多相体系搅拌混合效果评价方法及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
搅拌混合在工业生产中往往是最必不可少的工序,常用于冶金、造纸、食品加工制药、生物等领域,其中艾萨炉、奥斯麦特炉、Hismelt炉等都涉及搅拌混合,聚合反应器85%是搅拌混合设备,还有制药发酵过程几乎全部是搅拌混合过程。搅拌混合的目的是为了降低物料体系内部的非均匀性,能尽快地达到混合均匀,进而促进反应的进行。因此,如何获得多相混合均匀性以及非均匀性的有效量化,进一步提高搅拌效率,对于搅拌反应器的设计优化以及节能降耗具有重要的意义。
     本文围绕搅拌槽内多相混合效果的评价,运用计算同调群、数字图像处理技术、混沌学以及统计学理论,对搅拌槽内多相混合效果的评价方法及应用开展了比较系统的研究,内容主要涉及多相混合的水动力学实验的设计、多相混合效果的贝蒂数评价方法及模型研究、多相混合效果的定性分析和定量分析以及该评价方法在Zn-SiO2复合电沉积中的应用研究。
     本论文对搅拌混合效果评价的基本理论进行了综述。借鉴甲烷和氧化锌在熔融盐中反应的多相流混合模型,确定多相混合水动力学实验的设计方案,搭建了包括高速摄像机、透明搅拌槽、转子流量计、喷枪、氮气瓶在内的顶吹气体搅拌混合水力学实验平台,目的在于阐述并提出一种简单的多相流混合效果贝蒂数评价新方法,该方法可以同时实现混合均匀性及非均匀性的有效量化。通过实验研究不同的顶吹喷枪流量Q以及喷枪浸入深度l对混合效果的影响,结果表明:0维贝蒂数β0(t)随着时间的演化趋势为先增大后平稳变化,其拐点处对应的混合时间即最短混合均匀时间;随着喷枪流量Q的不断增大,其最短混合均匀时间呈减小趋势,当流量Q增大到1000L/h以后,最短混合均匀时间出现轻微波动,且变化不大;随着喷枪浸入深度l以及喷枪流量Q的不断增加,0维贝蒂数的平均值即混合均匀性程度波动较大,而1维贝蒂数β1(t)变化较为平稳,但是在一些非正常混合情况下也会迅速的偏离平均值,说明这种混合非均匀性也会影响整个混合过程的混合效果;同时构建了多相流混合效果评价模型,得出了获得较佳混合效果所需的条件:0维贝蒂数的平均值足够大,1维贝蒂数的平均值、流量的大小和0维贝蒂数的振幅要足够小,并且最短混合时间足够小,模型计算结果表明:最佳的混合效果条件与所用模型包括大小、形状等均有密切关系。
     其次,对多相混合效果的定性特征进行了分析。研究了混合效果的统计学规律,通过计算不同搅拌条件下贝蒂数时间序列的柱状图,结果发现在所有的实验中其0维贝蒂数时间序列β0(t)和部分实验中的1维贝蒂数时间序列β1(t)近似符合正态分布;为了清晰的描述正态分布拟合的准确性,计算其累积分布函数图和概率分布图,根据曲线拟合的程度来判断混合效果的好坏。实验证明越好的混合效果其累积分布函数和概率分布函数中拟合曲线的拟合效果越好;计算1维贝蒂数时间序列的柱状图、累积分布图和概率分布图,也可以区分正常和非正常的混合效果。在这些正常混合效果之中,0维贝蒂数β0(t)和1维贝蒂数β1(t)在t>T后,它们的平均值平稳振荡,这表明混合均匀性是连续的,混合非均匀性变化平稳。然而,在部分非正常混合效果之中,1维贝蒂数时间序列不符合正态分布,其主要表现为累积分布和概率分布函数的拟合曲线相互背离,在1维贝蒂数时间序列中出现快速地偏离平均值的现象,这表明混合的非均匀性可以迅速地改变。为了进一步对多相混合效果的量化特征进行分析,引入0-1检验方法对0维和1维贝蒂数时间序列进行了混沌特征分析,结果发现经过足够长的混合时间之后,整个混合过程是混沌的,同时获得了不同混合效果的有效量化。尽管如此,不同的混沌状态对应于不同的0-1检验计算数值,该数值介于0-1之间,接近于1则代表系统是混沌状态,接近于0则代表系统是非混沌的,而本文0-1检验计算的所有贝蒂数序列均为接近于1,只是不同的混合工况接近于1的程度不相同;计算不同混合状况下贝蒂数序列的庞加莱截面图,计算结果为成片的密集点,说明该混合系统是混沌的,同时利用庞加莱截面图的特征还能有效地区分正常及非正常的混合效果;运用Rosenstein方法计算最大李雅普诺夫指数,计算得到的斜率为正的特征图说明充分混合之后的动力系统是混沌的。
     最后,本文选择Zn-SiO2复合电沉积体系,以及最常用的搅拌方式——电动桨叶式搅拌来研究电解液的流动特性。利用数字图像处理技术清晰地捕捉到电解液搅拌过程中微小颗粒的分布和团聚所形成的复杂图样:运用本文提出的多相混合效果贝蒂数评价方法及模型深入地研究了该体系复合电解液的流动混合效果,通过镀层性能分析进一步验证了该方法和模型的可行性及准确性,为深入认识和理解复合电沉积基本科学问题及其工艺优化设计提供了重要参考。
Mixing is often the most essential process in the industrial production, which is applied in the metallurgy, paper making, food processing, pharmaceutical, biotechnology and other fields, in which, Isa furnace, Ausmelt furnace, Hismelt furnace and so on are all related to the mixing,85%of the polymerization reactors are mixing equipments, and also almost all of the pharmaceutical fermentation process include the mixing process. The purpose of mixing is to lower the nonhomogeneity of the inside of the materials system, and to achieve the mixing homogeneity as soon as possible, and then to promote the reaction. How to get the effective quantitative of multiphase mixture homogeneity and nonhomogeneity of the mixture and further to improve the mixing efficiency is significant for the design optimization of agitation reactor and energy saving.
