水相合成及新型荧光探针的重金属离子识别与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
绿色溶剂或介质的开发和应用已成为现代绿色化学研究的热点领域之一,特别是水作为资源最丰富、最廉价、环境友好的绿色溶剂之一,水相中的合成反应尤其水相中具有高选择性的反应越来越受到人们的关注。荧光化学传感器由于具有高灵敏度、可实时或者远程检测等优点,在识别分子或离子领域中的应用得到了蓬勃发展。最近几年,能够在水溶液中识别检测离子的荧光探针由于可应用到生物细胞内的离子检测,因而引起人们极大的兴趣和重视。设计合成高灵敏、高选择性可在水溶液中检测离子的荧光探针备受人们关注。
     从绿色化学原则出发,本文考察了水相中胺硼烷还原剂对各种羰基化合物的选择性还原反应,在水中合成了1,4-二羟基-9,10-蒽醌-2-醛缩氨基硫脲及酰腙、8-羟基喹啉-7-醛缩氨基硫脲及酰腙等4个系列的化合物,研究了几种荧光探针对重金属离子的荧光识别作用,发现了在水溶液中能够灵敏地选择性识别铜离子、镉离子和锌离子的荧光探针分子,并实现了在细胞体内荧光探针对铜离子、镉离子及锌离子的识别。
     论文的研究内容主要包括以下几个方面:
     1.以纯水为溶剂研究了胺基硼烷对不同羰基化合物的选择性还原反应,发现胺硼烷在水中室温下能够快速高效还原羰基化合物为醇,对各种二羰基化合能够选择性还原酮羰基而不还原酯羰基。反应底物醛酮中的其它各取代基团如对酸敏感的TBDMS-和-OTr;对碱敏感的乙酰基、-OBn、酯基、磺酰基等以及其它不饱和基团都不受影响。扩大规模到1kg的苯甲酰甲酸甲酯的还原反应也能高收率地在水溶液中完成。甲胺硼烷还能够实现醛酮分子间分子内区域选择性还原醛基而不影响酮羰基。
     2.在水中通过1,4-二羟基-9-10-蒽醌醛与取代氨基硫脲、取代酰肼的简单缩合反应合成了17种新型取代蒽醌醛缩氨基硫脲类衍生物和15种蒽醌酰腙类衍生物。
     我们改变了传统的合成方法,用纯水为溶剂,少量PEG-400为相转移催化剂,微波600W辐射下反应,反应在30分钟内完成,粗产物经抽滤、水洗,真空干燥即得到目标化合物。反应不需要加酸催化,避免了有机溶剂的使用,时间短,后处理操作简单,符合绿色化学合成的原则。
     3.在水中通过8-羟基喹-7-醛与取代氨基硫脲、取代酰肼的缩合反应合成了15种8-羟基喹啉醛缩氨基硫脲和15种8-羟基喹啉酰腙Schiff衍生物。我们用纯水代替常用的有机溶剂或者醇-水体系,少量PEG-400为相转移催化剂,微波600W辐射下搅拌反应,反应在15-30分钟内完成,粗产物经抽滤、水洗,干燥即得到目标化合物。反应不需要加酸催化,避免了有机溶剂的使用,反应快速,操作简便,符合绿色化学合成的原则。
     4.研究了1,4-二羟基-9,10-蒽醌2-醛缩氨基硫脲化合物(ESN1)和1,4-二羟基-9,10-蒽醌-2-醛缩水杨酰肼(EXZ2)与15种金属阳离子的荧光识别作用。系统考察了水溶液中,磷酸盐缓冲体系,中性pH值下荧光受体与金属离子的荧光光谱性质,发现蒽醌缩氨基硫脲和酰腙化合物都对铜离子有选择性识别作用。Cu2+使其荧光强度猝灭,其它离子则不影响受体分子的荧光吸收。荧光受体分子和铜离子配合比例应为1:1。我们还通过激光共聚焦技术成功地实现了这两种荧光探针对动物肾上皮细胞MDCK中的铜离子的检测。
     5.研究了8-羟基喹啉-7-醛缩氨基硫脲(KSN1)和8-羟基喹啉水杨酰腙化合物(KXZ2)对15种金属阳离子的荧光识别作用。考察了水溶液,在HEPES缓冲体系中,pH值为7.2条件下,荧光传感分子与不同金属阳离子的荧光识别作用,发现KSN1和KXZ2都对镉离子、锌离子有选择性识别作用,镉离子和锌离子使荧光受体分子荧光增强,其它离子则不影响或者淬灭受体分子的荧光。我们也考察了两类喹啉荧光探针对不同细胞内的镉离子和锌离子的检测,并成功地在低浓度下实现了对MDCK细胞和肺癌细胞H1299内镉离子和锌离子的荧光识别。
     本论文考察了氨基硼烷在水相中对羰基化合物的选择性还原反应,用价廉易得、无毒无害的环境友好试剂水为反应介质,合成了多个系列具有荧光探针作用的蒽醌类和喹啉类氨基硫脲和酰腙化合物,并开发了几种以水为测试介质的重金属离子荧光探针分子,能够在水溶液中和细胞内有效检测铜离子、镉离子和锌离子,检测快速、灵敏,有潜在的应用价值。
The exploration and application of green solvent or reaction media in various chemical processes,especially in synthetic procedures has been a focus topic in both academia and industrial research. In thisregard, reactions in neat water especially high selective reactions in aqueous phase have attracted more andmore attentions in synthetic chemistry, because water is one of the most abundant,cheapest andenvironmental benign solvent. Design and synthesis of fluorescent chemsensor have drawn much interestsin supramolecular chemistry in recent years due to its intrinsic distinct advantages in terms of highsensitivity, able to monitor substrate concentration in real-time and real-space and remote sensing In thelast few years, it is of great interest to develop some fluorescent probes which could recognize detect ionsin the aqueous solution and could be applied in biological cells.
     Under the guidance of the principles of green chemistry, The chemselective reductions of carbonylcompounds to alcohols in neat water using amine boranes as reductants have been studied in the thesis.Four series of new fluorescent probes based on1,4-dihydroxy-9,10-anthraquinonealdehydethiosemicarbazone,1,4-dihydroxy-9,10-anthraquinone acylhydrazones,8-hydroxyquinoline-7-aldehydethiosemicarbazide and8-hydroxyquinoline acylhydrazones derivatives were designed and synthesized inwater. The recognitions for heavy metal cations of new fluorescent sensors have been searched and somehighly sensitive and selective fluorescent chemosensor for the detection of Cu2+,Cd2+,Zn2+with a fast timeresponse in aqueous solution is demonstrated and an imaging study of Cu2+,Cd2+,Zn2+in living cells isalso successfully shown in this dissertation.
     This thesis mainly containing the following aspects:
     1、Chemoselective reduction of various carbonyl compounds to alcohols with ammonia borane (AB、MAB), nontoxic, environmentally benign, and easily handled reagents, in neat water was achieved inquantitative conversions and excellent isolated yields. Interestingly, α-and β-keto esters can be selectivelyreduced by amine borane reagent(AB,MAB) to corresponding hydroxyl esters in water with excellentyields, while diols are efficiently obtained using sodium borohydride as a reducing agent. The procedure is perfectly compatible with the presence of a variety of base-labile protecting groups, such as tosyl, acetyl,benzoyl, ester groups, and acid-labile protecting groups such as trityl and TBDMS groups, and theunsaturated double bond, nitro and cyano groups are intact in the process. A1-kg scale ction of methylbenzoylformate with AB was conducted in water and gave methyl mandelate in94%yield.The competitiveand intra-chemoselective experiments show that MAB effectively discriminates between aldehydes andketones.
