花生粕酶解及其产物呈味特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
花生粕是花生榨油的副产物,富含蛋白质,由于高温压榨和溶剂浸提导致花生蛋白严重变性,色泽和气味劣化,限制了其在食品工业中的应用。本文旨在通过生物酶解技术高效回收利用花生粕蛋白资源,提高其附加值,拓宽应用范围。主要是采用生物发酵技术诱导米曲霉分泌蛋白酶,高效水解花生粕蛋白制备富含呈味肽的呈味基料。利用多种分离技术手段对花生蛋白呈味肽进行分离纯化,并对呈味肽段进行一级氨基酸序列的鉴定,采用固相多肽合成技术合成目标肽,对比分离纯化肽与合成肽的呈味特性,明晰其呈味机理。通过研究花生蛋白肽与还原糖之间的美拉德反应,深入探讨了多肽的美拉德反应活性、热反应结合方式以及风味的释放规律,为进一步提升花生蛋白肽的呈味特性提供理论和方法指导。
     选用花生粕作为培养基氮源诱导米曲霉分泌适合水解花生粕的蛋白酶,通过对影响米曲霉产蛋白酶的营养源进行研究,结果表明面粉、花生粕及氯化钙的影响较大。通过单因素试验和响应面分析,确定营养源优化配方:面粉2.24g,花生粕8.46g及氯化钙0.028g,中性蛋白酶活力为15478.00U/g(40℃)。蛋白酶粗品经过硫酸铵沉淀分级、超滤膜分离及Sephadex G-75凝胶过滤层析后,纯化得到电泳纯级的中性蛋白酶,蛋白酶活力达到79551.60U/g(40℃),其分子量约为50KDa。该蛋白酶的最佳pH为7.0,最适作用温度为50℃,在40~55℃之间蛋白酶均能保持较高的酶活力,金属离子对其无显著的激活作用。
     选用实验室自制酶和Alcalase、Protamex及Papain三种商业蛋白酶水解花生粕,监测各酶水解花生粕产物中蛋白回收率、水解度、肽分子量分布,结果表明,自制酶可高效水解花生粕蛋白,蛋白回收率和水解度分别高达80.6%和43.4%,且小分子量肽段含量较高,其中有15.9%的肽分子量小于1KDa,而三种商业蛋白酶水解花生粕产物的肽主要分布在3–6KDa之间。采用因子分析法对不同花生粕酶解液的氨基酸含量数据进行降维分析,结果显示氨基酸含量数据可分为三个主因子,其中第一主因子可表征为营养价值,而第二主因子可表征为风味。营养评价结果表明自制酶水解可以显著提高花生粕酶解产物的必需氨基酸含量,提高其营养价值。但其它三种商业蛋白酶对改善花生粕蛋白的营养价值作用不明显。滋味感官分析结果表明自制酶花生粕酶解液具有更高的鲜味和咸味强度,低苦味值和较高的滋味饱满度,其差异主要来源于游离氨基酸和小分子肽的影响。
     采用超滤、凝胶过滤色谱和半制备型反相高效液相色谱(RP-HPLC)等系列分离技术对花生粕蛋白肽进行分离纯化,得到两个呈味肽。采用MALDI-TOF-MS分析其分子量和氨基酸序列,结果表明鲜味增强肽分子量为1091.419Da,氨基酸序列为Glu-Gly-Ser-Glu-Ala-Pro-Asp-Gly-Ser-Ser-Arg;鲜味肽分子量为963.595Da,氨基酸序列为Ser-Ser-Arg-Asp-Glu-Gln-Ser-Arg,经肽谱数据库检索,这两个肽均为首次发现的呈味肽。以鉴定得到的两个呈味肽为目标肽进行固相化学合成,分别得到两个合成肽TP-A(鲜味肽)和TP-B(鲜味增强肽)。通过RP-HPLC和MALDI-TOF-MS分析,结果表明合成多肽的纯度达到95%以上,且氨基酸序列与目标肽相一致。采用滋味稀释分析法评价合成多肽,结果表明合成肽TP-A的鲜味阈值为160mg/L,合成肽TP-B的鲜味增强阈值为5mg/L。
     通过系统比较分析蛋白和肽标准品及酶解液在Superdex Peptide HR10/30和TSKgel G2000SWXL中的分离洗脱特性,发现前者更适合用于测定蛋白酶水解物的肽分子量分布,或监控蛋白酶解液分离纯化过程中分子量变化情况。
     通过对热反应产物的粒径分布和肽分子量分布分析,结果表明,加热可使大分子肽发生热降解,而美拉德反应过程中肽热降解和聚合并存。肽的美拉德反应活性与其分子量分布呈负相关关系,即肽的分子量越小,其美拉德反应活性越高,产物的抗氧化性也越高。花生粕酶解液及其肽段中的挥发性风味物质种类较少,以醛类和乙酸为主。对其加热可产生系列的醛类物质和呋喃类物质,而美拉德反应可形成更多的含氮化合物。此外,研究表明卵磷脂的降解或氧化产物与美拉德反应的中间产物可形成更多的含氮化合物,一方面丰富产物的风味,同时也提升了产物的抗氧化活性。
Defatted peanut meal is the main byproduct during peanut oil production, which is rich inproteins. The use in food industry is limited by its poor protein solubility, dark color andunpleasant flavor resulted from hot pressing and solvent extracted. The aim of the presentstudy was to recycle defatted peanut proteins by enzymatic hydrolysis technologic forimproving its value-added and extending utilization. The defatted peanut meal washydrolysated efficiently by protease prepared from Aspergillus oryzae to obtain condimentsrich in taste peptides. Several isolation and separation technologies were done on peanutprotein taste peptides, and the taste peptides were identified the amino acid sequence. Thedifferent taste characteristics between the target taste peptides and the peptides by solid-phasesynthesis were analyzed to ravel the taste mechanism. We discussed in-depth the Maillardreaction activity, Thermal combining ways and releasing rule of flavor of Maillard reactionproducts derived from peptides and reducing sugar. This information will be useful to selectthe technological strategies to enhance taste characteristics of peanut protein peptides.
     The defatted peanut meal which was designated as the nitrogen source of culture mediumwas used to induce Aspergillus oryzae to secrete proteases which could specificallyhydrolysate defatted peanut meal proteins. The study on nutrient source of Aspergillus oryzaerevealed that flour, defatted peanut meal and CaCl2had great influence. The optimalparameters were obtained by single factor experiment and response surface methodology. Thebest fornula was flour2.24g, defatted peanut meal8.46g and CaCl20.028g, and the neutralprotease activity got15478.00U/g (at40℃). Crude proteases were purified by ammoniumsulphate precipitate, ultrafiltration and Sephadex G-75gel filtration chromatography. Theneutral protease activity of purified protease was79551.60U/g (at40℃). Purified proteaseexhibit a single band on SDS-Polyacrolymide gel and the molecular weights are determinedto be about50KDa. Maximal neutral protease activity was found at pH7.0. Optimaltemperature was40℃, and high stability was obtained from40to55℃. Metal ions had nosignificance activation role for protease activity.
     Four proteases (crude protease extract (CPE), Alcalase, Protamex and Papain) were used tohydrolyze defatted peanut meal. The results of protein recovery, degree of hydrolysis andmolecular weight distribution of peptide in defatted peanut meal hydrolysates were compared.Suggesting that CPE could efficiently hydrolysate defatted peanut meal proteins, the proteinrecovery and degree of hydrolysis were80.6%and43.4%, respectively. Furthermore, thehydrolysate by CPE was comprised of many (15.9%) small peptides of below1KDa. whereas 3–6KDa fraction was observed to be the main fraction of the hydrolysates from the otherthree commercial proteases. Factor analysis was employed to reduce the dimensional data ofthe contents of amino acids of hydrolysates by different proteases. The results indicated thatthe datas could be divided into three factors, the first factor was described as nutritional value,and the second was sensory taste. Nutrition evaluation results indicated that the content ofessential amino acid and the nutritional value of defatted peanut meal proteins could beimproved by CPE. Whereas the improvement effects by commercial proteases were notsignificant. The results of sensory analysis revealed the hydrolysate by CPE had the highestintensity scores for umami, salty and full-bodied, while the lowest bitterness. The differenttaste characteristics could be dependent on the free amino acids and peptides.