     The more systematic study of evaluation methods and applications of multi-phase mixing effects in agitating tank has been done in this paper by algebraic topology, digital image processing technology, chaotic dynamics and statistical theory focus on the evaluation of multi-phase mixing effects in agitating tank, the contents mainly include the design of the hydrodynamic experiment for multiphase mixing, the Betti numbers evaluation method of multiphase mixing, statistical and chaotic characteristics analysis of multiphase mixing effects, and the application research of our evaluation method in Zn-SiO2composite electrodeposition.
     The basic theories of the evaluation of stirring and mixing is reviewed, the purpose of definiting the design proposal of multiphase mixing hydrodynamic experiments, and seting up the platform including high-speed cameras, transparent stirred tank, rotameter, spray gun and the nitrogen bottle, for hydraulics experiments by top-blown gas stirring and mixing based on the three phase reaction model of CH4and ZnO in molten salt is to expound and propose a novel and simple Betti numbers evaluation method of multiphase mixing effects, this method can achieve the effective quantitative of homogeneity and nonhomogeneity of the mixture at the same time. The effects of different top-blown gun flow Q and different immersion depth of the gun H on the mixing effects in experiments are investigated, the result shows that the trends of zeroth Betti number is increasing firstly and then has a smooth change over time, the mixing time which correspond to the point of inflection is definited as the minimum mixing time, the minimum mixing time trends are decreasing with the increasing of Q, when the flow rate Q is1000L/h, the minimum mixing time has small fluctuations, but the change is small, the average value of the zeroth Betti numbers namely the degree of the homogeneity of the mixture has a big fluctuation with the increasing of H and Q, however, the first Betti numbers average is relatively stable, but it will also deviate the mean value rapidly in some conditions of abnormal mixed, which shows that such nonhomogeneity of the mixture will also affect the mixing effects in the whole mixing process, and at the same time, the evaluation model of multiphase flow mixing effects is proposed, the objective function requires that the average value of the zeroth Betti number should be as big as possible, the average value of the first Betti number, the minimum mixing time, the size of the flow and the amplitude of the zeroth Betti number should be as small as possible, the calculated results of our optimization model show that the best mixing condition is related to the model including size, shape, etc.