     2、Seventeen1,4-dihydroxy-9,10-anthraquinonealdehyde thiosemicarbazones and fifteen1,4-dihydroxy-9,10-anthraquinone acylhydrazones were synthesized by the condensation of1,4-dihydroxy-9,10-anthraquinone-2-aldehyde and aryl or alkyl thiosemicarbazides or substitudedhydrazides for the first time. The reactions were completed in30min under the microwave radiation in neatwater with little amount of PEG-400as phase transfer catalyst and the products were obtained in excellentyields.The target products could be gotted by only simple filtration, washing and drying. The mainadvantages of this method are that reaction is quick, with excellent isolated yields, operation is simple,avoiding the use of poisonous organic solvents and acid, in line with the principles of green chemicalprinciple.
     3、 Fifteen8-hydroxyquinolin-7-aldehyde thiosemicarbazones and fifteen acylhydrazones weresynthesized via the condensation of8-hydroxyquinolin-7-aldehyde and aryl or alkyl thiosemicarbazidesand substituded aryl hydrazides. The reactions were completed in15-30min under the microwave radiationin neat water with little amount of PEG-400as phase transfer catalyst and the products were obtained inexcellent yields.The products could be gotted by only simple filtration, washing and drying. Theadvantages of this method are that reaction is quick, excellent isolated yields, operation is simple, avoidingthe use of poisonous organic solvents and acid, in line with the principles of green chemical principle.
     4、The influence of various metal ions on the absorption and fluorescence spectra of some new sensorsbased on anthraquinone thiosemicarbazone compounds and anthraquinone hydrazide compounds(ESN1and EXZ2) were investigated in detail.Two fluorescent sensors ESN1and EXZ2were found to besensitive to the copper (II) ion in aquerous. In the investiganted15metal ions such asFe3+,Co2+,Ni2+,Cd2+,Zn2+,Hg2+,Ag+and Pb2+have little variations of the fluorescence, However, only Cu2+can lead to the fluorescence quenching in aqueous and PBS as the buffer solution in7.2pH. Therefore, ESN1and EXZ2were the favorable in cognition of Cu2+with high selectivity and sensitivity in aqueoussolution.1:.1binding stoichiometry was confirmed by the experimental results. In addition, biologicalimaging studies have demonstrated that ESN1and EXZ2can detect Cu2+in living kidney epithelialMDCK cells.
     5、The influence of various metal ions on the absorption and fluorescence spectra of some sensorsbased on8-hydroxyquothiosemicarbazone compounds and anthraquinone hydrazide compounds (KSN1andKXZ2) were investigated in detail.Two fluorescent sensors KSN1and KXZ2were found to be sensitive tothe Cd2+and Zn2+in aquerous. In the investiganted15metal ions such as Fe3+, Co2+, Ni2+, Hg2+, Ag+, Pb2+and so on, only Cd2+and Zn2+can lead to the fluorescence enhancement to7-10times in aqueous andHEPES as the buffer solution in7.0pH. Therefore, KSN1and KXZ2were the favorable in cognition ofCd2+with high selectivity and sensitivity in aqueous solution.1:.1binding stoichiometry was confirmed bythe experimental results. In addition, biological imaging studies have demonstrated that can detect Cu2+inliving kidney epithelial MDCK cells.and lung cancer H1299cells.
     In this thesis, the chemselected reduction of series carbonyl compounds in neat water, the one of themost abundant, cheapest, and environmentally benign sovent, with amine boranes were achieved inquantitative conversions and excellent yields. Some series of1,4-dihydroxy-9,10-anthraquinonealdehydeand1,4-dihydroxy-9,10-anthraquinonealdehyde derivatives were synthesized in water and their cognitionof heavy ions were investigated in detail. A few of highly sensitve and selective fluorescent probes forCu2+,Cd2+,Zn2+in aqueous solution is demonstrated.An imaging study of heavy ions in living cells isalso successing shown.
引文
[1]张钟宪等编著.环境与绿色化学[M].北京:清华大学出版社,2005年:1-7.
    [2]吴舜泽,夏青,刘鸿亮.中国流域水污染分析[J].环境科学与技术,2000,2:1-6.
    [3]陈路阳,我国土壤污染现状及防治措施[J].科技风,2011,(3):238.
    [4] Clark J H. Green chemistry: challenges and opportunities [J]. Green Chem,1999,1:1-8.
    [5] Sheldon R A. Atom utilization, E factors, and the catalytic solution [J]. Comptes Rendus de l’Académiedes Sciences---Series IIC-Chemistry,2000,3:541.
    [6] Anastas P T, Warner J C. Green Chemistry: Theory and Practice [M]. Oxford University Press, Oxford,UK.1998,15-21.
    [7] Manley J B, Anastas P T, Cue B W. Frontiers in Green Chemistry: meeting the grand challenges forsustainability in R&D and manufacturing [J]. J Clean Prod,2008,16:743-750.
    [8] Deetlefs M, Seddon K R. Assessing the greenness of some typical laboratory ionic liquid preparations[J]. Green Chem,2010,12:17-30.
    [9] Tang S L Y, Smith R L, Poliakoff M. Principles of green chemistry: PRODUCTIVELY [J]. GreenChem,2005,7:761-762.
    [10] Anastas P T, Zimmerman J B. Design through the12principles of green engineering [J]. Environ SciTechnol,2003,37(5):94A-101A.
    [11] Tang S, Bourne R, Smith R, Poliakoff M. The24Principles of Green Engineering and GreenChemistry:"IMPROVEMENTS PRODUCTIVELY"[J]. Green Chem,2008,10:268-269.
    [12] Wender P A. Introduction: Frontiers in organic synthesis [J]. Chem Rev,1996,96:1-2.
    [13] Trost B M. The atom economy-a search for synthetic efficiency [J]. Science,1991,254(5037):1471-1477.
    [14] Trost. B.M."Atom economy. a challenge for organic synthesis-homogeneous catalysis leads theway," Angew.Chem. Int. Ed. Engl,1995,34:259.
    [15]陆熙炎,从炔烃衍生物出发的有机合成方法学[J]有机化学,1993,13(3):227-243.
    [16] Wang Z, L u X, Catalytic tandem addition route to γ,δ-unsaturated carbonyls[J]. Chem Commun,1996,4:535-536
    [17] Wang Z, L u X, Palladium-catalyzed Intramolecular alkyne-α, β-unsaturated carbonyl coupling. Aformal synthesis of (+)-pilocarpinealladium.[J]. Tetrahedron Lett,1997,38(29):5213-5216.
    [18] Murai S, Kakiuchi F, Sek ine S, et al. Efficient catalytic addition of aromatic carbon-hydrogen bondsto olefins[J]. Nature,1993,366:529-531.
    [19] Taramasso M, Perego G, Notari B, Preparation of porous crystalline synthetic material comprised ofsilicon and titanium oxides[P]. US4410501,1983-10-18.
    [20]于凤丽,赵玉亮,金子林.布洛芬合成绿色化进展[J].有机化学,2003,23(11):1198-1204.
    [21] William D, McGhee, Yi Pan.et al. Highly selective generation of urethanes from amines,carbondioxide and alkyl chlorides[J]. J Chem Soc, Chem Commun,1994:699-700
    [22] Thomas E, Waldman, McGhee W D. Isocyanates from primary amines and carbon dioxide:‘dehydration’of carbamate anions.[J]. J Chem Soc, Chem Commun,1994:957-958.
    [23] Manzen L E, In benigen by design: alternative synthetic pathways for pollution prevention; Anastas PT. and Farris C A Eds, ACS symposium series577th, Washington D C: American chemical society,1994:144.
    [23]闵恩泽,傅军.绿色化学的进展[J].化学通报,1999(1):10-15.
    [24] Komiya K et al. In green chemistry: theory and practice,[M]. London: Oxford SciencePublications,1998.
    [25]闵恩泽,吴巍.绿色化学与化工.[M].北京:化学工业出版社,2000.
    [26]闵恩泽,陈家镛等.绿色化学与技术-推进化工生产可持续发展的途径,中国科学院院士咨询报告.总[1998] C003(化06号).
    [27] Tundo P, Selva M.Simplify gas-liquid phase transfer catalysis.[J].Chemtech,1995:31-35.