     Two taste peptides were isolated and purified by ultrafiltration, gel filtrationchromatography and reverse high-performance liquid chromatography (RP-HPLC). Theactive peptides were identified to be Ser-Ser-Arg-Asn-Glu-Gln-Ser-Arg (umami peptide) andGlu-Gly-Ser-Glu-Ala-Pro-Asp-Gly-Ser-Ser-Arg (umami-enhancing peptide) byMALDI-TOF-MS, respectively. The two purified peptide were both the first to be foundwhich showed good umami or umami-enhancing taste. The two identified peptides weresynthesized by solid-phase synthesis, name TP-A (Taste Peptide-A) and TP-B (TastePeptide-B), respectively. The purity of both peptides was above95%. In addition, themolecular weight and sequence structure of the two peptides equated with the fact. The tastecharacteristics of synthetical peptides was evaluated by taste dilution analysis, the resultsshowed the umami taste threshold of TP-A was160mg/L, and the umami-enhancingthreshold of TP-B was5mg/L.
     Comparison of eluted characteristics on pure proteins/peptides standards and hydrolysatesbetween Superdex Peptide HR10/30and TSK gel G2000SWXL, the results showed theformer chromatogram was appropriate to analyze the molecular weight distribution ofhydrolysates with small peptides or detect the changes of molecular weight distribution ofhydrolysates during separation and purification.
     The particle and molecular weight distribution of thermal reaction products were analysed.The results showed the lager peptides mainly occurred thermal degradation by heat treatment,while peptide degradation and cross-linking were simultaneously occurred during theMaillard reaction. The Maillard reaction activity of peptides was negatively related to theirmolecular weight, which was the smaller molecular weight, the higher reaction activity, eventhe higher antioxidant activity. There were only some aldehydes and acetic acids in peanuthydrolysate and its peptide fractions. A series of aldehydes and furans would formed by heat treatment, and nitrogenous compounds formed during Maillard reaction. In addition, thereaction between the lecithin lipid oxidation and degradation products and Maillard reactionintermediate products would producted more nitrogenous compounds, which could be affluentin the flavour of products, and the other hand enhance their antioxidant activity.
引文
[1] V.C. Knauf,Facciotti, D. Genetic engineering of foods to reduce the risk of heart diseaseand cancer[J]. Advances in Experimental Medicine and Biology,1995,369:221–228.
    [2]刘晓军.花生加工副产品的再利用[J].农产品加工,2006,11:36–38.
    [3]梅娜,周文明,胡晓玉,李玲玲.花生粕营养成分分析[J].西北农业学报,2007,16(3):96–99.
    [4] A. Batal, Dale, N.,Café, M. Nutrient composition of peanut meal[J]. The Journal ofApplied Poultry Research,2005,14(2):254–257.
    [5] N.J. Neucere, Ory, R.L.,Carney, W.B. Effect of roasting on the stability of peanutproteins[J]. Journal of Agricultural and Food Chemistry,1969,17(1):25–28.
    [6] N.J. Neucere. Isolation of α-arachin, the major peanut globulin[J]. AnalyticalBiochemistry,1969,27(1):15–24.
    [7] N.J. Neucere, Conkerton, E.J., Booth, A.N. Effect of heat on peanut proteins. II.Variations in nutritional quality of the meals[J]. Journal of Agricultural and FoodChemistry,1972,20(2):256–259.
    [8]王章存,董吉林,郑坚强,姚惠源.热变性米蛋白的性质与结构研究—Ⅲ米蛋白与糖的结合特性[J].中国粮油学报,2008,23(3):8–11.
    [9] J.A. Newell, Mason, M.E., Matlock, R.S. Precursors of typical and atypical roastedpeanut flavor[J]. Journal of Agricultural and Food Chemistry,1967,15(5):767–772.
    [10] N.J. Neucere, Ory, R.L. Effect of organic on the proteins extracted frompeanuts[J].Journal of Agricultural and Food Chemistry,1968,16(2):364–365.
    [11]蔡国林,郑兵兵,王刚,曹钰,王兴国,陆健.微生物发酵提高花生粕营养价值的初步研究[J].中国油脂,2010,5:31–34.
    [12]柳杰,张晖,王立,郭晓娜.花生粕固态发酵生产高蛋白饲料菌种的筛选[J].中国油脂,2010,6:16–18.
    [13]孙欣,祝清俊,王文亮,陈蕾蕾,杜方岭.乳酸菌发酵冷榨花生粕生产花生酸奶的工艺研究[J].中国食物与营养,2011,8:56–58.
    [14]庄桂.混合菌种发酵酿造酱油的研究[J].中国酿造,1993,5:12–17.
    [15]刘玉兰,张晓丽,杜蘅.冷榨花生饼混合溶剂萃取生产浓缩蛋白工艺条件的研究[J].粮油加工,2009,12:83–86.
    [16]刘岩.物理及酶法改善热压榨花生粕蛋白功能特性的研究[D].广州:华南理工大学,2011.
    [17]江学文,李雁群.用脱脂花生粕制取花生蛋白发泡粉的研究[J].中国油脂,1998,23(6):32–34.
    [18]胡晓.酶法交联与微射流均质改性花生蛋白及其结构与功能特性研究[D].广州:华南理工大学,2011
    [19]余安,王承明.超声辅助提取花生粕中植酸工艺优化[J].食品科学,2010,31(10):179–183.
    [20]余安,王承明.微波辅助提取花生粕中植酸的研究[J].食品工业科技,2010,10:291–293.
    [21]薛力,于丹.花生粕中黄酮提取工艺条件的研究[J].世界农业,2007,9:63–64.
    [22]邢福国,刘阳.花生粕总黄酮的提取工艺[J].食品研究与开发,2010,31(001):17–20.
    [23]苗敬芝,钱忠华,董玉玮.响应面法优化花生粕中膳食纤维提取工艺[J].农业机械,2011,12):136–139.
    [24]陈辉,何俊萍,何义,李亚楠,张先周,李静,李海丽.酶法提取花生粕不溶性膳食纤维的研究[J].食品工业,2011,1:66–68.
    [25]秦杰,苗敬芝,董玉玮.双酶法提取花生粕中总膳食纤维的研究[J].食品科技,2011,36(10):157–160.
    [26]刘洁,杜方岭,王文亮,徐同成,刘丽娜,陶海腾,李文香.纤维素酶法提取花生粕中多糖的研究[J].中国酿造,2012,11:30–33.
    [27] L.R. Beuchat, Cherry, J.P., Quinn, M.R. Physicochemical properties of peanut flour asaffected by proteolysis[J]. Journal of Agricultural and Food Chemistry,1975,23(4):616–620.
    [28] A.A. Sekul, Vinnett, C.H., Ory, R.L. Some functional properties of peanut proteinspartially hydrolyzed with papain[J]. Journal of Agricultural and Food Chemistry,1978,26(4):855–858.
    [29]吴肖,刘通讯,林勉.复合酶水解花生粕蛋白工艺研究[J].食品工业科技,2005,26(1):120–121.
    [30]林勉,刘通讯.内肽酶与端解酶水解花生粕蛋白的研究[J].食品科学,2000,21(1):22–25.
    [31]刘政,喻修健,刘健卓,刘欢,徐海丽.双酶同加法制备花生粕多肽的工艺研究[J].化学与生物工程,2009,26(12):57–59.
    [32]廖绍波,王洁梅,赖颖怡,李锦培.关于利用花生粕酶解液生产特色酱油的工艺研究[J].中国酿造,2002,5(121):23–24.
    [33]刘通讯,林勉.花生粕蛋白酶解液Maillard反应合成肉类香味料的研究[J].食品科学,2001,22(4):25–27.
    [34]邹凤,于炟,金青哲,王兴国,王珊珊,李秋.花生粕蛋白酶解液与还原糖共热发生美拉德反应产生浓香花生油风味物的工艺研究[J].粮油加工,2011,12:24–28.
