Army Conference on Applied Mathematics and Computing, Minneapolis, Minnesoda, 1992: 51-78
    [48] Shi Genhua. Modeling of rock joints and blocks by manifold method. IN: Proc. Of the 32rd U.S. Symp. On Rock mechanics,Santa Fe. New Mexico,1992: 639-648
    [49] Shi Genhua Manifold method. In Salami,M.R.&Banks,D(eds),Proceedings of the first international forum on discontinuous deformation analysis and simulations of discontinuous media:52-204.Berkeley:California, 1996
    [50] 石根华著, 裴觉民译.数值流形方法与非连续变形分析(第一版).清华大学出版社, 1997
    [51] 裴觉民.数值流形方法与非连续变形分析.岩石力学与工程学报.1997,16(3): 279-292
    [52] Lin Jeen-Shang. Continuous and discontinuous analysis using the manifold method. Proceedings of ICADD-1, 1995
    [53] Hideomi Ohtsubo, et al. Utilization of finite covers in the manifold method for accuracy control. Proceedings of ICADD-2, 1997
    [54] 蔡永昌, 张湘伟.流形方法的矩形覆盖系统及其全自动生成算法. 重庆大学学报, 2001,24(1): 42-46
    [55] 骆少明, 蔡永昌等. 数值流形方法中的网格重分技术及其应用. 重庆大学学报:自然科学版, 2001, 24(4):34-41
    [56] 骆少明, 姜冬茹等. 金属成形过程的数值流形模拟方法研究. 机械工程学报, 2002 , 38(8): 105-109
    [57] 王水林, 葛修润. 四个物理覆盖构成一个单元的流形方法及应用. 岩石力学与工程学报, 1999, 18(3): 312-316
    [58] Chen G., Ohnishi, Y. & Ito,T. Development of high-order manifold method. International Journal for Numerical Methods in Engineering, 1998, 43:685-713
    [59] 田荣, 栾茂田等. 高阶流形方法及其应用. 工程力学, 2001, 18(2):21-26
    [60] Lu Ming. High-order manifold method with simplex integration. Proceedings of ICADD-5, 2002
    [61] Lu Ming. Complete n-order cover function for numerical manifold method. STINTEF report,STF22 F01139,2001
    [62] 张国新, 彭静. 二阶流形元法与结构变形分析. 力学学报, 2002,34(2):261-269
    [63] 居炎飞, 章光等. 数值流形方法在 P 型自适应分析中的初探. 岩土力学, 2001, 2(1):88-91
    [64] Kourepinis D, Bicanic N, Pearce C J. A higher-order variational numerical manifold method formulation and simplex integration strategy. Proceedings of ICADD-6, 2003
    [65] 张国新, 金峰, 王光纶. 用基于流形元的于域奇异边界元法模拟重力坝的地震破坏. 工程力学, 2001, 18(4): 18-27
    [66] 张国新, 王光伦, 裴觉民. 基于流形方法的结构体破坏分析. 岩石力学与工程学报,2001,20(3):281-287
    [67] Zhang GuoXin, et al. Crack propagation and thermal fracture analysis by manifold method. Proceedings of ICADD-2, 1997
    [68] Chiou Yaw-Jeng, et al. Crack propagation using manifold method. Proceedings of ICADD-2, 1997
    [69] Wang Shuilin, Lu Ming. Crack Propagation Modeling by Numerical Manifold Method. Proceedings of ICADD-5, 2002
    [70] Wang Shuilin, Feng Xiating, Zheng Hong. Modelling strong discontinuities by manifold method. Proceedings of ICADD-6, 2003
    [71] Zhang Guoxin, Zhu Bofang, Lu Zhengchao. Cracking simulation of the Wuqiangxi ship lock bymanifold method. Proceedings of ICADD-6, 2003