     Secondly, the statistical laws of mixing effects by caculated the histograms of the Betti number time series in different mixing conditions are further investigated, and the result shows that the zeroth Betti number time series in all experiments and the first Betti number time series in part of the experiments approximately fit the Normal distribution, in order to describe the accuracy of Normal distribution fitting, plots of cumulative distribution function and probability distribution are calculated. The mixing effects could be determined by the extent for fitting the normal curves. It is proved that the better mixing effect is, the better cumulative distribution and probability distribution fit; by calculating the histograms、 cumulative distribution and probability distribution of the first Betti numbers time series, the normal or abnormal mixing effects could also be differentiated. In these normal mixing effects, the zeroth Betti numbers β0(t) and first Betti numbers β1(t) begin vibrating about the mean value after t> T, which indicates the homogeneity of mixing is continuious, and non-homogeneity of mixing change in smooth. However, in parts of abnormal mixing effects, the first Betti numbers time series do not fit the normal distribustion, which shows the fitting curves of cumulative distribution and probability distribution deviate from each other. And the phenomenon that rapidly deviates from the average of the first Betti numbers time series shows that the non-homogeneity of mixing could quickly be changed. In order to study the characteristics of chaotic mixing effects further, the0-1test is introduced to analyse chaotic dynamics for the time series of the zeroth Betti number and the first Betti number, but the results show that the whole mixing process is chaotic after a sufficiently long mixing time, and at the same time, we get the effective quantitative of different mixing effects, however, different chaotic states have different values calculated by0-1test, which value should be between0and1, if it is close to1, it means the system is chaotic, if it is close to0, it shows that the system is non-chaotic. However, in this paper all of the Betti numbers time series which are caculated by0-1test methed are close to1, but the degree to close to1is different for the different mixing conditions. By calculating the poincare sections of Betti numbers in different mixing states, the result shows pieces of dense points with fractal structures, it means the mixing system is chaotic, and it can differentiate the normal and the abnormal mixing effects effectively by the feature of Poincare sections. If the slope of the largest lyapunov exponent caculated the by the method of Rosenstein is positive, which shows that the dynamic system is chaotic after fully mixing.
     Finally, this paper investigates the Zn-SiO2composite electrodeposition system, and one of the most common mixing ways which is electric-paddle stiring is applied to reseach the flow characteristics of the electrolyte. The distribustion of small particles and complex patterns formed by aggregating in the process of electrolyte mixing could be captured clearly by using digital image processing technology; in this paper, we propose the Betti numbers evaluation method and model for quantifying multiphase mixing effects to investigate the mixing effects of the composite electrolyte flow. By performance analysis of composite coating, it is verified that our evaluation method and model is feasibale and accurate, and provides an important reference for knowing and understanding the basic scientific issues of composite electrodeposition and optimization design of process.