    [35]车有荣.酶法技术在花生粕蛋白水解中的应用[J].中国酿造,2008,18:60–63.
    [36] H. Schlichtherle-Cerny, Amadò, R. Analysis of taste-active compounds in an enzymatichydrolysate of deamidated wheat gluten[J]. Journal of Agricultural and Food Chemistry,2002,50(6):1515–1522.
    [37] C. Winkel, D.E. Klerk, A., Visser, J., D.E. Rijke, E., Bakker, J., Koenig, T.,Renes, H.New developments in umami (enhancing) molecules[J]. Chemistry&Biodiversity,2008,5(6):1195–1203.
    [38] K. Maehashi, Matsuzaki, M., Yamamoto, Y.,Udaka, S. Isolation of peptides from anenzymatic hydrolysate of food proteins and characterization of their taste properties[J].Bioscience, Biotechnology, and Biochemistry,1999,63(3):555–559.
    [39] Y. Ueda, Yonemitsu, M., Tsubuku, T., Sakaguchi, M., Miyajima, R. Flavor characteristicsof glutathione in raw and cooked foodstuffs[J]. Bioscience, Biotechnology, andBiochemistry,1997,61(12):1977–1980.
    [40] S. Toelstede, Dunkel, A.,Hofmann, T. A series of kokumi peptides impart the long-lastingmouthfulness of matured Gouda cheese[J]. Journal of Agricultural and Food Chemistry,2009,57(4):1440–1448.
    [41] S. Toelstede, Hofmann, T. Kokumi-active glutamyl peptides in cheeses and theirbiogeneration by Penicillium roquefortii[J]. Journal of Agricultural and Food Chemistry,2009,57(9):3738–3748.
    [42] J. Kirimura, Shimizu, A., Kimizuka, A., Ninomiya, T., Katsuya, N. Contribution ofpeptides and amino acids to the taste of foods[J]. Journal of Agricultural and FoodChemistry,1969,17(4):689–695.
    [43] J. Solms. Taste of amino acids, peptides, and proteins[J]. Journal of Agricultural andFood Chemistry,1969,17(4):686–688.
    [44] M. Fujimaki, Arai, S., Yamashita, M., Kato, H., Noguchi, M. Taste peptide fractionationfrom a fish protein hydrolysate[J]. Agricultural and Biological Chemistry,1973,37(12):2891–2898.
    [45] M.A. Sentandreu, Stoeva, S., Aristoy, Mc, Laib, K., Voelter, W., Toldra, E. Identificationof Small Peptides Generated in Spanish Dry–cured Ham[J]. Journal of Food Science,2003,68(1):64–69.
    [46]党亚丽.金华火腿和巴马火腿风味的研究[J].无锡:华南理工大学,2009.
    [47] Y. Yamasaki, Maekawa, K. A peptide with delicious taste[J]. Agricultural and BiologicalChemistry,1978,42(9):1761–1765.
    [48] Y. Yamasaki, Maekawa, K. Synthesis of a peptide with delicious taste[J]. Agriculturaland Biological Chemistry,1980,44(1):93–97.
    [49] M. Tamura, Nakatsuka, T., Tada, M., Kawasaki, Y.,Kikuchi, E. The relationship betweentaste and primary structure of "Delicious peptide"(Lys-Gly-Asp-Glu-Glu-Ser-Leu-Ala)from beef soup [J]. Agricultural and Biological Chemistry,1989,53(2):319–325.
    [50] Am Spanier, Miller, J.A.,Bland, J.M. Contribution of a naturally occurring, non-volatilepeptide to beef flavor[J].1996:47–57.
    [51] A.M. Spanier, Miller, J.A. Role of proteins and peptides in meat flavor[C]. ACSPublications:78–97.
    [52] K. Wang, Maga, J.A., Bechtel, P.J. Taste properties and synergisms of beefy meatypeptide[J]. Journal of Food Science,1996,61(4):837–839.
    [53] J. Hau, Cazes, D.,Fay, L.B. Comprehensive study of the “beefy meaty peptide”[J].Journal of Agricultural and Food Chemistry,1997,45(4):1351–1355.
    [54] A.H.A. Van Den Oord,Van Wassenaar, P.D. Umami peptides: assessment of their allegedtaste properties[J]. Zeitschrift für Lebensmitteluntersuchung und-Forschung A,1997,205(2):125–130.
    [55] H.N. Lioe, Takara, K.,Yasuda, M. Evaluation of peptide contribution to the intenseumami taste of Japanese soy sauces[J]. Journal of Food Science,2006,71(3):277–283.
    [56]王金水.酶解-膜超滤改性小麦面筋蛋白功能特性研究[D].广州:华南理工大学,2007.
    [57]周雪松.鸡肉蛋白酶解及其产物抗氧化活性研究[D].广州:华南理工大学,2006.
    [58] S. Toelstede, Hofmann, T. Sensomics mapping and identification of the key bittermetabolites in Gouda cheese[J].Journal of Agricultural and Food Chemistry,2008,56(8):2795–2804.
    [59] T. Davidek, Kraehenbuehl, K., Devaud, S., Robert, F., Blank, I. Analysis of Amadoricompounds by high-performance cation exchange chromatography coupled to tandemmass spectrometry[J]. Analytical Chemistry,2005,77(1):140–147.
    [60] E. Beksan, Schieberle, P., Robert, F., Blank, I., Fay, L.B., Schlichtherle-Cerny, H.,Hofmann, T. Synthesis and sensory characterization of novel umami-tasting glutamateglycoconjugates[J]. Journal of Agricultural and Food Chemistry,2003,51(18):5428–5436.
    [61] H. Ottinger, Soldo, T., Hofmann, T. Discovery and structure determination of a novelMaillard-derived sweetness enhancer by application of the comparative taste dilutionanalysis (cTDA)[J]. Journal of Agricultural and Food Chemistry,2003,51(4):1035–1041.
    [62]张晓鸥.琼脂糖亲水相互作用色谱在多肽分离纯化中的应用[D].大连:大连理工大学,2010.
    [63] B. Hernández-Ledesma, Davalos, A., Bartolome, B.,Amigo, L. Preparation ofantioxidant enzymatic hydrolysates from α-lactalbumin and β-lactoglobulin.Identification of active peptides by HPLC-MS/MS[J]. Journal of Agricultural and FoodChemistry,2005,53(3):588–593.
    [64] R.M. Vilela, Lands, L.C., Chan, H.M., Azadi, B., Kubow, S. High hydrostatic pressureenhances whey protein digestibility to generate whey peptides that improve glutathionestatus in CFTR–deficient lung epithelial cells[J]. Molecular Nutrition and Food Research,2006,50(11):1013–1029.
    [65] H.N. Lioe, Apriyantono, A., Takara, K., Wada, K., Naoki, H.,Yasuda, M. Low molecularweight compounds responsible for savory taste of Indonesian soy sauce[J]. Journal ofAgricultural and Food Chemistry,2004,52(19):5950–5956.
    [66]赵谋明,肖如武,崔春,章超桦.超滤对马氏珍珠贝肉蛋白酶解液特性的影响永[J].华南理工大学学报(自然科学版),2009,37(10):124–128.
    [67]何炳林,黄文强.离子交换与吸附树脂[M].上海科技教育出版社,1995:
    [68]刘健敏,钟芳,麻建国.大豆生理活性肽的研究[J].无锡轻工大学学报,2004,23(3):41–45.
    [69]程云辉,王璋,许时婴.大孔吸附树脂对麦胚肽的吸附特性研究[J].食品与机械,2006,21(6):7–12.
    [70]李从军,鲁明波,余龙江,周莲蓬,李文兵.大孔吸附树脂分离纯化谷胱甘肽的初步研究[J].食品科技,2006,31(10):70–73.
    [71]夏克胜,肖如武,赵谋明,崔春.大孔吸附树脂对鲜味肽分离效果及影响因素的研究[J].食品工业科技,2010,8:144–146.
    [72]党亚丽,张中健,闫小伟,王璋,许时婴.巴马火腿酶解物中呈味肽的分离纯化及其结构研究[J].食品科学,2010,31(13):127–131.