    [28] Memoli S,Selva M, Tundo P. Dimethylcarbonate for eco-friendly methylation reactions[J].Chemosphere,2001,43(1):115-121.
    [29]王公应,王越,黄涛.非光气法合成碳酸二甲酯[J].合成化学,1999,7(4):364-371.
    [30] Tanko J M, Blackert J F. Free-radical side-chain bromination of alkylaromatics in supercritical carbondioxide[J]. Science,1994,263(5144):203-205.
    [31] DeSimone J M, Maury E E, Menceloglu Y Z, et al. Dispersion polymerizations in supercritical carbondioxiede[J] Science,1994,265(5170):356-359.
    [32] Burk M J, Feng S, Gro ssM F, et al. Asymmetric catalytic hydrogenation reactions in supercriticalcarbon dioxide.[J] J Am Chem Soc,1995,117:8277-8278.
    [33] Walden P. Molecular weights and electrical conductivity of several fused salts [J]. Bull Acad Imper Sci(St. Petersburg),1914,1800:405-422.
    [34] Hurley F H, Wier T P. Electrodeposition of metals from fused quaternary ammonium salts [J]. JElectrochem. Soc,1951,98:203-206.
    [35] Wilkes J S, Levisky J A, Wilson R A, et al. Dialkylimidazolium chloroaluminate melts: a new class ofroom-temperature ionic liquids for electrochemistry, spectroscopy and synthesis [J]. Inorg Chem,1982,21(3):1263-1264.
    [36] Davis J H Jr. Task-specific ionic liquids [J]. Chem. Lett,2004,33(9):1072-1077.
    [37] Kumar A. Pawar S S. AlCl3-catalysed dimerization of1,3-cyclopentadiene in thechlo-caluminare roomtemperature ionic liquid[J] J Mol Catal A:Chem,2004,208(1-2):33-37.150
    [38] Meracz I, Taeboem Oh. Asymmetric Diels-Alder reactions in ionic Liquids[J]. Tetrahedron Lett,2003,44(34):6465-6468.
    [39] Ranu B C, Banerjee S. Ionic Liquid as catalyst and reaction medium. The dramatic influence of atask-specific ionic liquid,[bmIm]OH, in michael addition of active methylene compounds toconjugated ketones,carboxylic esters,and nitreles.[J]. Ora Lett,2005,7(14):3049-3052.
    [40] Handy S T, Okello M. Halide effects on the Heck reaction in room temperaature ionic liquids[J].Tetrahedron Lett,2003,44(46):8395-8397.
    [41] Hu A G,Ngo H L, Lin W B. Remarkable4,4’-substituent effects on binap:Highly enantioselective Rucatalysis for asymmetric hydrogenation of b-aryl ketoesters and their immobilization in room-temperature ionic liquids [J] Angew.Chem. Int.Ed,2004,43(19):2501-2504.
    [42] Berthod M, Joe rger J M, Mignani G.Enantioselective catalytic asymmetric hydrogenation of ethylacetoacetate in room temperature ionic liquids [J]. Tetrahedron-Asymmetry,2004,15(14):2219-2221
    [43]邓友权.离子液体介质与材料研究进展[J].成果与应用,2005,20(4):297-300.
    [44]张伟,吴巍,张树忠,.[bmjm][BF4]离子液体中PCl3催化的液相贝克曼重排反应[J].过程工程学报,2004,4(3):261-264.
    [45] Yadav L D S, Patel R, Rai V K, et al. An efficient conjugate hydrothiocyanation of chalcones with atask-specific ionic liquid [J]. Tetrahedron Lett,2007,(44)48:7793-7795.
    [46] Kim H S, Kim Y J, Lee H, et al. Ionic liquids containing anionic selenium species: applications for theoxidative carbonylation of aniline [J]. Angew Chem Int Ed,2002,41:4300-4303.
    [47] Fraga-Dubreuil J, Bourahla K, Rahmouni M, et al. Catalysed esterifications in room temperature ionicliquids with acidic counteranion as recyclable reaction media [J]. Catal Commun,2002,3(5):185-190.
    [48] Ranu B C, Banerjee S. Ionic liquid as catalyst and reaction medium. The dramatic influence of atask-specific ionic liquid,[bmIm]OH, in michael addition of active methylene compounds toconjugated ketones, carboxylic esters, and nitriles [J]. Org Lett,2005,7(14):3049-3052.
    [49] Susan A B H, Noda A, Mitsushima S, et al. Br nsted acid-base ionic liquids and their use as newmaterials for anhydrous proton conductors [J]. Chem Commun,2003,8:938-939.
    [50] Yoshizawa M, Xu W, Angell C A. Ionic liquids by proton transfer: vapor pressure, conductivity, andthe relevance of DeltapKa from aqueous solutions [J]. J Am Chem Soc,2003,125(50):15411-15419.
    [51] L i C J, Chan T H, Organic reactions in aqueous media,[M].New York: John Wiley&Sons Inc,1997.
    [52] Labinger J A, Nerring A M, Nercaw J E. Selective hydroxylation of methyl groups by platinum saltsin aqueous medium. Direct conversion of ethanol to ethylene glycol[J]. J Am Chem Soc,1990,112(14):5628-5629.
    [53] Li H J, Zhao J L, Chen Y J. et al. Water-promoted direct aerobic oxidation of enol silyl ether toa-hydroxyl ketones without catalyst [J]. Green Chem,2005,7(2):61-63.
    [54] Finguelli F, Pizzo F, Vaccaro L. Reduction of axides to amines or amides with Zinc and ammonium [J].Synthesis,2000,646-650.
    [55] Soltani O, Ariger M A., V zquez-Villa H. et al. Transfer hydrogenation in water: Enantioselective,catalytic reduction of γ-cyano and γ-nitro substituted acetophenones [J]. Org Lett,2010,12(13):2893-2895
    [56] Breslow R, Maitra U, Rideout D. Selective diels-alder reactions in aqueous solutions and suspensions[J]. Tetrahetron Lett,1983,24(18):1901-1904.
    [57] Grieco P A, Parker D T, Fobare W F. et al. Retro aza Diels-Alder reactions: acid catalyzedheterocycloreversion of2-azanorbornenes in water at ambient temperature[J]. J Am Chem Soc,1987,109(19):5859-5961.
    [58] Venkatraman S, Li C. Sripathy Venkatraman and Chao-Jun Li., Carbon carbon bond formation viapalladium-catalyzed reductive coupling in air[J] Org Lett,1999,1(7):1133-1135.
    [59] Lipshutz B H, Petersen T B, Abela A R. Room-Temperature Suzuki-Miyaura Couplings in WaterFacilitated by Nonionic Amphiphiles [J]. Org Lett,2008,10(7):1333-1336.
    [60] Barden M C, Schwartz J. Stereoselective pinacom coupling in aqueous media[J] J Am Chem Soc,1996,118(23):5484-5485..
    [61] Lipshutz B H, Chung D W, Rich B. Sonogashira couplings of aryl bromides: room temperature, wateronly, no copper[J]. Org Lett,2008,10(17)::3793-3796.
    [62] Miyabe H, Ueda M, Natio T. Free-radical reaction of imine derivatives in water [J]. J Org Chem,2000,65(16):5043.
    [63] Kopsov P S, Ferreri C, Chatgilialoglu C. Radical reactions in aqueous medium using (Me3Si)3SiH [J].Org Lett,2007,9(25):5159-5162.
    [64] Yorimitsu H,NakamuraT,Shinokubo H. et al. Powerful solvent effect of water in radical reaction:triethylborane-induced atom-transfer radical cyclization in water[J] J Am Chem Soc,2000,122(45):11041.
    [65] Lubineau A,Jacques A. Water-promoted organic reactions. Michael addition of nitroalkanes tomethylvinylketone under neutral conditions[J] Tetrahedron Lett,1992,33(52):8073-8074.
    [66] Keller E,Feringa B L. Ytterbium triflate catalyzed Michael additions of β-ketoesters in water[J].Tetrahedron Lett,1996,37(11):1879-1882.