引文
[1]来永斌,搅拌槽内部流动分析及实验研究,镇江:江苏大学博士学位论文,2010
    [2]李万平.计算流体力学[M].武汉:华中科技大学出版社,2004
    [3]约翰D.安德森.计算流体力学基础及其应用[M].吴颂平,刘赵淼译.北京:机械工业出版社,2007
    [4]王嘉骏,冯连芳,顾雪萍,王凯.搅拌设备化工设计系统的混合知识表达机制[J].计算机与应用化学,2000,17(5):394-398
    [5]徐世艾,韩晓丽,冯连芳,顾雪萍,王凯.气液固三相体系搅拌混合研究进展[J].化学工业与工程,2000,17(5):278-286
    [6]虞培清,周国忠.工业搅拌与混合技术进展.2007
    [7]范凤兰.重力掺混料仓中颗粒混合效果的实验研究[J].化工机械,2000,27(2):75-77
    [8]孙建中,明章勇,周其云.卧式双轴搅拌床反应器混合特性研究[J].高校化学工程学报,2000,14(2):183-187
    [9]陈德新,王玲花,徐岚.压电振动搅拌器内的流动可视化与流态分析[J].华北水利水电学院学报,2000,21(3):20-23
    [10]徐世艾,任万忠,韩晓丽,虞乐舜,段辉.自浮颗粒三相体系的搅拌混合技术(Ⅳ)釜内流型[J].烟台大学学报(自然科学与工程版),2000,13(2):118-125
    [11]陆书来.搅拌对丁苯吡乳液聚合的影响[J].弹性体,2000,10(1):4-9
    [12]李志鹏.涡轮桨搅拌槽内流动特性的实验[M].北京:北京化工大学,2007
    [13]刘心洪,搅拌槽内湍流特性的实验研究,北京:北京化工大学博士学位论文,2010
    [14]胡锡文,林兴华,刘海洋等.8种搅拌器搅拌特性的实验研究[J].化工机械,2005,32(5):259-262
    [15]杨明金,立式捏合机混合釜内固体推进剂药浆混合的研究,武汉:华中科技大学博士学位论,2008
    [16]于飞,包雨云,黄雄斌.搅拌槽内具滑移特性非牛顿流体的搅拌功率及混合特性研究[J].高校化学工程学报,2009,23(5):878-884
    [17]焦海亮,包雨云,黄雄斌等.高黏度流体混合研究进展[J].化工进展,2007,26(11):1574-1582
    [18]Virdung T, Rasmuson A. Measurements of Continuous Phase Velocities in Solid-Liquid Flow at Elevated Concentrations in a Stirred Vessel Using LDV[J]. Trans. IchemE.,2007, 85(A2):193-200
    [19]Kilander J, Rasmuson A. Energy dissipation and macro instabilities in a stirred square tank investigated using an LE PIV approach and LDA measurements[J]. Chem. Eng. Sci., 2005,60:6844-6856
    [20]樊建华,饶麒,王运东等.涡轮桨搅拌槽内流场的数字PIV测量[J].清华大学学报(自然科学版),2003,43(12):1605-1608
    [21]程先明.涡轮桨搅拌槽内流动特性的PIV研究[M].北京:北京化工大学,2009
    [22]吴莹.搅拌槽内流动结构的PIV研究[M].北京:北京化工大学,2007
    [23]Huchet F., Line A., Morchain J. Evaluation of local kinetic energy dissipation rate in the impeller stream of a Rushton turbine by time-resolved PIV[J]. Chem. Eng. Res. Des. 2009, doi:10.10160/j.cherd,2008
    [24]Chung K H K, Barigou M, Simmons M J H. Reconstruction of 3D flow field inside miniature Stirred vessels using a 2D PIV technique[J]. Chemical Engineering Research and Design,2007,85(A5):560-567
    [25]高殿荣,郭明杰,李岩,范卓立.变速搅拌混沌混合的PIV试验研究[J].机械工程学报,2006,42(8):44-49
    [26]Lourenco L. M, Krothopalli A. Stereoscopic and time resolved PIV measurements in high-speed flows[J]. AIAA 2004-2180,24th AIAA Aerodynamic Measurement Technology and Ground Testing Conference,2004:1-15
    [27]Min Jian, Gao Zhengming, Shi Litian. CFD simulation of mixing in a stirred tank with multiple hydrofoil impellers[J]. Chinese J. Chem. Eng.,2005,13(5):253-258
    [28]苗一,潘家祯,张国娟等.双层涡轮桨搅拌槽内混合过程的数值模拟[J].华东理工大学学报(自然科学版),2006,32(3):352-356
    [29]Mousavi S M, Zamankhan P, Jafari A. Computer simulations of sodium formate solution in a mixing tank[J]. Communications in Nonlinear Science and Numerical Simulation, 2008,13:380-399
    [30]程园畅,叶旭初.三桨叶搅拌釜相同混合时间条件下的CFD模拟及放大研究[J].南京工业大学学报,2007,29(4):54-58
    [31]Min J, Gao Z M. Large eddy simulations of mixing time in a stirred tank[J], Chinese Journal of Chemical Engineering,2006,14(1):1-7
    [32]Wang Feng, Wang Weijing, Mao Zaisha. Numerical Study of Solid-Liquid Two-Phase Flow in Stirred Tanks With Rushton Impeller(Ⅰ) Formulation and Simulation of Flow Field[J]. Chinese Journal of Chemical Engineering,2004,12(5):599-609