    [73]王蓓,许时婴.乳蛋白酶解产物呈味肽序列的研究[J].食品科学,2010,31(07):140–145.
    [74] I.L. Kukman, Zelenik-Blatnik, M., Abram, V. Isolation of low-molecular-masshydrophobic bitter peptides in soybean protein hydrolysates by reversed-phasehigh-performance liquid chromatography[J]. Journal of Chromatography A,1995,704(1):113–120.
    [75] H. Schlichtherle-Cerny, Affolter, M., Cerny, C. Taste-active glycoconjugates ofglutamate: new umami compounds[C]. ACS Publications:210–222.
    [76]胡亚男,王义明,罗国安.质谱在糖分析中的应用[J].药学学报,2000,35(5):397–400.
    [77]王红霞,杨松成.蛋白质非共价复合物的电喷雾质谱研究进展[J].药学学报,2001,36(4):315–320.
    [78]季怡萍,刘志强,刘淑莹.用MALDI–TOF–MS法测定重组人肿瘤坏死因子α衍生物[J].分析测试学报,2000,19(3):61–62.
    [79]齐银霞,成坚,王琴.核磁共振技术在食品检测方面的应用[J].食品与机械,2008,24(6):228–231.
    [80]张芳,林东海.用核磁共振方法研究金属离子与蛋白质的相互作用[J].波谱学杂志,2009,26(1):136–149.
    [81]赵锐,顾谦群,管华诗.多肽物质分离与分析方法研究进展[J].中国海洋药物,2000,19(3):48–48.
    [1]顾雅君,王瑛,刘建荣,王世英,秦艳梅.与食用菌相关主要酶的研究和应用[J].中国食用菌,2006,25(1):40–42.
    [2]李全海,张引.蛋白酶在羊毛纤维改性方面的应用[J].河北纺织,2006,2:57–64.
    [3]胡学智.酶制剂工业[M].北京:化工出版社,1984:1–23.
    [4]陈献忠,沈微,樊游,王正祥[J].后基因组时代的丝状真菌基因组学与代谢工程[J].HEREDITAS (Beijing),2011,33(10):1067–1078.
    [5]肖怀秋.高活力产中性蛋白酶细菌菌株的选育及酶学性质研究[D].湖南:湖南农业大学,2006.
    [6]姜文侠,史连生.饲用微生态制剂—益生素[J].动物科学与动物医学,2000,17(2):57–59.
    [7]黄婵媛,崔春,赵谋明.小麦面筋蛋白的米曲霉蛋白酶系酶解特性研究[J].食品与发酵工业,2010,36(9):38–41.
    [8]冷云伟,袁兴光.诱导酶合成机理与酱油制曲工艺调整[J].中国调味品,1998,5:6–8.
    [9]孙春华,燕磊,常维山.不同碳源和氮源对米曲霉产酶影响的研究[J].西南农业学报,2007,20(005):986–990.
    [10] S.M. Basha, Pancholy, S.K.Composition and characteristics of basic proteins frompeanut (Arachis hypogaea L.) seed [J]. Journal of Agricultural and Food chemistry,1982,30(6):1176–1179.
    [11]梅娜,周文明,胡晓玉,李玲玲.花生粕营养成分分析[J].西北农业学报,2007,16(3):96–99.
    [12] N.J. Neucere, Ory, R.L.,Carney, W.B.Effect of roasting on the stability of peanut proteins[J]. Journal of Agricultural and Food chemistry,1969,17(1):25–28.
    [13] N.J. Neucere,Ory, R.L. Effect of organic on the proteins extracted from peanuts [J].Journal of Agricultural and Food chemistry,1968,16(2):364–365.
    [14]杨惠芬,食品卫生,李明元,沈文.食品卫生理化检验标准手册[M].北京:中国标准出版社,1998
    [15] U.K. Laemmli. Cleavage of structural proteins during the assembly of the head ofbacteriophage T4[J]. Nature,1970,227(5259):680–685.
    [16]刘志伟,谭兴和,周红丽,王峰,陈垚,郭子奇,李国武,陈绪文,姚曙光.米曲霉产中性蛋白酶条件的优化[J].中国酿造,2012,236(11):103–107.
    [17]王旭峰,何计国,陶纯洁,单秀峰.小麦麸皮的功能成分及加工利用现状[J].粮食与食品工业,2006,13(1):19–22.
    [18]李永泉,朱志成,李向晟,姚恕,郑连英.中性蛋白酶发酵工艺优化研究[J].微生物学通报,1995,22(3):155–154.
    [19]朱辉,娄沂春,林福呈,李德葆.利用城市垃圾发酵生产绿色木霉孢子[J].微生物学通报,1999,26(6):387–389.
    [20]郭杰炎,蔡武城.微生物酶[M].科学出版社,1986.
    [21]刘军昌,段作营.固态发酵生产腺苷酸脱氨酶[J].工业微生物,2002,32(1):36–39.
    [22]李剑,谢春娟.废水中苯胺的好氧共代谢降解实验研究[J].环境工程学报,2007,1(6):51–55.
    [23]冷云伟.酱油曲中米曲霉及制曲工艺的研究[D].无锡:江南大学,2004.
    [24]杨兰.高盐稀态酱油发酵过程工艺优化及作用机理的研究[D].广州:华南理工大学,2010.
    [25]李季伦.微生物生理学[M].北京农业大学出版社,1993.
    [26]杨俊豪,陈宝英,吴培群,李豫平,沈涌,胡学智.酱油曲霉蛋白酶活力的提高[J].工业微生物,1994,1(6):1–6.
    [27]谢广发.植酸提高米曲霉酶活力的机理[J].酿酒科技,1999,95(5):70–70.
    [28] H. Ishida, Hata, Y., Kawato, A., Abe, Y., Suginami, K.,Imayasu, S.Identification offunctional elements that regulate the glucoamylase-encoding gene (glaB) expressed insolid-state culture of Aspergillus oryzae[J]. Current genetics,2000,37(6):373–379.
    [29]石磊.高产木聚糖酶米曲霉菌株的理性选育、发酵优化及酶学特性研究[D].福州:福建师范大学,2008.
    [30] R. Ghosh, Silva, S.S.,Cui, Z.Lysozyme separation by hollow-fibre ultrafiltration[J].Biochemical Engineering Journal,2000,6(1):19–24.
    [1] S.M. Basha, Pancholy, S.K. Composition and characteristics of basic proteins frompeanut (Arachis hypogaea L.) seed[J]. Journal of Agricultural and Food chemistry,1982,30(6):1176–1179.
    [2]梅娜,周文明,胡晓玉,李玲玲.花生粕营养成分分析[J].西北农业学报,2007,16(3):96–99.
    [3] R.Y.Y. Chiou. Effects of heat treatments on peanut arachin and conarachin[J]. Journal ofFood Biochemistry,1990,14(3):219–232.
    [4] E.E. Quist, Phillips, R.D., Saalia, F.K. The effect of enzyme systems and processing onthe hydrolysis of peanut (Arachis hypogaea L.) protein[J]. LWT-Food Science andTechnology,2009,42(10):1717–1721.
    [5] F. Guerard, Dufossé, L., De La Broise, D.,Binet, A. Enzymatic hydrolysis of proteinsfrom yellowfin tuna (Thunnus albacares) wastes using Alcalase[J]. Journal of MolecularCatalysis B: Enzymatic,2001,11(4-6):1051–1059.
    [6] J. Yu, Ahmedna, M., Goktepe, I. Peanut protein concentrate: Production and functionalproperties as affected by processing[J]. Food Chemistry,2007,103(1):121–129.
    [7] N.J. Neucere, Conkerton, E.J.,Booth, A.N. Effect of heat on peanut proteins. II.Variations in nutritional quality of the meals[J]. Journal of Agricultural and Foodchemistry,1972,20(2):256–259.
    [8] Da Clare, Swaisgood, He. Bioactive milk peptides: a prospectus[J]. Journal of DairyScience,2000,83(6):1187–1195.