    [67] Wu J B,Bukuo Ni,Headley A D. Di(methylimidazole)prolinol silyl ether catalyzed highly michaeladdition of aldehydes to nitroolefins in water [J]. Org Lett,2009,11(15):3354-3356.
    [68] Mori Y, Manabe K,Kobayashi S.Catalytic use of a boron source for boron enolate-mediatedstereoselective aldol reactions in water.[J] Angew Chem Int Ed,2001,40:2815.-2818.
    [69] Lubineau A. Water-promoted organic reactions: aldol reaction under neutral conditions.[J]. J Org152Chem,1986,51(11):2142-2144.
    [70] Bigi F,Carloni S,Ferrari L et al. Clean synthesis in water. Part2: Uncatalysed condensation reactionof Meldrum's acid and aldehydes[J]. Tetrahedron Lett,2001,42(31):5203-5205.
    [71] Armando C,Carlos F B. III. Direct organocatalytic asymmetric Mannich-type reactions in aqueousmedia: one-pot Mannich-allylation reactions[J]. Tetrahedron Lett,2003,44(9):1923-1926.
    [72]靳通收,王爱卿,张建设等.水中"一锅法"合成2-氨基-3-氰基-4-芳基-7,7-二甲基-5-氧代-4H-5,6,7,8-四氢苯并[b]吡喃[J].有机化学,2004,24(12):1598-1600.
    [73] Pirrung M C,Das Sarma K. Multicomponent reactions are accelerated in water [J] J. Am Chem Soc.2004,126(2):444–445.
    [74] Shapiro N,Vigalok A.Highly efficient organic reaction “on water”,“in water”, and both.[J] AngewChem, Int Ed2008,47:2849–2852.
    [75] Lin Q, O’Neill J C, Blackwell H E. Small Molecule Macroarray Construction via UgiFour-Component Reactions[J]. Org Lett,2005,7(20):4455–4458.
    [76] Chan T H,L i C J,Lee M C, et al.1993R.U. Lemieux Award Lecture Organometallic-type reactionsin aqueous media—a new challenge in organic synthesis [J]. Can J Chem,1994,72(5),1181-1192.
    [77] Woo J C,Seiichiro H,John T W J. The indium-mediated reformatsky reactions of2,2-difluoro-2-halo-1-furan-2-yl ethanones in aqueous media [J] Fluorine Chem,2001,112(2):343-347.
    [78] Wang F,Fu H,Jiang Y. et al. Copper-catalyzed cycloaddition of sulfonyl azides with alkynes tosynthesize N-sulfonyltriazoles ‘on Water’ at room temperature [J]. Adv. Synth. Catal,2008,350(11-12):1830–1834.
    [79] Wang F,Fu H,Jiang Y. et al. Quick and highly efficient copper-catalyzed cycloaddition of aliphaticand aryl azides with terminal alkynes “on water”[J] Green Chem,2008,10(4):452–456.
    [80] Loncaric C,Manabe K,Kobayashi S. AgOTf-catalyzed Aza-Diels–Alder reactions of danishefsky'sdiene with imines in water[J]. Adv Synth Catal,2003,345(4):475–477.
    [81] Demko Z P,Sharpless K B. Preparation of5-substituted1H-tetrazoles from nitriles in water[J]. J OrgChem,2001,66(24):7945–7950.
    [82] Xing D,Yang D. Gold(I)-catalyzed highly regio-and stereoselective decarboxylative amination ofallylic N-tosylcarbamates via base-induced Aza-Claisen rearrangement in water[J]. Org Lett,2010,12(5):1068–1071.
    [83] Narayan S,Muldoon J,Finn M G. et al.“On Water”:Unique reactivity of organic compounds inaqueous suspension [J] Angew Chem Int Ed,2005,44:3275–3279.
    [84] Li C J,Organic reactions in aqueous media with a focus on carbon carbon bond formations: A decadeupdate [J]. Chem Rev,2005,105(8):3095-.
    [85] Li C J,Chen L. Organic chemistry in water[J]. Chem Soc Rev,2006,35(1):68-82.
    [86] Taramasso M, Perego G, Not ari B. US4410501,1983.
    [87] Notari B, Titanium silicalites [J].Catal Today,1993,18(2):163-172.
    [88] Huybrechts D R C, Bruycker L D, Jacobs P A. A. Oxyfunction alization of alkanes with hydrogenperoxide on titanium silicalite.[J] Nature,1990,345:240—242.
    [89]王祥生. Ti-Si沸石的研究现状和工业应用前景[J]精细化工,1996,13(1):30-34
    [90] Tuel A,Khorzam S M,Ben Taarit Y. et al. Hydroxylation of phenol over TS-1: Surface and solventeffects[J]. J Mol Catal,1991,68(1):45-52.
    [91]王箴主编化工辞典(第四版)[M]北京:化学工业出版社,2000,1123.
    [92]毛鹏生,催化剂制备科学与技术进展[M].东营:石油大学出版社,1997,71-83.
    [93] Yoon T P,Jacobsen E N. Privileged chiral catalysts[J]. Science,2003,299(5613):1691-1693.
    [94] Doucet H,Ohkuma T,Murata K. et al. Trans-[RuCl2(phosphane)2(1,2-diamine)]and chiral trans-
    [RuCl2(diphosphane)(1,2-diamine):shelf-stable precatalysts for the rapid, productive, andstereoselective hydrogenation of ketones [J] Angew Chem Int Ed,1998,37(12):1703-1707.
    [95] Bell S,Wüstenberg B,Kaiser S. et al. Asymmetric Hydrogenation of Unfunctionalized, PurelyAlkyl-Substituted Olefins.[J] Science,2006,311(5761):642-644.
    [96] Chan A S C,Hu W,Pai C C.et al. Novel spiro phosphinite ligands and their application inhomogeneous catalytic hydrogenation reactions[J] J Am Chem Soc,1997,119(40):9570.
    [97] Xie J H,Zhou Q L. Chiral diphosphine and monodentate phosphorus ligands on a spiro scaffold fortransition-metal-catalyzed asymmetric reactions[J] Acc Chem Res,2008,41(5):581-593.
    [98] Ding K, Han Z.,Wang Z. Spiro skeletons: A class of privileged structure for chiral ligand design [J]Chem Asian J,2009,4:32-41.
    [99] List B,Lerner R A. Barbas III, C F proline-catalyzed direct asymmetric aldol reactions[J]. J AmChem Soc,2000,122(10):2395.
    [100] Ahrendt K A,Borths C J,MacMillan D W C. New strategies for organic catalysis: The first highlyenantioselective organocatalytic diels alder reaction[J]. J Am Chem Soc,2000,122(17):4243-4244.
    [101] Dondoni A,Massi A. Asymmetric organocatalysis: From infancy to adolescence[J] Angew Chem IntEd,2008,47:4638-4660.
    [102] Tang Z,Jiang F,Yu L-T.et al. Novel small organic molecules for a highly enantioselective directaldol reaction[J] J Am Chem Soc,2003,125(18):5262-5263.
    [103] Luo S,Xu H,Li J.et al. A simple primary tertiary diamine br nsted acid catalyst for asymmetricdirect aldol reactions of linear aliphatic ketones[J]. J Am Chem Soc,2007,129(11):3074-3075.
    [104] Chen X H,Zhang W Q,Gong L Z. Asymmetric organocatalytic three-component1,3-dipolarcycloaddition: control of stereochemistry via a chiral br nsted acid activated dipole[J]. J Am Chem154Soc,2008,130(17):5652-5653.
    [105] Xu S M,Wang Z,Zhang X. et al. Chiral bronsted acid catalyzed asymmetric baeyer-villiger reactionof3-substituted cyclobutanones using aqueous H2O2[J] Angew. Chem. Int. Ed,2008,47:2840-2843.
    [106] Ding K,Synergistic effect of binary component ligands in chiral catalyst library engineering forenantioselective reactions [J]. Chem Commun,2008,8:909-921.