    [33]Ljungqvist M, Rasmuson A. Numerical Simulation of the Two-Phase Flow in An Axially Stirred Vessel [J]. Chemical Engineering Research and Design,2001,79(5):533-546
    [34]Hartmann, H., Derksen, J. Assessment of large eddy and RANS stirred tank simulations by means of LDA[J]. Chem. Eng. Sci.,2004,59:2419-2432
    [35]Bujalski W, Jaworski Z, Nienow A W. CFD study of homogenization with dual rushton turbiness comparison with experimental results[J]. Part Ⅱ:The multiple reference frame, Chem. Eng. Res. Des.,2002,80(A1):97-104
    [36]周国忠,王英琛,施力田.用CFD研究搅拌槽中的混合过程[J].化工学报,2003,54(7):886-890
    [37]张国娟,闵健,高正明等.涡轮桨搅拌槽内混合过程的数值模拟[J].北京化工大学学报,2004,31(6):24-27
    [38]李志鹏,高正明.涡轮桨搅拌槽内单循环流动特性的大涡模拟[J].过程工程学报,2007,7(5):900-904
    [39]Sbrizzai F., Lavezzo V., Verzicco R., Campolo M., Soldati A. Direct numerical simulation of turbulent particle dispersion in an unbaffled stirred-tank reactor[J]. Chem. Eng. Sci., 61:2843-2851
    [40]Tumbull J., Thompson C. P. Transient averaging to combine large eddy simulation with Reynolds averaged Navier-Stokes simulations[J]. Computers Chem. Eng.2005,29: 379-392
    [41]高殿荣,李岩.层流搅拌槽内几何非对称三维混沌混合流场的CFD模拟,大连:第四届全国流体传动及控制学术会议,2006:564-570
    [42]Jaworski, z., Bujalski, W., Otiomo, N. CFD study of homogenization with dual Rushton turbines comparison with experimental results[J]. Trans. IchemE,78A,2000:327-333
    [43]Zalc J M, Szalai E S, Alvarez M. M., et al. Using CFD to understand chaotic mixing in laminar stirred tanks[J]. AIChE. J.2002,48(10):2124-2134
    [44]Bakker, A., Lanre, M., Elizabeth, M. The use of large eddy simulation to study stirred vessel hydrodynamics[J]. In:Proc.10th Eur. Conf. Mixing, Elsevier Science B. V.,2000: 247-254
    [45]冯连芳,王嘉骏,顾雪萍,王凯.搅拌设备设计专家系统[J].合成橡胶工业,2001,24(2):67-70
    [46]Rabinath M, Kasat Gopal R, Pandit Aniruddha B. Mixing time in a short bubble column[J]. Can. J. Chem. Eng.,2003,81:185-195
    [47]Pandit A B, Doshi Yogesh K. Mixing time studies in bubble column reactor with and without internals[J]. International Journal of Chemical Reactor Engineering,2005,3: 1-23
    [48]Berthiaux H, Mosorov V, Tomczak L, et al. Principal component analysis for characterising homogeneity in powder mixing using image processing techniques [J]. Chem. Eng. Process.2006,45(5):397-403
    [49]Edward L, Paul, Victor A A, et al. Handbook of industrial mixing:science and practice[J]. New York:John Wiley & Sons,2004
    [50]Yang G Q, Fan L S. Axial liquid mixing in high-pressure bubble columns[J]. AIChE J, 2003,49(8):1995-2008
    [51]MICHELETTI M, NIKIFORAKI L, LEE K C, et al. Particle concentration and mixing characteristics of moderate to dense solid-liquid suspensions[J]. Ind. Eng. Chem. Res., 2003,42(24):6236-6249
    [52]Amit M, Fernando J M. Comparing mixing performance of uniaxial and biaxial bin blenders[J]. Powder Technol,2009,196(1):1-7
    [53]Thomas W, William H. Experimental investigation of transition to laminar mixing of a homogeneous viscous liquid in a tilted-rotating tank[J]. Chem. Eng. Sci.2009, 4(23):4919-4928
    [54]Thomas W, Asher M. Viscous fluid mixing in a tilted tank by periodic shear[J]. Chem. Eng. Sci.2007,62(22):6274-6284
    [55]MACHON V, JAHODA M. Liquid homogenization in aerated multi-impeller stirred vessel[J]. Chem. Eng. Tech.,2000,23(10):869-876
    [56]GUILLARD F, TRAGARDH C. Mixing in industrial Rushton turbine-agitated reactors under aerated conditions[J]. Chem. Eng. Process,2003,42(5):373-386