    [9] R.J. Elias, Kellerby, S.S., Decker, E.A. Antioxidant activity of proteins and peptides[J].Critical Reviews in Food Science and Nutrition,2008,48(5):430–441.
    [10] J. Vioque, Sanchez-Vioque, R., Clemente, A., Pedroche, J., Bautista, J., Millan, F.Production and characterization of an extensive rapeseed protein hydrolysate[J]. Journalof the American Oil Chemists' Society,1999,76(7):819–823.
    [11] A.M. Blinkovsky, Byun, T., Brown, K.M., Golightly, E.J., Klotz, A.V. A non-specificaminopeptidase from Aspergillus[J]. Biochimica et Biophysica Acta (BBA)-ProteinStructure and Molecular Enzymology,2000,1480(1-2):171–181.
    [12] Ks Vishwanatha, Appu Rao, Ag,Singh, S.A. Characterisation of acid protease expressedfrom Aspergillus oryzae MTCC5341[J]. Food Chemistry,2009,114(2):402–407.
    [13] J. Chutmanop, Chuichulcherm, S., Chisti, Y.,Srinophakun, P. Protease production byAspergillus oryzae in solid–state fermentation using agroindustrial substrates[J]. Journalof Chemical Technology and Biotechnology,2008,83(7):1012–1018.
    [14]杨惠芬,李明元,沈文.食品卫生理化检验标准手册[M].中国标准出版社,1998.
    [15] J. Miller,Young, Ct. Protein nutritional quality of Florunner peanut meal as measured byrat bioassay[J]. Journal of Agricultural and Food chemistry,1977,25(3):653–657.
    [16]张惟杰.糖复合物生化研究技术[M].浙江大学出版社,1999.
    [17] S. Nilsang, Lertsiri, S., Suphantharika, M.,Assavanig, A. Optimization of enzymatichydrolysis of fish soluble concentrate by commercial proteases[J]. Journal of FoodEngineering,2005,70(4):571–578.
    [18]黄伟坤,食品卫生,陈培,食品检验,王翔.食品检验与分析[M].中国轻工业出版社,1989.
    [19] M. Puig-Deu,Buxaderas, S. Analytical conditions for the determination of23phenylthiocarbamyl amino acids and ethanolamine in musts and wines byhigh-performance liquid chromatography[J]. Journal of Chromatography A,1994,685(1):21–30.
    [20] FAO/WHO. Protein Quality Evaluation: Report of the joint FAO/WHO expertconsultation[J]. Food and Nutrition,1991:51.
    [21]丁栎达.因子分析法在室内装饰设计中的应用[J].硅谷,2011,(1):93–93.
    [22]游丽君.泥鳅蛋白抗氧化肽的分离纯化及抗疲劳、抗癌功效研究[D].广州:华南理工大学,2010,
    [23]周雪松.鸡肉蛋白酶解及其产物抗氧化活性研究[D].广州:华南理工大学,2006.
    [24]田甲春,余群力,保善科,杨勤.不同地方类群牦牛肉营养成分分析[J].营养学报,2011,33(5):531–533.
    [25]陈杰,方志伟,徐鹤龙,陈德华,郭仕清,谢玉钊.花生粕的主要特征、营养成分及综合开发利用[J].广东农业科学,2008,(11):70–71.
    [26] T.L. Ferea, D. Botstein, P.O. Brown, R.F. Rosenzweig. Systematic changes in geneexpression patterns following adaptive evolution in yeast[J]. Proceedings of the NationalAcademy of Sciences,1999,96(17):9721–9726.
    [27] M.J. García-Gómez, S. Huerta-Ochoa, O. Loera-Corral, La. Prado-Barragán. Advantagesof a proteolytic extract by Aspergillus oryzae from fish flour over a commercialproteolytic preparation[J]. Food Chemistry,2009,112(3):604–608.
    [28] M. Hrckova, M. Rusnakova, J. Zemanovic. Enzymatic hydrolysis of defatted soy flourby three different proteases and their effect on the functional properties of resultingprotein hydrolysates[J]. Czech Journal of Food Sciences,2002,20(1):7–14.
    [29] F. Guerard, Guimas, L.,Binet, A. Production of tuna waste hydrolysates by a commercialneutral protease preparation[J]. Journal of Molecular Catalysis B: Enzymatic,2002,19:489–498.
    [30]邹学,马艳青,戴雄泽,张竹青,刘荣云,陈文超,周群初,李雪峰.湖南辣椒地方品种资源的因子分析及数量分类[J].植物遗传资源学报,2005,6(001):37–42.
    [31] L. Bensabat, Frampton, V.L., Allen, Le,Hill, Ra. Heat Effects on Peanut Proteins, Effectof Processing on the-Amino Groups of Lysine in Peanut Proteins[J]. Journal ofAgricultural and Food Chemistry,1958,6(10):778–778.
    [32] S.M.M. Basha, Pancholy, S.K. Identification of methionine-rich polypeptides in peanut(Arachis hypogaea L.) seed[J]. Journal of Agricultural and Food chemistry,1981,29(2):331–335.
    [33] Kh Ney. Prediction of bitterness of peptides from their amino acid composition[J]. Z.Lebensm. Unters. Forsch,1971,147:64–68.
    [34] B.C. Saha,Hayashi, K. Debittering of protein hydrolyzates[J]. Biotechnology Advances,2001,19(5):355–370.
    [35] T. Okumura, Yamada, R.,Nishimura, T. Sourness-suppressing peptides in cooked porkloins[J]. Bioscience, Biotechnology, and Biochemistry,2004,68(8):1657–1662.
    [36] M. Tamura, Nakatsuka, T., Tada, M., Kawasaki, Y.,Kikuchi, E. The relationship betweentaste and primary structure of[J]. Agricultural and Biological Chemistry,1989,53(2):319–325.
    [1] M. Behrens, Meyerhof, W., Hellfritsch, C., Hofmann, T. Sweet and umami taste:natural products, their chemosensory targets, and beyond[J]. AngewandteChemie International Edition,2011,50(10):2220–2242.
    [2] K. Ikeda. New seasonings[J]. Chemical senses,2002,27(9):847–849.
    [3] N. Chaudhari, Pereira, E., Roper, S.D. Taste receptors for umami: the case formultiple receptors[J]. The American Journal of Clinical Nutrition,2009,90(3):738–742.
    [4] S.L Drake, Carunchia Whetstine, Me, Drake, Ma, Courtney, P., Fligner, K.,Jenkins, J.,Pruitt, C. Sources of umami taste in Cheddar and Swiss cheeses[J].Journal of Food Science,2007,72(6):360–366.
    [5] T. Nishimura. Mechanism involved in the improvement of meat taste duringpostmortem aging[J]. Food Science and Technology International, Tokyo,1998,4(4):241–249.
    [6] J. Velí ek, Davidek, J., Kubelka, V., Thu, T.T.B., Haj lová, J. Succinic acid inyeast autolysates and its sensory properties[J]. Food/Nahrung,1978,22(8):735–743.
    [7] S. Yamaguchi, Ninomiya, K. Umami and food palatability[J]. Flavor Chemistry:thirty years of progress,1999,423.
    [8] H.N. Lioe, Takara, K., Yasuda, M. Evaluation of peptide contribution to theintense umami taste of Japanese soy sauces[J]. Journal of Food Science,2006,71(3):277–283.
    [9] H. Schlichtherle-Cerny, Amadò, R. Analysis of taste-active compounds in anenzymatic hydrolysate of deamidated wheat gluten[J]. Journal of Agriculturaland Food Chemistry,2002,50(6):1515–1522.
    [10] S. Ohyama, Ishibashi, N., Tamura, M., Nishizaki, H.,Okai, H. Synthesis of bitterpeptides composed of aspartic acid and glutamic acid[J]. Agricultural andBiological Chemistry,1988,52(3):871–872.
    [11] K. Maehashi, Matsuzaki, M., Yamamoto, Y., Udaka, S. Isolation of peptides froman enzymatic hydrolysate of food proteins and characterization of their tasteproperties[J]. Bioscience, Biotechnology, and Biochemistry,1999,63(3):555–559.