    [107] Du H,Ding K.,Enantioselective Catalysis of Hetero Diels Alder Reaction and Diethylzinc AdditionUsing a Single Catalyst [J] Org Lett,2003,5(7):1091-1903.
    [108] Wang Z,Chen G,Ding, K. Self-supported catalysts[J]. Chem Rev,2009,109(2):322-359.
    [109] Noyori R,Editorial statement [J]. Adv Synth Catal,2001,343(1):1.
    [110]王子银,张征林,流化床:TiO2光催化降解乙醛气体的研究[J].环境化学与技术,2003,26(5):13-14.
    [111] Kim J S, Rees D C, Structural models for the metal centers in nitrogenase molybdenum-ironprotein [J]. Science,1992,257:1677-1682.
    [112] Pedersen C J. The discovery of crown ethers [J]. Angew Chem Int Ed Engl,1988,27:1021-1027.
    [113] Cram D J. The design of molecular hosts, guests, and their complexes [J]. Angew Chem Int Ed Engl,1988,27:1009-1020.
    [114] Lehn J M,Supramolecular chemistry-scope and perspectives molecules, supermolecules, andmolecular devices [J]. Angew Chem Int Ed Engl,1988,27:89-112.
    [115] Silva A P de, Gunaratne H Q N,Gunnlaugsson T. et al. Signaling recognition events with fluorescentsensors and switches [J]. Chem Rev,1997,97(5):1515-1566.
    [116] Valeur B,Leray I. Design principles of fluorescent molecular sensors for cation recognition [J].Coord Chem Rev,2000,205(1):3-40
    [117] Fabbrizzi L,Licchelli M,Rabaioli G. et al. A. The design of luminescent sensors for anions andionisable analytes [J]. Coord Chem Rev,2000,205(1):85-108.
    [118] Martínez-Mánez R, Sancenón F. Fluorogenic and chromogenic chemosensors and reagents foranions [J]. Chem Rev,2003,103(11):4419-4476.
    [119] Pluth M D,McQuade L E,Lippard SL. Cell-trappable fluorescent probes for nitric oxidevisualization in living cells,[J]. Org Lett,2010,12(10):2318-2321.
    [120] Han J,Burgess K. Fluorescent indicators for intracellular pH[J]. Chem Rev,2009,110(5):2709-2728.
    [121] Pu L,Fluorescence of organic moleculesin chiral recognition[J]. Chem Rev,2004,04(3):1687-1716.
    [122] Park T,et al. A quadruply hydrogen bonded heterocomplex displaying high-fidelity recognition.[J]J Am Chem Soe,2005,127(6):18133-18134.
    [123] Valeur B,Molecular fluorescence: Principles and applications.[M].2002,Wenheim:Wiley-VCH.http://www.amazon.cn/Molecular-Fluorescence-Principles-and-Applications-Valeur-Bernard/dp/352729919X
    [124].Matsui J,M.Higashi T,Thkeuehi. Molecularly inprinted polymer as9-ethyladenine receptor havinga porphyrin-based recognition center[J]. J Am Chem Soc,2000,122(21):5218-5219.
    [125].de Silva A P,McCaughan B,McKinney B O F.et al. Newer optieal-based moleeular devices fromolder coordination chemistry.[J]J Chem Soc, Dalton Trans,2003:1902-1913.
    [126]蒋林玲,丁立平,胡道道,房喻.基于PET过程的分子开关型荧光传感器研究进展[J].应用化学,2006,23:1069-1075.
    [127] Wasielewski M R.Photoinduced electron transfer in supramolecular systems for artificialphotosynthesis[J]. Chem Rev,1992,92(3):435-461.
    [128] Kavarnos G J. Fundamentals of photoindueed electron transfer [M].NewYork:VCH:WeinheimNew,1993.
    [129] Kim S K,Yoon J. A new fluorescent PET chemosensor for fluoride ions[J]. Chem Commun,2002,7:770-771.
    [130] Gunnlaugsson T,Davis A P,Glynn M. Fluorescent photoinduced electron transfer (PET) sensing ofanions using charge neutral chemosensors [J]. Chem Commun,2001,24:2556-2557.
    [131] Qian X,Zhu Z,Chen K. The synthesis, application and prediction of stocks shift in fluorescent dyesderived from l,8-naphthalic anhydride[J].Dyes Pigm,1989,11:13-20.
    [132] Fabbrizzi L. et al.,An anthracene-based fluorescent sensor for transition metal ions.[J] Angew.Chem.Ini.Ed.Engl.1994,33:1975-1979.
    [133] Tanaka K. Rational design of fluorescein-based fluorescenee probes: Mechanism-based design ofmaximum fluorescence probe for singlet oxygen[J].J Am Chem Soe,2001,123(11):2530-2536.
    [134] Wu F Y,Li Z,Wen Z C. et al. A Novel Thiourea-Based Dual Fluorescent Anion Receptor with aRigid Hydrazine Spacer [J]. Org Lett,2002,4(19):3203-3205.
    [135] Wu F Y,Jiang Y B. p-Dimethylaminobenzamide as an ICT dual fluorescent neutral receptor foranions under proton coupled electron transfer sensing mechanism[J]. Chem Phy Lett,2002,355(5):438-444.
    [136] Diwu Z,Chen C S,Zhang C.et al. A novel acidotropic pH indicator and its potential applieation inlabeling acidic organelles of live cell.[J] Chem Biol,1999,6:411-418.
    [137] Lehn J M. Perspectives in supramolecule chemistry from molecule recognition towards molecularinformation proeessing and self-organization.[J]. Angew Chem Int Ed,1990,29:1304-1319.
    [138] Gunnlaugsson T,Davis A P,O’Brien J E. et al. Fluorescent Sensing of Pyrophosphate andBis-carboxylates with Charge Neutral PET Chemosensors[[J]. Org Lett,2002,4(15):2449-2452.156
    [139] Arimori S,Bell M L,Oh C S. et al. A modular fluorescence intramolecular energy transfer saccharidesensor [J]. Org Lett,2002,4(24):4249-4251.
    [140] Valeur B. Molecular fluorescence pringeiple and applications.[M].Newyork,Wiley-VCH:2001.
    [141] Martinez-Manez R,Saneenon F. Fluorogenic and chromogenic chemosensors and reagents foranions[J]. Chem Rev,2003,103(11):4419.
    [142] Dujols V,Ford F, Czarnik A W. A long-wavelength fluorescent chemodosimeter selective for Cu(II)ion in water [J]. J Am Chem Soc,1997,119(31):7386-7387.
    [143]闵真真,马利民,宋厚燃.三峡库区次级支流梁滩河底泥重金属污染调查及评价.[J].环境科学与技术,2012,(3):33-35.
    [144]张瑞凌,魏云波,刘书花.我国重金属污染现状及其微生物处理方法研究进展[J].现代农业科技,2011,10:20-25.
    [145]王学峰,冯颖俊,林海等.新乡市部分市售蔬菜中重金属污染状况与质量评价[J].河南师范大学学报(自然科学版),2006,8:30-32.
    [146]王学峰,皮云清,史选等.新乡市污灌农田中重金属的污染状况调查[J].河南师范大学学报(自然科学版),2005,8:20-22.
    [147]刘鲤榕.城市土壤重金属污染现状及治理方法。[J].能源与环境,2011,6:30-32..
    [148] Fuh M R S,Burgess L W. et al. Single fibre optic fluorescence pH probe [J] Analyst,1987,112(8):1159-1163.
    [149] An H Y,Bradshaw J,Izatt R M. et al.Bis-and oligo(benzocrown ether)s[J]. Chem Rev,1994,94(4):939-991.
    [150] Costero A M,Audreu R,Monrabal E. et al.4,4-Bis(dimethylamino)biphenyl containing bindingsites.A new fluorescent subunit for cation sensing [J]. J Chem Soc Dalton Trans,2002,8:1769-1775.