    [57]BOUAIFI M, ROUSTAN M. Power consumption, mixing time and homogenisation energy in dual-impeller agitated gas-liquid reactors[J]. Chem. Eng. Process,2001,40(2): 87-95
    [58]ESPINOSA-SOLARES T, LA FUENTE E B D, TECANTE A, et al. Mixing time in rheologically evolving model fluids by hybrid dual mixing systems[J]. Chem. Eng. Res. Des.,2002,80(8):817-823
    [59]VRABEL P, VAN DER LANS R G J M, LUYBEN K C A M, et al. Mixing in large-scale vessels stirred with multiple radial or radial and axial up-pumping impellers:modelling and measurements [J]. Chem. Eng. Sci.,2000,55(23):5881-5896
    [60]Melton L A, Lipp C W, Spradling R W. Dismt-determination of mixing time through color changes[J]. Chem. Eng. Comm.2002,189(3):322-338
    [61]Cabaret F, Fradette L, Tanguy P A. Characterization of macro-mixing kinetics using advanced image analysis.12th European Conference on Mixing, Bologna,2006,27-30
    [62]Nere N K, Patwardhan A W, Joshi J B. Liquid-phase mixing in stirred vessels:Turbulent flow regime[J]. Ind. Eng. Chem. Res.,2003,42:2661-2698
    [63]Min Jian, GAO Zhengming. Large Eddy Simulations of Mixing Time in a Stirred Tank[J]. Chinese Chem. Eng.,2006,14(1):1-7
    [64]Foucault S. Mixing Times in Coaxial Mixers with Newtonian and Non—Newtonian Fluids[J]. Ind. Eng. Chem. Res.2006,45(1):352-359
    [65]Ochieng A, Onyango M S, Kumar A, et al. Mixing in a tank stirred by a rushton turbine at a low clearance[J]. Chemical Engineering and Processing,2008,47:842-851
    [66]A.-L. Le Coent, A. Rivoire, S. BrianCon, J. Lieto. An original image-processing technique for obtaining the mixing time:The box-counting with erosions method[J]. Powder Technology,2005,152(1-3):62-71
    [67]张波,史谊峰,杨晓琴,张邦琪,施哲.艾萨炉水模拟气量与混合均匀时间研究[J].云南冶金,2007,36(4):31-33
    [68]Delaplace G, Bouvier L, Moreau A, et al. Determination of mixing time by colourimetric diagnosis-Application to a new mixing system[J]. Exp. Fluids,2004,36:437-443
    [69]Cabaret F, Bonnot S, Fradette L, et al. Mixing time analysis using colorimetric method and image processing[J]. Ind. Eng. Chem. Res.,2007,46(14):5032-5042
    [70]陈良才,黄红科,杨德辽等.气液搅拌釜中不同因素对混合时间的影响[J].化学反应工程与工艺,2006,22(5):424-428
    [71]程荡,程景才,雍玉梅,杨超,毛在砂.多相搅拌槽内宏观混合研究进展[J].化学工,2011,39(6):59-64
    [72]Yeoh S L, Papadakis G, Yianneskis M. Determination of mixing time and degree of homogeneith in stirred vessels with large eddy simulation[J]. Chem. Eng. Sci.,2005, 60(8-9):2293-2302
    [73]吴越,何建波,刘谋用.一种测量混合时间的新方法[J].实验力学,1999,14(1):102-105
    [74]张庆华,毛在砂,杨超等.一种计算搅拌槽混合时间的新方法[J].化工学报,2007,58(8):1891-1896
    [75]Unadkat H, Rielly C D, Hargrave G K, et al. Application of Fluorescent PW and Digital Image Analysis to Measure Turbulence Properties of Solid-Liquid Stirred Suspensions. Chem. Eng. Res. Des.2009,87(4):573-586
    [76]许正军,陈瑞琪.应用图像处理技术评定聚合物混合效果的研究[J].中国纺织大学学报,1998,24(1):88-90
    [77]刘宗华,混沌动力学基础及其应用[M].北京:高等教育出版社,2006
    [78]T. Kaczynski, K. Mischaikow, M. Mrozek. Computational Homology[J]. Applied Mathematical Sciences, Springer-Verlag, New York,2004,157
    [79]高普云.非线性动力学:分叉、混沌与孤立子[M].长沙:国防科技大学出版社,2005
    [80]刘树勇,朱石坚,俞翔.改进相空间重构方法在混沌识别中的应用研究[J].海军工程大学学报,2006,18(2):69-72
    [81]吕金虎,陆君安,陈士华,混沌时间序列分析及其应用[M].武汉:武汉大学出版社,2005
    [82]朱文刚,混合时间序列模型的谱分析,南京:东南大学硕士学位论文,2005
    [83]陈敏,叶晓舟.时间序列的混沌识别方法研究.电脑与信息技术,2008,16(6):17-19,26
    [84]G. A. Gottwald, I. Melbourne. Testing for chaos in deterministic systems with noise[J]. Physica D,2005,212:100-110
    [85]G. A. Gottwald, I. Melbourne. A new test for chaos in deterministic systems[J]. Proceedings of The Royal Society of London,2004,460:603-611