    [12] M. Tamura, Nakatsuka, T., Tada, M., Kawasaki, Y., Kikuchi, E. The relationshipbetween taste and primary structure of "delicious peptide"(Lys-Gly-Asp-Glu-Glu-Ser-Leu-Ala) from beef soup[J]. Agricultural andBiological Chemistry,1989,53:315–325.
    [13] J. Hau, Cazes, D., Fay, L.B. Comprehensive study of the “beefy meatypeptide”[J]. Journal of Agricultural and Food Chemistry,1997,45(4):1351–1355.
    [14] R. Warmke, Belitz, H.D., Grosch, W. Evaluation of taste compounds of Swisscheese (Emmentaler)[J]. Zeitschrift für Lebensmitteluntersuchungund-Forschung A,1996,203(3):230–235.
    [15] A. Jang, Lee, M. Purification and identification of angiotensin convertingenzyme inhibitory peptides from beef hydrolysates[J]. Meat Science,2005,69(4):653–661.
    [16] H.G. Byun, Kim, S.K. Purification and characterization of angiotensin Iconverting enzyme (ACE) inhibitory peptides from Alaska pollack (Theragrachalcogramma) skin[J]. Process Biochemistry,2001,36(12):1155–1162.
    [17] F.F.V. Chevance, Farmer, L.J. Release of volatile odor compounds from full-fatand reduced-fat frankfurters[J]. Journal of Agricultural and Food Chemistry,1999,47(12):5161–5168.
    [18] A. Shah, Ogasawara, M., Egi, M., Kurihara, H., Takahashi, K. Identification andsensory evaluation of flavour enhancers in Japanese traditional dried herring(Clupea pallasii) fillet[J]. Food Chemistry,2010,122(1):249–253.
    [19] J. Kirimura, Shimizu, A., Kimizuka, A., Ninomiya, T.,Katsuya, N. Contributionof peptides and amino acids to the taste of foods[J]. Journal of Agricultural andFood Chemistry,1969,17(4):689–695.
    [20] M.W. Kang, Chung, S.J., Lee, H.S., Kim, Y., Kim, K.O. The sensory interactionsof organic acids and various flavors in ramen soup systems[J]. Journal of FoodScience,2007,72(9):639–644.
    [21] J.N. Park, Fukumoto, Y., Fujita, E., Tanaka, T., Washio, T., Otsuka, S., Shimizu,T., Watanabe, K.,Abe, H. Chemical composition of fish sauces produced inSoutheast and East Asian countries[J]. Journal of Food Composition andAnalysis,2001,14(2):113–125.
    [22] T. Warendorf, Belitz, H.D., Gasser, U.,Grosch, W. The flavour of bouillon.2.Sensory analysis of non-volatiles and imitation of a bouillon[J]. Zeitschrift fuerLebensmittel-Untersuchung und-Forschung,1992,195(3):215–223.
    [23] K. Shima, Yamada, N., Suzuki, E., Harada, T. Novel brothy taste modifierisolated from beef broth[J]. Journal of Agricultural and Food Chemistry,1998,46(4):1465–1468.
    [24] R.J. Gardner. Lipid solubility and the sourness of acids: implications for modelsof the acid taste receptor[J]. Chemical senses,1980,5(3):185–194.
    [25] H.N. Lioe, Apriyantono, A., Takara, K., Wada, K.,Yasuda, M. Umami TasteEnhancement of MSG/NaCl Mixtures by Subthreshold L–α–Aromatic AminoAcids[J]. Journal of Food Science,2005,70(7):401–405.
    [26] T. Nishimura,Kato, H. Taste of free amino acids and peptides[J]. Food reviewsinternational,1988,4(2):175–194.
    [27]党亚丽.金华火腿和巴马火腿风味的研究[D].无锡:江南大学,2009.
    [28] Y. Yamasaki, Maekawa, K. Synthesis of a peptide with delicious taste[J].Agricultural and Biological Chemistry,1980,44(1):93–94.
    [29] K. Ishii, Nishimura, T., Ono, T., Hatae, K., Shimada, J. Taste of peptides in wheatgluten hydrolyzate by protease[J]. Nippon Kasei Gakkaishi,1994,45:615-620.
    [30]王贤纯,梁宋平.反相高效液相色谱/电喷雾质谱法分析化学合成七肽粗产物[J].分析化学,2004,9(32):1219–1222.
    [1] H.G. Kristinsson, Rasco, B.A. Fish protein hydrolysates: production, biochemical,and functional properties[J]. Critical Reviews in Food Science and Nutrition,2000,40(1):43–81.
    [2] M.I. Mahmoud, Malone, W.T., Cordle, C.T. Enzymatic hydrolysis of casein:effect of degree of hydrolysis on antigenicity and physical properties[J]. Journalof Food Science,1992,57(5):1223–1229.
    [3] G. Zhao, Liu, Y., Zhao, M., Ren, J., Yang, B. Enzymatic hydrolysis and theireffects on conformational and functional properties of peanut protein isolate[J].Food Chemistry,2010,126(3),1306–1311.
    [4] H. Korhonen,Pihlanto, A. Bioactive peptides: production and functionality[J].International Dairy Journal,2006,16(9):945–960.
    [5] M. Ogasawara, Katsumata, T.,Egi, M. Taste properties of Maillard-reactionproducts prepared from1000to5000Da peptide[J]. Food Chemistry,2006,99(3):600–604.
    [6] G. Su, Zheng, L., Cui, C., Yang, B., Ren, J.,Zhao, M. Characterization ofantioxidant activity and volatile compounds of Maillard reaction productsderived from different peptide fractions of peanut hydrolysate[J]. Food ResearchInternational,2011,44(10):3250–3258.
    [7] S.L. Turgeon, Gauthier, S.F., Paquin, P. Interfacial and emulsifying properties ofwhey peptide fractions obtained with a two-step ultrafiltration process[J]. Journalof Agricultural and Food chemistry,1991,39(4):673–675.
    [8] A. Adisesh, Gruszka, L., Robinson, E.,Evans, G. Smoking status andimmunoglobulin E seropositivity to workplace allergens[J]. OccupationalMedicine,2011,61(1):62–64.
    [9] G.K Grimble, Keohane, P.P, Higgins, B.E, Kaminski J.R, M.V, Silk, D.B. Effectof peptide chain length on amino acid and nitrogen absorption from twolactalbumin hydrolysates in the normal human jejunum[J]. Clinical science(London, England:1979),1986,71(1):65–69.
    [10] A. Vallee, Humblot, V., Pradier, C.M. Peptide interactions with metal and oxidesurfaces[J]. Accounts of chemical research,2010,43(10):1297–1305.
    [11] P.M. Peacock, Mcewen, C.N. Mass spectrometry of synthetic polymers[J].Analytical chemistry,2006,78(12):3957–3964.
    [12] G.B Irvine. Size-exclusion high-performance liquid chromatography of peptides:a review[J]. Analytica Chimica Acta,1997,352(1-3):387–397.
    [13] P. Liu, Huang, M., Song, S., Hayat, K., Zhang, X., Xia, S.,Jia, C. Sensorycharacteristics and antioxidant activities of Maillard reaction products from soyprotein hydrolysates with different molecular weight distribution[J]. Food andBioprocess Technology,2010,1–15.
    [14] L. Qin, Zhu, B.W., Zhou, D.Y., Wu, H.T., Tan, H., Yang, J.F., Li, D.M., Dong,X.P.,Murata, Y. Preparation and antioxidant activity of enzymatic hydrolysatesfrom purple sea urchin (Strongylocentrotus nudus) gonad[J]. LWT-Food Scienceand Technology,2011,44(4):1113–1118.
    [15] F. Guerard, Guimas, L., Binet, A. Production of tuna waste hydrolysates by acommercial neutral protease preparation[J]. Journal of Molecular Catalysis B:Enzymatic,2002,19:489-498.
    [16] C. Scheidegger, Sigg, L.,Behra, R. Characterization of lead inducedmetal–phytochelatin complexes in Chlamydomonas reinhardtii[J].Environmental Toxicology and Chemistry,2011,30(11):2546–2552.