    [72] Zhou W.Y., Lin P., Yang R. Q., et al. A comparison of dam fracture studies between physical model tests and numerical analysis. Proceedings of ICADD-6, 2003
    [73] Takeshi Sasaki, et al. Elastic-plastic analysis of jointed rock models by manifold method. Proceedings of ICADD-2, 1997
    [74] 王书法, 朱维申等. 岩体弹塑性分析的数值流形方法. 岩石力学与工程学报, 2002, 21(6): 900-904
    [75] 王芝银, 王思敬, 杨志法. 岩石大变形分析的流形方法. 岩石力学与工程学报, 1997, 16(5): 405-410
    [76] 朱以文, 曾又林, 陈明祥. 岩石大变形分析的增量流形方法. 岩石力学与工程学报,1999,18(1):1-5
    [77] 曹文贵, 速宝玉. 岩体锚固支护的数值流形方法模拟及其应用. 岩土工程学报, 2001, 23(5): 581-583
    [78] 李树忱, 程玉民. 数值流形方法及其在岩石力学中的应用. 力学进展, 2004, 34(4): 446-454
    [79] 王书法, 朱维申等. 考虑侧向影响的数值流形方法及其工程应用. 岩石力学与工程学报, 2001, 20(3): 297-300
    [80] 姜冬茹, 骆少明. 三维数值流形方法及其积分区域的确定算法. 汕头大学学报: 自然科学版, 2002, 17(3): 29-36
    [81] Shi Genhua.Theory and examples of three dimensional discontinuous deformation analysis. In Frontiers of Rock Mechanics and Sustainable Development in the 21st Century, Proceedings of the 2001 ISRM int. Symposium, 2001
    [82] Jang H I, Lee C L. Three –Dimensional Discontinuous Deformation Analysis Techniques and its Application to Toppling Failure. Proceedings of ICADD-5, 2002
    [83] 章光, 王水林, 闵弘. 数值流形方法及其应用介绍. 岩土工程界, 2000(12): 44-46
    [84] 孙跃. 流形元与有限元变形和渗流的非同步分析方法及其应用. 岩石力学与工程学报, 22(6), 2003: 943-950
    [85] 凌道盛, 叶茂. Biot 平面固结分析的流形单元法. 计算力学学报, 2005, 22(3): 274-280
    [86] 梁国平, 何江衡. 广义有限元方法一类新的逼近空间. 力学进展, 1995, 25(4): 562-565
    [87] 王玉杰, 张大克, 哈尔滨. 广义有限元法解的超收敛估计. 哈尔滨理工大学学报, 1999, 14(4): 96-99
    [88] 栾茂田, 田荣, 杨庆. 广义节点有限元法. 计算力学学报, 2000, 17(2):192-200
    [89] 邵国建, 刘体锋. 广义有限元及其应用. 河海大学学报: 自然科学版,, 2002, 30(4):28-31
    [90] 周维垣, 杨若琼, 剡公瑞. 流形元法及其在工程中的应用. 岩石力学与工程学报, 1996, 15(3): 211-218
    [91] 刘欣, 朱德懋等. 基于流形覆盖思想的无网格方法的研究. 计算力学学报, 2001,18(1):21-27
    [92] 骆少明, 张湘伟, 蔡永昌. 非线性数值流形方法的变分原理与应用. 应用数学和力学, 2000,21(12): 1265-1270
    [93] 骆少明, 张湘伟, 蔡永昌. 数值流形方法的变分原理与应用. 应用数学和力学, 2001, 22(6): 587-592
    [94] 王芝银, 李云鹏. 数值流形方法中的几点改进. 岩土工程学报, 1998, 20(6): 33-36
    [95] 王芝银, 李云鹏. 数值流形方法及其研究进展. 力学进展, 2003, 33(2): 261-266
    [96] 彭自强, 葛修润. 数值流形方法中覆盖函数选用的建议. 岩土力学, 2004, 25(4): 624-627
    [97] Brebbia C A. The Boundary Element Method for Engineers. London:Pentech Press, 1978
    [98] 童予靖, 刘正兴. 流固耦合问题的附连水质量研究. 上海力学, 1997(4): 311-320
    [99] 钱勤, 黄玉盈, 刘忠族. 求附连水质量的一种直接方法. 力学与实践, 1996(5): 19-21
    [100] Domingnez J. Boundary Elements in Dynamics. Southampton Boston: Computational Mechanics Publications, 1993