    [86]G. A. Gottwald, I. Melbourne. Comment on reliability of the 0-1 test for chaos[J]. Physical Review E,2008,77:028201
    [87]I. Falconer, G. A. Gottwald, I. Melbourne, K. Wormnes. Application of the 0-1 test for chaos to experimental data[J]. SIAM Journal on Applied Dynamical Systems,2007,6: 395-402
    [88]M. T. Rosenstein, J. J. Collins, C. J. de Luca. A practical method for calculating largest Lyapunov exponents from small data sets[J]. Physica D,1993,65:117-134
    [89]Xianquan Ao, Hua Wang, Yonggang Wei. Novel method for metallic zinc and synthesis gas production in alkali molten carbonates[J]. Energy Conversion and Management, 2008,49:2063-2068
    [90]罗军辉,冯平,哈力旦·A, Matlab7.0在图像处理中的应用[M],北京:机械工业出版社,2005
    [91]Xu Jianxin, Wang Hua, Fang Hui. Multiphase mixing quantification by computational homology and imaging analysis[J]. Appl. Math. Model.,2011,35(5):2160-2171
    [92]CHomP, http://chomp.rutgers.edu/software/
    [93]宁正福,姚约东,李国珍,葛家理.混沌理论及其在流体力学中的应用[J].新疆石油地质,2002,23(2):170-172
    [94]Hou, S., Wang, Y., Zhang, Z., Shi, L. Turbulence flow generated by axial impeller[J]. J. Chem. Ind. Eng. (China), (in Chinese),2000,51(2):259-263
    [95]Gao, Z., Niu, G., Shi, L., Smith, J. M. Mixing in stirred tanks with multiple hydrofoil impellers[J]. In:Proc.11th, Eur. Conf. Mixing, Bamberg,2003:14-17
    [96]Funakoshi M. Chaotic mixing and mixing efficiency in a short time[J]. Fluid Dynamics Research,2007,4:1-33
    [97]Takahashi K. Recent advance in chaotic mixing in a mixing equipment[J]. J. Chem. Eng. Jpn.2007,40(8):605-610
    [98]Zhang Z, Chen G. R. Liquid mixing enhancement by chaotic perturbations in stirred tanks[J]. Chaos, Solitons and Fractals,2006,6(24):1-6
    [99]Tae Gon Kang, Martien A. Hulsen, Patrick D. Anderson, et al. Chaotic advection using passive and externally actuated particles in a serpentine channel flow[J]. Chemical Engineering Science,2007,62 (23):6677-6686
    [100]S Cerbelli, A Adrover, F Creta, et al. Foundations of laminar chaotic mixing and spectral theory of linear operators, Chemical Engineering Science[J].2006,61(9):2754-2761
    [101]Stephen Wiggins, Ottino J. M. Foundations of chaotic mixing[J]. Phil. Trans. R. Soc. Lond. A,2004,362:937-970
    [102]Kang T G, Singh M K, Kwon T H, et al. Chaotic mixing using periodic and aperiodic sequences of mixing protocols in a micromixer[J]. Micro fluid Nano fluid,2008,4(6): 589-599
    [103]Giona M, Cerbelli S, Adrover A. Geometry of reaction interfaces in chaotic flows[J]. Phys. Rev. Lett.2002,88(2):1-4
    [104]Mitsuaki Funakoshi. Chaotic mixing and mixing efficiency in a short time[J]. Fluid Dynamics Research,2008,40:1-33
    [105]Sun KeHui, Liu Xuan, Zhu CongXu. Chin. Phys. B.,2010,19:11051
    [106]M. Gameiro, K. Mischaikow and T. Wanner. Evolution of Pattern Complexity in the Cahn-Hilliard Theory of Phase Separation[J]. Acta Materialia,2005,53:693-704
    [107]F. Ascani et al. Detection of low-dimensional chaos in quasi-periodic time series:the O-ltest[J]. Tech. Rep., Santa Fe Institute Complex Systems Summer School,2008
    [108]Alessandro Paglianti, Sandro Pintus, Massimiliano Giona. Time-series analysis approach for the identification of flooding/loading transition in gas-liquid stirred tank reactors[J]. Chem. Eng. Sci.,2000,55(23):5793-5802