    [17] M.D. Aaslyng, Martens, M., Poll, L., Nielsen, P.M., Flyge, H.,Larsen, L.M.Chemical and sensory characterization of hydrolyzed vegetable protein, a savoryflavoring[J]. Journal of Agricultural and Food chemistry,1998,46(2):481–489.
    [18] C. Van Der Ven, Gruppen, H., De Bont, D.,Voragen, A.G. J.Reversed phase andsize exclusion chromatography of milk protein hydrolysates: relation betweenelution from reversed phase column and apparent molecular weightdistribution[J]. International Dairy Journal,2001,11(1-2):83–92.
    [19] W. Sun, Zhao, H., Zhao, Q., Zhao, M., Yang, B., Wu, N.,Qian, Y. Structuralcharacteristics of peptides extracted from Cantonese sausage during drying andtheir antioxidant activities[J]. Innovative Food Science and EmergingTechnologies,2009,10(4):558–563.
    [20] X. Zheng, Baker, H.,Hancock, W.S. Analysis of the low molecular weight serumpeptidome using ultrafiltration and a hybrid ion trap-Fourier transform massspectrometer[J]. Journal of Chromatography A,2006,1120(1-2):173–184.
    [1] F. Gu, Kim, J.M., Hayat, K., Xia, S., Feng, B.,Zhang, X. Characteristics andantioxidant activity of ultrafiltrated Maillard reaction products from acasein-glucose model system[J]. Food Chemistry,2009,117(1):48–56.
    [2] J.A. Rufián-Henares, Morales, F.J. Effect of in vitro enzymatic digestion onantioxidant activity of coffee melanoidins and fractions[J]. Journal ofAgricultural and Food chemistry,2007,55(24):10016–10021.
    [3] I. Andriot, Le. Quere, J.L.,Guichard, E. Interactions between coffee melanoidinsand flavour compounds: impact of freeze-drying (method and time) and roastingdegree of coffee on melanoidins retention capacity[J]. Food Chemistry,2004,85(2):289–296.
    [4] H. Jing, Kitts, Dd. Chemical and biochemical properties of casein-sugar Maillardreaction products[J]. Food and Chemical Toxicology,2002,40(7):1007–1015.
    [5] G.B. Naranjo, Malec, L.S.,Vigo, M.Reducing sugars effect on available lysineloss of casein by moderate heat treatment[J]. Food Chemistry,1998,62(3):309–313.
    [6] S.I.F.S. Martins,Van Boekel, M.A.J.S. Kinetics of the glucose/glycine Maillardreaction pathways: influences of pH and reactant initial concentrations[J]. FoodChemistry,2005,92(3):437–448.
    [7] H. Jaeger, Janositz, A.,Knorr, D. The Maillard reaction and its control duringfood processing. The potential of emerging technologies[J]. Pathologie Biologie,2010,58(3):207–213.
    [8] S.I.F.S. Martins, Jongen, W.M.F.,Van Boekel, M.A.J.S. A review of Maillardreaction in food and implications to kinetic modelling[J]. Trends in food science&technology,2000,11(9-10):364–373.
    [9] J. Rufián-Henares, García-Villanova, B.,Guerra-Hernández, E. Generation offurosine and color in infant/enteral formula-resembling systems[J]. Journal ofAgricultural and Food chemistry,2004,52(17):5354–5358.
    [10] L. Jimenez-Castano, Villamiel, M., Martin-Alvarez, P.J., Olano,A.,Lopez-Fandino, R. Effect of the dry-heating conditions on the glycosylationof [beta]-lactoglobulin with dextran through the Maillard reaction[J]. Foodhydrocolloids,2005,19(5):831–837.
    [11] T. Hofmann.Studies on the relationship between molecular weight and the colorpotency of fractions obtained by thermal treatment of glucose/amino acid andglucose/protein solutions by using ultracentrifugation and color dilutiontechniques[J]. Journal of Agricultural and Food chemistry,1998,46(10):3891–3895.
    [12] R. Tressl, Wondrak, G.T., Krüger, R.P.,Rewicki, D. New melanoidin-likeMaillard polymers from2-deoxypentoses[J]. Journal of Agricultural and Foodchemistry,1998,46(1):104–110.
    [13] Eh Ajandouz, Tchiakpe, Ls, Ore, F.D., Benajiba, A.,Puigserver, A. Effects of pHon Caramelization and Maillard Reaction Kinetics in Fructose–Lysine ModelSystems[J]. Journal of Food Science,2001,66(7):926–931.
    [14] G.G. Palazolo, Sorgentini, D.A.,Wagner, J.R. Emulsifying properties and surfacebehavior of native and denatured whey soy proteins in comparison with otherproteins. Creaming stability of oil-in-water emulsions[J]. Journal of theAmerican Oil Chemists' Society,2004,81(7):625–632.
    [15] C.R. Lerici, D. Barbanti, M. Manzano, S. Cherubin. Early indicators of chemicalchanges in foods due to enzymic or nonenzymic browning reaction.1: Study onheat-treated model systems. Lebensm Wiss Technol,1990,23(4):289–296.
    [16] V.A. Yaylayan. Classification of the Maillard reaction: A conceptual approach[J].Trends in Food Science&Technology,1997,8(1):13–18.
    [17]肖军霞,黄国清,裴晓惠,孙萍,王成荣.不同模式体系美拉德反应程度及抗氧化活性比较研究[J].食品科学,2011,32(11):52–55.
    [18] J. Rufián-Henares, Guerra-Hernandez, E.,Garcia-Villanova, B. Colourmeasurement as indicator for controlling the manufacture and storage of enteralformulas[J]. Food Control,2006,17(6):489–493.
    [19] A. Serpen, G kmen, V. Evaluation of the Maillard reaction in potato crisps byacrylamide, antioxidant capacity and color[J]. Journal of Food Composition andAnalysis,2009,22(6):589–595.
    [20] L.W. Kroh, Jalyschko, W.,H seler, J. Non–volatile Reaction Products byHeat‐induced Degradation of α–Glucans. Part I: Analysis of OligomericMaltodextrins and Anhydrosugars[J]. Starch–St rke,1996,48(11–12):426–433.
    [21] J.W. Finley. Effects of processing on proteins: an overview[M]. In ProteinQuality and the Effects of Processing, New York:1989:1–10.
    [22] M. Sohn, Ho, C.T. Ammonia generation during thermal degradation of aminoacids[J]. Journal of Agricultural and Food chemistry,1995,43(12):3001–3003.
    [23] E.H. Ajandouz, Desseaux, V., Tazi, S.,Puigserver, A. Effects of temperature andpH on the kinetics of caramelisation, protein cross-linking and Maillard reactionsin aqueous model systems[J]. Food Chemistry,2008,107(3):1244–1252.
    [24] El Hassan Ajandouz And, Puigserver, A. Nonenzymatic browning reaction ofessential amino acids: Effect of pH on caramelization and Maillard reactionkinetics[J]. Journal of Agricultural and Food chemistry,1999,47(5):1786–1793.
    [25] E.J. Kwak, Lim, S.I. The effect of sugar, amino acid, metal ion, and NaCl onmodel Maillard reaction under pH control[J]. Amino Acids,2004,27(1):85–90.
    [26] X. Lan, Liu, P., Xia, S., Jia, C., Mukunzi, D., Zhang, X., Xia, W., Tian, H.,Xiao,Z. Temperature effect on the non-volatile compounds of Maillard reactionproducts derived from xylose-soybean peptide system: Further insights intothermal degradation and cross-linking[J]. Food Chemistry,2010,120(4):967–972.
    [27] P.M. Falcone, Giudici, P. Molecular size and molecular size distribution affectingtraditional balsamic vinegar aging[J]. Journal of Agricultural and Food chemistry,2008,56(16):7057–7066.
    [28]赵谋明,曾晓房,崔春,王金水.鸡肉蛋白肽—葡萄糖Maillard反应中肽的降解研究[J].四川大学学报(工程科学版),2007,39(2):77–81.
    [1] R.J. Elias, Kellerby, S.S., Decker, E.A. Antioxidant activity of proteins andpeptides[J]. Critical Reviews in Food Science and Nutrition,2008,48(5):430–441.