    [151] Qiwen H,Evan W M,Audrey P W.et al. A selective fluorescent sensor for detecting lead in livingcells[J]. J Am Chem Soc,2006,128(29):9316.
    [152] Ruraek K, Brieks J L, Schulz B. et al. Substituted1,5-diphenyl-3-benzothiazol-2-yl-Δ2-pyrazolines: synthesis, X-ray structure, photophysics, and cation complexation properties[J] J PhysChem A,2000,104(26):6171-6188.
    [153] Rurack K,Brieks J L,Reek G. et al. Chalcone-analogue dyes emitting in the near-infrared (NIR):Influence of donor acceptor substitution and cation complexation on their spectroscopic propertiesand X-ray structure[J] J Phys Chem A,2000,104(14):3087-3109.
    [154] Ruraek K,Resch-Genger U,Brieks J L.et al. Cation-triggered ‘switching on’ of the red-near infra-red(NIR) fluorescence of rigid fluorophore–spacer–receptor ionophores[J] Chem.Commun,2000,21:2103-2104.
    [155] Ruraek K,kollmannsberger M,Resch-Genger U. et al. A selective and sensitive fluoroionophore forHg II, Ag I, and Cu II with virtually decoupled fluorophore and receptor units[J].J Am Chem Soc,2000,122(5):968-969.
    [156] Descalzo A B,Martinez-Mez R,Radeglia R. et al. Coupling selectivity with sensitivity in anintegrated chemosensor framework:Design of a Hg2+-responsive probe, operating above500nm[J]. JAm Chem Soc,2003,125(12):3418-3419.
    [157] Saneen6n F,Martinez-Manez.R,Soto.J. Colourimetric detection of Hg2+by a chromogenic reagentbased on methyl orange and open-chain polyazaoxaalkanes [J]. Tetrahedron Lett,2001,42:4321-4323.
    [158] Nolan E M,Lippard S J. A “Turn-On” Fluorescent Sensor for the Selective Detection of Mercuric Ionin Aqueous Media [J]. J Am Chem Soc,2003,125(47):14270-14271.
    [159] Prodi L,Montalti M,Zaccheroni. et al. Characterization of5-chloro-8-methoxyquinoline appendeddiaza-18-crown-6as a chemosensor for cadmium.[J] Tetrahedron Lett,2001,42:2941-2944.
    [160] Tamayo,A.,.et al.,Exploring the interaction of anthracene-containing macrocyclic Chemosensors withsilver(I) and cadmium(II) Ions-Photophysical and structural studies,[J]Z Anorg.Allg Chem,2007,633:1809-1814.
    [161] Gutsche C D,Calixarenes Revisited,[M]Cambridge,the Royal Society of Chemistry:1998.
    [162] Talanova G G,Hwang H S,Talanov V S. et al. Calix[4]arenes with hard donor groups as efficientsoft cation extractants. remarkable extraction selectivity of calix[4]arene N-(X)sulfonylcarboxamidesfor HgII [J] Chem Commun,1998,13:1329-1330.
    [163] Talanova G G,Hwang H S,Talanov V S.et al.Calix[4]arenes with a novel proton-ionizable group:synthesis and metal ion separations [J]Chem Commun1998,3:419-420.
    [164] Jun-Min L,Jian-Hua B,QiYu Z.et al. Highly selective fluorescent sensing of Pb2+by a newcalix[4]arene derivative[J]Tetrahedron Lett..2006,47(12),1905-1908.
    [165] Kim S K,Lee S H,Lee J Y. et al. An excimer-based, binuclear, On Off switchable calix[4]crownchemosensor[J]. J Am Chem Soc,2004,126(50):16499-16506.
    [166] Talanova G G,Elkarim N S A,Talanov V S. A calixarene-based fluorogenic reagent for selectivemercury(II) recognition[J]. Anal Chem,1999,71(15):3106-3109.
    [167] Chen Y Q,Chen C F. A new Hg2+-selective fluorescent sensor based on a dansyl amide-armedcalix[4]-aza-crown[J], Tetrahedron Lett,2005,46:165-168.
    [168] Cha N R, Kim M Y, Chang S K. New Hg2+-selective fluoroionophores derived fromp-tert-butylcalix[4] arene–azacrown ethers [J]. J Chem Soc, Perkin Trans,2002,6:1193-1196.
    [169] Perkovic M W. Allosteric manipulation of photoexcited state relaxation in (bpy)2RuII(binicotinicacid)[J] Inorg Chem,2000,39(21):4962-4968.
    [170] Caballero A,Martinez R,Molina P. et al. Highly selective chromogenic and redox or fluorescent158sensors of Hg2+in aqueous environment based on1,4-disubstituted azines [J]. J Am Chem Soc,2005,127(45):15666-15667.
    [171] Liu B, Tian H. A selective fluorescent ratiometric chemodosimeter for mercury ion [J]Chem.Commun,2005,25:3156-3158.
    [172] Ros-Lis J V,Marcos M D,Rurack K. A regenerative chemodosimeter based on metal-induced dyeformation for the highly selective and sensitive optical determination of Hg2+ions.[J] Angew ChemInt Ed,2005,44:4405-4407.
    [173] Hennrich G,Sonnenseheim H,Resch-Genger U. Redox switchable fluorescent probe selective foreither Hg(II) or Cd(II) and Zn(II)[J]. J Am Chem Soc,1999,121(21):5073-5074.
    [174] Liu W,Xu L, Sheng R.et al.,A water-soluble “switching on” fluorescent chemosensor of selectivity toCd2+[J].Org. Lett,2007,9(19):3829-3832.
    [175] Peng X j,Du J J,Fan J G.. A selective fluorescent sensor for imaging Cd2+in living eells.[J]. J AmChem Soc,2007,129(6):1500-1501.
    [176] Tang X L,Peng X H,Dou W. et al. Design of a semirigid molecule as a selective fluorescentchemosensor for recognition of Cd(II)[J]. Org Lett,2008,10(17):3653-3656.
    [177] Dobson S,Cadmiun-environmental aspects, World Health Organization, Geneva,(EHC135),1992.
    [178] Xu Z,Qian X,Cui J. Colorimetric and ratiometric fluorescent chemosensor with a large red-shift inemission: Cu(II)-Only sensing by deprotonation of secondary amines as receptor conjugated tonaphthalimide fluorophore [J]. Org Lett,2005,7(14):3029-3032.
    [179] Hirano T,Kikuchi K,Urano Y. et al. Highly zinc-selective fluorescent sensor molecules suitable forbiological applications[J]. J Am Chem Soc,2000,122(49):12399-12401..
    [180] Burdette S C,Bu W,Lippard S L. ZP4, an improved neuronal Zn2+sensor of the zinpyr family[J]. JAm Chem Soc,2003,125(7):1778-1780.
    [181] Li H,Gao S,Xi Z. A colorimetric and “turn on” fluorescent chemosensor for Zn(II)based oncoumarin Shiff-base derivative.inorg.[J]. Chem Commun,2009,12(4):300-303.
    [182] Zhang Y, Gao X, Si W.et al. Ratiometric and water-soluble fluorescent zinc sensor ofcarboramidoquinoline with an alkoxyethylamineo chain as receptor.[J].Org. Lett,2008,10(3):473-476.
    [183] Sheng R,Wang P,Gao Y. et al.Colorimetric test kit for Cu2+detection[J]. Org Lett,2008,10(21):5015-5018.
    [184] Zhao M,Yang X F,He S. et al. A rhodamine-based chromogenic and fluorescent chemosensor forcopper ion in aqueous media.[J]. Sensors and Actuators B,Chem,2009,135(2):625-631.
    [185] Xu Z,Zhang J,Guo R.et al. A highly sensitive and selective colorimetric and off-on fluorescentchemosensor for Cu2+based on rhodamine B derivative [J] Sensors and Actuators B:Chemical2011,156(2):544-552.
    [186]刘迎迎.氨基硼烷在水中对羰基化合物的绿色还原[D].新乡,河南师范大学,硕士学位论文,2011.