    [109]Lauren A. Briens, Naoko Ellis. Chem. Eng. Sci.,2005,55:5793-5802, Alessandro paglianti, Sandro Pintus, Massimiliano Giona. Time-series analysis approach for the identification of flooding/loading transition in gas-liquid stirred tank reactors[J], Chem. Eng. Sci.,2000,55(23):5793-5802
    [110]M. Shoji. Studies of boiling chaos:a review[J]. Int. J. Heat Mass Transfer.2004, 47(6-7):1105-1128
    [111]Liu Ming-Yan,Qiang Ai-Hong,Sun Bing-Feng. Chaotic characteristics in an evaporator with a vapor-liquid-solid boiling flow[J]. Chem. Eng. Process,2006,45(1):73-78
    [112]M. B. Kennel, R. Brown, H. D. I. Abarbanel. Determining embedding dimension for phase-space reconstruction using a geometrical construction [J]. Physical Review A,1992, 45:3403-3411
    [113]D. Cafagna, G. Grassi. Fractional-order Chua's circuit:time-domain analysis, bifurcation, chaotic behavior and test for chaos[J]. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering,2008,18:615-639
    [114]Q Qu, C Yan, L Zhang, et al. Initial atmospheric corrosion of zinc sprayed with NaCl[J]. Trans.Nonferrous Met.Soc.China,2003,13:1243-1246
    [115]R Ramanauskas, L Muleshiova, L Maldonado, et al. Characterization of the corrosion behavior of Zn and Zn alloy electrodeposits:atomospheric and accelerated tests[J]. Corrosion Science,1998,40:401-410
    [116]B Tom. Towards a universal surface engineering road map[J]. Surface Engineering, 2000,16:89-90
    [117]T Bellezze, G Roventi, R Fratesi. Electrochemical study on the corrosion resistance of Cr (Ⅲ)-based conversion layers on zinc coatings[J]. Surface and Coatings Technology, 2002,155:227-228
    [118]H Wang, C.Z. Chen. Current situation of the study on zinc plating passivation tier[J]. Agricultural Equipment & Vehicle Engineering,2008,12:28-30 (in Chinese)
    [119]Y.B. Huang. Outline about passivating methods of galvanizing[J]. Coatings Painting & Electroplating,2007,5:33-37(in Chinese)
    [120]Yunying Fan. Research on Zinc-Silica Composite Plating[J].Advanced Materials Research Forum,2009,79(82):1903-1906
    [121]Yunying Fan. Numerical Simulation and PIV Test on Flow-field Character of Zinc-silica Composite Electrolyte [J]. Materials Science Forum,2011,704-705:440-445
    [122]Xuli Xia, Igor Zhitomirsky, Joseph R. McDermid. Electrodeposition of zinc and composite zinc-yttria stabilized zirconia coatings[J]. Journal of Materials Processing Technology,2009,209(5):2632-2640
    [123]Abe,M.,Shiohara, Y.,Adaniya, T.Naemura,H. Composite zinc-silica electro-galvanised steel sheet with excellent corrosion resistance. United States Patent,1990,21(2):186
    [124]Tolumoye J. Tuaweri, G.D.Wilcox. Behaviour of Zn-SiO2 electrodeposition in the presence of N,N-dimethyldodecylamine[J]. Surf & Coat. Tech,2006,200:5921-5930
    [125]Sung-Ho Hwang, Sang-Chul Jung, Seon-Mi Yoon, Dong-Kuk Kim. Preparation and characterization of dye-intercalated Zn-Al-layered double hydroxide and its surface modification by silica coating[J]. Journal of Physics and Chemistry of Solids, 2008,69(5-6):1061-1065.
    [126]J. Kilander, S. Blomstrom, A. Rasmuson. Spatial and temporal evolution of floc size distribution in a stirred square tank investigated using PIV and image analysis[J]. Chemical Engineering Science,2006,61(23):7651-7667
    [127]K.H.K. Chung, M.J.H. Simmons, M. Barigou. Local gas and liquid phase velocity meansurement in a miniature stirred vessel using PIV combined with a new image processing algorithm[J]. Experimental Thermal and Fluid Science,2009,33(4):743-753