    [2] D.E. Pratt, Birac, P.M. Source of antioxidant activity of soybeans and soyproducts[J]. Journal of Food Science,1979,44(6):1720–1722.
    [3] N. Cumby, Zhong, Y., Naczk, M., Shahidi, F. Antioxidant activity andwater-holding capacity of canola protein hydrolysates[J]. Food Chemistry,2008,109(1):144–148.
    [4] E.A. Pe a–Ramos, Xiong, Y.L., Arteaga, G.E. Fractionation and characterisationfor antioxidant activity of hydrolysed whey protein[J]. Journal of the Science ofFood and Agriculture,2004,84(14):1908–1918.
    [5] J.I. Yang, Ho, H.Y., Chu, Y.J.,Chow, C.J. Characteristic and antioxidant activityof retorted gelatin hydrolysates from cobia (Rachycentron canadum) skin[J].Food Chemistry,2008,110(1):128–136.
    [6] J. Wang, Zhao, M., Zhao, Q.,Jiang, Y. Antioxidant properties of papainhydrolysates of wheat gluten in different oxidation systems[J]. Food Chemistry,2007,101(4):1658–1663.
    [7] H.M. Chen, Muramoto, K., Yamauchi, F., Fujimoto, K., Nokihara, K.Antioxidative properties of histidine-containing peptides designed from peptidefragments found in the digests of a soybean protein[J]. Journal of Agriculturaland Food chemistry,1998,46(1):49–53.
    [8] H. Lingnert, Eriksson, Ce. Antioxidative Maillard reaction products. II. Productsfrom sugars and peptides or protein hydrolysates[J]. Journal of Food Processingand Preservation,1980,4(3):173–181.
    [9] K. Yanagimoto, Lee, K.G., Ochi, H.,Shibamoto, T. Antioxidative activity ofheterocyclic compounds found in coffee volatiles produced by Maillardreaction[J]. Journal of Agricultural and Food chemistry,2002,50(19):5480–5484.
    [10] J.S. Kim,Lee, Y.S. Antioxidant activity of Maillard reaction products derivedfrom aqueous glucose/glycine, diglycine, and triglycine model systems as afunction of heating time[J]. Food Chemistry,2009,116(1):227–232.
    [11] C. Lu, Hao, Z., Payne, R.,Ho, C.T. Effects of water content on volatile generationand peptide degradation in the Maillard reaction of glycine, diglycine, andtriglycine[J]. Journal of Agricultural and Food chemistry,2005,53(16):6443–6447.
    [12]郑淋,游丽君,赵谋明.不同杀菌工艺对泥鳅多肽抗氧化活性的影响[J].食品与发酵工业,2011,37(3):109–112.
    [13]孙为正.广式腊肠加工过程中脂质水解、蛋白质降解及风味成分变化研究[D].广州:华南理工大学,2011.
    [14] X. Lan, Liu, P., Xia, S., Jia, C., Mukunzi, D., Zhang, X., Xia, W., Tian, H.,Xiao,Z. Temperature effect on the non-volatile compounds of Maillard reactionproducts derived from xylose-soybean peptide system: Further insights intothermal degradation and cross-linking[J]. Food Chemistry,2010,120(4):967–972.
    [15] R. Zamora, Francisco, J.H. Coordinate contribution of lipid oxidation andMaillard reaction to the nonenzymatic food browning[J]. Critical Reviews inFood Science and Nutrition,2005,45(1):49–59.
    [16] C.M.J. Brands,Van Boekel, M.A.J.S. Kinetic modeling of reactions in heatedmonosaccharide-casein systems[J]. Journal of Agricultural and Food chemistry,2002,50(23):6725–6739.
    [17] S. Horvat, Jakas, A. Peptide and amino acid glycation: new insights into theMaillard reaction[J]. Journal of Peptide Science,2004,10(3):119–137.
    [18] B. Ou, Huang, D., Hampsch-Woodill, M., Flanagan, J.A.,Deemer, E.K. Analysisof antioxidant activities of common vegetables employing oxygen radicalabsorbance capacity (ORAC) and ferric reducing antioxidant power (FRAP)assays: a comparative study[J]. Journal of Agricultural and Food chemistry,2002,50(11):3122–3128.
    [19] J. Ren, Zhao, M., Shi, J., Wang, J., Jiang, Y., Cui, C., Kakuda, Y.,Xue, S.J.Purification and identification of antioxidant peptides from grass carp musclehydrolysates by consecutive chromatography and electrospray ionization-massspectrometry[J]. Food Chemistry,2008,108(2):727–736.
    [20] H.C. Wu, Chen, H.M., Shiau, C.Y. Free amino acids and peptides as related toantioxidant properties in protein hydrolysates of mackerel (Scomberaustriasicus)[J]. Food Research International,2003,36(9-10):949–957.
    [21] J.A. Rufián-Henares, Morales, F.J. Effect of in vitro enzymatic digestion onantioxidant activity of coffee melanoidins and fractions[J]. Journal ofAgricultural and Food chemistry,2007,55(24):10016–10021.
    [22] G. Su, Ren, J., Yang, B., Cui, C.,Zhao, M. Comparison of hydrolysischaracteristics on defatted peanut meal proteins between a protease extract fromAspergillus oryzae and commercial proteases[J]. Food Chemistry,2010,126(3),1306–1311.
    [23] J.A. Ordó ez, Hierro, E.M., Bruna, J.M.,De La Hoz, L. Changes in thecomponents of dry-fermented sausages during ripening[J]. Critical Reviews inFood Science and Nutrition,1999,39(4):329–367.
    [24] M.D. Aaslyng, Martens, M., Poll, L., Nielsen, P.M., Flyge, H., Larsen, L.M.Chemical and sensory characterization of hydrolyzed vegetable protein, a savoryflavoring[J]. Journal of Agricultural and Food chemistry,1998,46(2):481–489.
    [25] Wm Coleman, White Iii, Jl, Perfetti, Ta. Investigation of a unique commonalityfrom a wide range of natural materials as viewed from the Maillard reactionperspective[J]. Journal of the Science of Food and Agriculture,1996,70(4):405–412.
    [26] Sm Lee, Seo, Bc, Kim, Y.S. Volatile Compounds in Fermented andAcid‐hydrolyzed Soy Sauces[J].Journal of Food Science,2006,71(3):146–156.
    [27] R.G. Buttery, Stern, D.J., Ling, L.C. Studies on flavor volatiles of some sweetcorn products[J]. Journal of Agricultural and Food chemistry,1994,42(3):791–797.
    [28] J Berdagué, Monteil, P., Montel, Mc,Talon, R. Effects of starter cultures on theformation of flavour compounds in dry sausage[J]. Meat Science,1993,35(3):275–287.
    [29] J.M. Ames, Macleod, G. Volatile components of an unflavored textured soyprotein[J]. Journal of Food Science,1984,49(6):1552–1567.
    [30] M. Shimoda, Peralta, R.R.,Osajima, Y. Headspace gas analysis of fish sauce[J].Journal of Agricultural and Food chemistry,1996,44(11):3601–3607.
    [31] M.C Montel, Masson, F.,Talon, R. Bacterial role in flavour development[J]. MeatScience,1998,49:111–123.
    [32] D.B Kell, Peck, M.W, Rodger, G., Morris, J.G. On the permeability to weak acidsand bases of the cytoplasmic membrane[J]. Biochemical and BiophysicalResearch Communications,1981,99(1):81–88.
    [33] W. Baltes. Roasting aromas[J]. Dtsch. Lebensm. Rundsch,1979,75:2–7.
    [34] C. Macku, Shibamoto, T. Volatile antioxidants produced from heated cornoil/glycine model system[J]. Journal of Agricultural and Food chemistry,1991,39(11):1990–1993.
    [35] Ho, C.T., Oh, Y.C., Zhang, Y., Shu, C.K. Peptides as flavor precursors in modelMaillard reactions. In Flavor Precursors: Thermal and Enzymatic Conversions;[M]. Washington: American Chemical Society,1992:193–202.