    [187] Hudlickg M,Reductions in Organic Chemistry;[M]. Chichester,Ellis Honvood Limited:1984.
    [188] Rylander P N,Catalytic Hydrogenation over Platinum Metals[M]. New York, Acaemic Press:1967,p.21
    [189] Sterk D, Stephan M S, Mohar B. Transfer hydrogenation of activated ketones using novel chiralRu(II)-N-arenesulfonyl-1,2-diphenylethylenediamine complexes.[J]. Tetrahedron Lett,2004,45(3):535-537.
    [190] Kaluzna I A, Matsuda T,Sewell A K. et al. Systematic Investigation of SaccharomycescerevisiaeEnzymes Catalyzing Carbonyl Reductions.[J]. J Am Chem Soc,2004,126(40):12827-12832.
    [191] Figadhre B,Chaboche C,Franck X. et al.Carbonyl Reduction of Functionalized Aldehydes andKetones by Tri-n-Butyltin Hydride and SiO2[J]. J Org Chem,1994,59(23):7138-7141.
    [192] Babler J H, Sarussi S J. Reduction of aldehydes and ketones using sodium formate in1-methyl-2-pyrrolidinone[J]. J Org Chem,1981,46(16):3367-3369.
    [193] Zhang W,Shi M. Reduction of activated carbonyl groups by alkyl phosphines: formation ofα-hydroxy esters and ketones[J]. Chem Commun,2006,42(11):1218-1220.
    [194] Kim J,De Castro K A, Lim M. et al. Reduction of aromatic and aliphatic keto esters using sodiumborohydride/MeOH at room temperature: a thorough investigation[J]. Tetrahedron,2010,66(23):3995-4001.
    [195] Borch R F, Bernstein M D, Durst H D. Cyanohydridoborate anion as a selective reducing agent[J].J Am Chem Soc,1971,93(12):2897-2904.
    [196] Cha J S,Moon S J, Park J H. A Solution of borane in tetrahydrofuran. A stereoselective reducingagent for reduction of cyclic ketones to thermodynamically more stable alcohols[J] J Org Chem,2001,66(22):7514-7515.
    [197] Andrews G C,Crawford T C. The synthetic utility of amine borane reagents in the reduction ofaldehydes and ketones.[J]. Tetrahedron Lett,1980,21(8):693-696.
    [198] Burkhardt E R,Matos K. Boron reagents in process chemistry: excellent tools for selective reductions.[J]. Chem Rev,2006,106(7):2617-2650.
    [199] Alexandre F R, Pantaleone D P, Taylor P P. et al. Amine–boranes: effective reducing agents for thederacemisation of dl-amino acids using l-amino acid oxidase from Proteus myxofaciens.[J].Tetrahedron Lett,2002,43(4):707-710.160
    [200] Muetterties E L. Boron Hydride.[M],New York,Academic press:1975.
    [201] Burg A B, Schlesinger H I. Hydrides of boron. VII. Evidence of the transitory existence of borine(BH3): borine carbonyl and borine trimethylammine[J]. J Am Chem Soc,1937,59(5):780-787.
    [202] Burkhardt E R. Reductive amination with5-ethyl-2-methylpyridine borane.[J] Tetrahedron Lett,2008,49(35):5152-5155.
    [203] Kuhn N, Schulten M, Zauder E, et al. Heterocyclen als liganden V: synthese and charakterisierungvon2,3,4,5-tetramethyl-1-azaferrocen.[J]. Chem Ber,1989,122(10):1891-1896.
    [204] Burg A B, Randolph C L Jr. The N-methyl derivatives of B2H7N.[J].J Am Chem Soc,1949,71(10):3451-3455.
    [205] Paz-Sandoval M A, Camacho C, Contreras R,13C nuclear magnetic resonance studies ofaromaticamine-borane adducts [J]. Spectrochim Acta Part A,1987,43(11):1331-1335.
    [206] Swain C J, Kneen C, Baker R. Synthesis of indole oxazolines, potent5-HT3antagonists.[J].Tetrahedron Lett,1990,31(17):2445-2448.
    [207] Shore S G, Chen X N.[P] WO2007/120511A2.2007
    [208] Uppal S S, Kelly H C.Nitrogen base donor–cyanoborane addition compounds [J].J Chem Soc, ChemCommun,1970,23:1619
    [209] Iwasaki Y, Ichikawa,[P] US:006060623A.2000
    [210] Ramanchandran P V, Gagare P D. Preparation of ammonia borane in high yield and purity,methanolysis, and regeneration. Inorg Chem,2007,46(19):7810-7817.
    [211] Kelly H C, Giusto M B, Marchell F R.Amineborane reductions in aqueous acid media.[J]. J AmChem Soc,1964,86(18):3882-3884.
    [212] White S S, Kelly H C. On the morpholine borane reduction of acetone.[J]. J Am Chem Soc,1968,90(8):2009-2011.
    [213] Sidney S, White Jr, Kelly H C. Kinetics and mechanism of the morpholine-borane reduction ofmethyl alkyl ketones.[J]. J Am Chem Soc,1970,92(14):4203-4209.
    [214] Sasaki S, Tamiaki H. Synthesis and optical properties of bacteriochlorophyll-a derivatives havingvarious C3substituents on the bacteriochlorin π-system[J]. J Org Chem,2006,71(7):2648-2654.
    [215] Bringmann G, Gampe C M, Reichert Y, et al. Synthesis and pharmacological evaluation offluorescent and photoactivatable analogues of antiplasmodial naphthylisoquinolines[J]. J MedChem,2007,50(24):6104-6115.
    [216] Hinterding K, Singhanat S, Oberer L. Stereoselective synthesis of polyketide fragments using a novelintramolecular Claisen-like condensation/reduction sequence[J].Tetrahedron Lett,2001,42(48):8463-8465.
    [217] Uyeda C, Biscoe M, LePlae P et al. Hydrophobically directed selective reduction of ketones usingamine boranes.[J].Tetrahedron Lett,2006,47(1):127-130.
    [218] Hutchins R O, Learn K, Nazer B, et al. Amine boranes as selective reducing and hydroborantingagenets a review[J].Org Prep Proced Int,1984,16:335-372.
    [219] Jaska C A, Manners I. Ambient temperature, tandem catalytic dehydrocoupling hydrogenationreactions using Rh colloids and Me2NH·BH3as a stoichiometric H2source.[J]. J Am Chem Soc,2004,126(9):2698-2699.
    [220] Couturier M, Tucker J L, Andresen B M, et al. Palladium catalyzed activation of borane–amineadducts: rate enhancement of amine–borane methanolysis in the reduction of nitrobenzenes toanilines.[J]. Tetrahdedron Lett,2001,42(12):2285-2288.
    [221] Couturier M, Tucker J L, Andresen B M, et al. Palladium and raney nickel catalyzed methanoliccleavage of stable borane amine complexes.[J]. Org Lett,2001,3(3):465-467.
    [222] Itsuno S, Ito K, Hirao A, et al."Asymmetric reduction of aromatic ketones with the reagent preparedfrom (S)-(–)-2-amino-3-methyl-1,1-diphenylbutan-1-ol and borane".[J]. J Chem Soc, ChemCommun,1983,8(8):469.
    [223] Corey E J, Shibata S, R. Bakshi K."An efficient and catalytically enantioselective route to(S)-(-)-phenyloxirane".[J]. J Org Chem,1988,53(12):2861–2863.
    [224] Corey E J, Shibata T, Lee T W. Asymmetric diels-alder reactions catalyzed by a triflic acidactivated chiral oxazaborolidine"[J]. J Am Chem Soc,2002,124(15):3808–3809.
    [225] Garrett C E, Prasad K, Repi O, et al. The enantioselective reduction of2′-fluoroacetophenoneutilizing a simplified CBS-reduction procedure.[J]. Tetrahedron Asymmetry,2002,13(13):1347-1349.