    [101] Huang Yuying. A mixed FE-BE method for coupled vibrations of floating plates of complicated shape. Applied mathematical modeling. 1990,14(7):376-380
    [102] 王勖成, 邵敏.有限单元法的基本概念和数值方法(第一版).北京: 清华大学出版社, 1988
    [103] Tottenham H, Shimizu K. Analysis of the free vibration of cantilever cylindrical thin elastic shells by the matrix progression method. Int. J. Mech. Sci., 1972,14:293-310
    [104] 黄玉盈, 向宇. 变厚度圆珠蓄水池动力分析的传递矩阵法. 振动工程学报, 1989, 2(4): 23-32
    [105] 黄玉盈, 向宇, 苏海东. 求解水下纵向加肋无限长非圆柱壳声辐射问题的一种新的半解析方法. 固体力学学报, 2005, 26(1): 1-9
    [106] 钟万勰. 结构动力方程的精细时程积分法. 大连理工大学学报, 1994, 34(2): 131-136
    [107] 李海阳, 雷勇军, 周建平. 旋转壳的数值传递函数方法. 应用力学学报, 2001, 18(1): 135-138
    [108] 连德忠. 旋转壳体极点奇异性处理. 闽西职业大学学报, 2003(1): 86-88
    [109] Yamada G, Irie T, Tagawa Y. Free vibration of non-circular cylindrical shells with varible circumferential profile. J. of Sound & Vibration, 1984, 95(1): 117-126
    [110] 曹志远. 板壳振动理论(第一版). 北京: 中国铁道出版社, 1989
    [111] 考罗特金等著, 陈铁云等译. 板与圆筒形壳的弯曲及稳定性(第一版). 高等教育出版社, 1958
    [112] 张林波.利用 m4 宏语言进行 Fortran77 循环展开.数值计算与计算机应用, 1998(1): 49-63
    [113] 张雄, 陆明万, 王建军.任意拉格朗日-欧拉描述法研究进展.计算力学学报, 14(2), 1997: 91-102
    [114] Belytschko Ted, Wing Kam Liu, Brian Moran著, 庒茁译. 连续体和结构的非线性有限元(第一版).北京: 清华大学出版社, 2002
    [115] Noh W F. CEL: A time-dependent two-space-dimensional coupled Eulerian- lagrangian code, in: B.Alder, S. Fernbach and M. Rotenberg, eds. Methods in Computational Physics 3, (Academic press, New York, 1964)
    [116] Hughes T J R, Liu W K and Zimmerman T K. Lagrangian-Eulerian finite element formulation for incompressible viscous flows, Comput.Meths.Appl.Mech.Engrg. , 1981, 29: 329-349
    [117] Huerta A and Liu W K. Viscous flow with large free surface motion. Comput. Meths. Appl.Mech. Engrg. , 1988, 69: 277-324
    [118] Benson D J. An efficient, accurate, simple ALE method for nonlinear finite element programs. Comput.Meths. Appl. Mech. Engrg. , 1989,72: 305-350
    [119] Giuliani S. An algorithm for continuous rezoning of the hydrodynamic grid in arbitrary Lagrangian-Eulerian computer codes. Nucl. Engrg. Design., 1982, 72: 205-212
    [120] Ritchmyer R D, Morton K W. Difference methods for initial-value problems (Inter science, NewYork, 2nd. ed., 1967)
    [121] Heinrich J C, Huyakorn P S, et al. An upwind finite element scheme for two-dimensional convective transport. Int. J. Num. Meths.Engrg. , 1977, 11:131-145
    [122] 殷有泉. 固体力学非线性有限元引论(第一版). 北京: 北京大学出版社, 清华大学出版社, 1987
    [123] 刘振兴, 孙雁, 王国庆. 计算固体力学(第一版). 上海: 上海交通大学出版社, 2000
    [124] 苏海东, 林绍忠, 祁勇峰. 三维数值流形法在结构静力分析中的应用研究. 长江科学院, 2005, 12
    [125] 金涛. 流固耦合问题的若干理论、方法及某些工程应用. [博士学位论文] . 武汉: 华中科技大学, 2003.7