    [226] Shimizu M, Tsukamoto K, Matsutani T, Fujisawa T. Oxazaborolidine-mediated asymmetric reductionof1,2-diaryl-2-benzyloxyiminoethanones and1,2-diarylethanediones.[J]. Tetrahedron,1998,54(35):10265-10274.
    [227] Sanderson J M, Findlayb J B C, Fishwicka C W G. Preparation of novel3H-trifluoromethyldiazirine-based photoactivatable potassium channel antagonists.[J]. Tetrahedron,2005,61(47):11244-11252.
    [228] Cho B T, Kim D J. Efficient synthesis of optically active β-hydroxy p-tolylsulfones with very highenantiomeric excess via CBS–oxazaborolidine-catalyzed borane reduction.[J]. TetrahedronAsymmetry,2001,12(14):2043-2047.
    [229] Choi O K, Cho B T. A convenient synthesis of (1S,2R)-1,2-indene oxide and trans-(1S,2S)-2-bromo-1-indanol via oxazaborolidine-catalyzed borane reduction.[J]. Tetrahedron Asymmetry,2001,12(6):903-907.
    [230] Cho B T, Kim D J. Efficient synthesis of (R)-and (S)-3-octanol,(R)-2-dodecanol,(R)-2-methyl-4-heptanol and (R)-2-methyl-4-octanol: the pheromones of Myrmica scabrinodis, Crematogastercastanea, C. liengmei, C. auberti and Metamasius [J]. Tetrahedron,2003,59(14):2457-2462.162
    [231] Franot C, Stone G B, Engeli P, Sp ndlin C, Waldvogel E.A polymer-bound oxazaborolidine catalyst:Enantioselective borane reductions of ketones.[J].Tetrahedron Asymmetry,1995,6(11):2755-2766.
    [232] Hu J B, Zhao G, Yang G S. et al. Asymmetric borane reduction of prochiral ketones bypolymer-supported chiral sulfonamides [J]. J Org Chem,2001,66(1):303-304.
    [233] Huertas R E, Corellab J A, Soderquist J A. Asymmetric oxazaborolidine-catalyzed reduction ofprochiral ketones with N-tert-butyl-N-trimethylsilylamine–borane.[J]. Tetrahedron Lett,2003,44(24):4435-4437.
    [234] Ye W, Schneller S W.5‘-Methylaristeromycin and related derivatives.[J]. J Org Chem,2006,71(22):8641-8643.
    [235] Matsuo J I, Kozai T, Nishikawa O, et al. Oxazaborolidine-catalyzed enantioselective reduction ofα-methylene ketones to allylic alcohols.[J]. J Org Chem,2008,73(17):6902-6904.
    [236] Voight E A, Daanen J F, Hannick S M, et al. Efficient and general asymmetric syntheses of(R)-chroman-4-amine salts.[J].Tetrahedron Lett,2010,51(45):5904-5907.
    [237] Ramanchandran P V,Gagare P D. Preparation of ammonia borane in high yield and purity,methanolysis, and regeneration[J]. Inorg. Chem,2007,46:7810-7817.
    [238] patent: process for producing amine borane compound [P]. US:006060623A
    [239] Bien H S, Stawitz J, Wunderlich Klaus."Anthraquinone dyes and intermediates" in ullmann'sencyclopedia of industrial chemistry.[M]. Wiley-VCH, Weinheim:2005,355.
    [240] Lu Y, Huang S, Liu Y, et al. Highly selective and sensitive fluorescent turn-on chemosensor for Al3+based on a novel photoinduced electron transfer approach[J]. Org. Lett.,2011,13(19):5274-5277.
    [241] Arcamone F. Doxorubicin:Anticancer antibiotics; medinal chemistry, a series of monographs[M].New York,Academic Press:1981,17:1-369.
    [242] Fernando R P,Pedro I,Maia da S. et al. Thiosemicarbazones, semicarbazones, dithiocarbazates andhydrazide/hydrazones: Anti-mycobacterium tuberculosis activity and cytotoxicity [J]. Eur J MedChem,2010,45(5):1898-1905.
    [243] Matthew D H,Noeris K S,Jennifer L. et al. Synthesis, activity, and pharmacophore development forisatin-β-thiosemicarbazones with selective activity toward multidrug-resistant cells [J]. J Med Chem,2009,52(10):3191-3204.
    [244] Setshaba D K,Jiri G,Philip J R. et al. Ferrocenyl thiosemicarbazones conjugated to a poly(propyleneimine) dendrimer scaffold:Synthesis and in vitro antimalarial activity [J]. J OrganometChem,2011,696(21):3296-3300.
    [245] Yu Y, Lin L R,Yang K B.,et al. Determination of pyrethroid pesticide residues in vegetables bypressurized capillary electrochromatography[J] Talanta,2006,69(1):103-106.
    [246] Liu W,Xu L,Sheng R. et al. A water-soluble “switching on” fluorescent chemosensor of selectivityto Cd2+[J]. Org. Lett,2007,9(20):3829-3832.
    [247] Kevin J D,Anthony N S,Evelyne De. et al. Identification of a pharmacophore for thrombopoieticactivity of small, non-peptidyl molecules.1. Discovery and optimization of salicylaldehydethiosemicarbazone thrombopoietin mimics [J]. J Med Chem,2002,45(17):3573-3575.
    [248] M Manuela M R,Beatriz G A,Tatiana A. et al. Synthesis and study of the use of heterocyclicthiosemicarbazones as signaling scaffolding for the recognition of anions [J]. J Org Chem,2010,75(9):2922-2933.
    [249] Richard N B,Anthony G C. Water: nature’s reaction enforcers comparative effects for organicsynthesis “In-Water” and “On-Water”[J]. Chem Rev,2010,110(10):6302-6337.
    [250] Hodgkins J E,Reeves W P. The modified kaluza synthesis. III. The synthesis of some aromaticisothiocyanates[J]. J Org Chem,1964,29(10):3098-3099.
    [251] Zaitsev A B,Vasil’tsov A M,Schmidt E Y. et al. O-vinyldiaryl-and O-vinylaryl(hetaryl)ketoximes:a breakthrough in O-vinyloxime chemistry [J]. Tetrahedron,2002,58:10043–10046.
    [252] Kim J N,Jung K S,Lee H J.et al. A facile one-pot preparation of isothiocyanates from aldoximes[J].Tetrahedron Lett,1997,38:1597-1598.
    [253] Huang H,Chen Q,Ku X. et al. A series of r-heterocyclic carboxaldehyde thiosemicarbazones inhibittopoisomerase IIα catalytic activity[J]. J Med. Chem,2010,53:3048-3064.
    [254] Buu-Ho N P,Xuong N D,Nam N H. et al. Tuberculostatic hydrazides and their derivatives[J]. JChem. Soc,1953,25:1358-1364.
    [255] Nehru K,Athappan P,Rajagopal G. Ruthenium (II)/(III) complexes of bidentate acetyl hydrazideschiff bases [J]. Trans Met Chem,2001,26:652-656.
    [256] Ainscough E W,Brodie A M,Dobbs A J. et al. Antitum our copper (II) salicylaldehydebenzoyhydrazone complexes [J]. Inorg Chim Acta,1998,267:27-38.
    [257] Yolanda Karla C da S, Cristina V A,Maria Letícia de C B, et al. Synthesis and pharmacologicalevaluation of pyrazine N-acylhydrazone derivatives designed as novel analgesic andanti-inflammatory drug candidates [J]. Bioorg Med Chem,2010,18:5007–5015.
    [258] Reddy L V, Nallapati S B, Beevi S S, et al. A “Green” synthesis of N-(Quinoline-3-yl methylene)benzohydrazide derivatives and their cytotoxicity activities [J]. J Braz Chem Soc,2011,22(9):1742-1749.
    [259] Rajamalli P, Prasad E. Low molecular weight fluorescent organogel for fluoride ion detection [J].Org Lett,2011,13(14):3714-3717.
    [260] Xu Z, Zhang L, Guo R, et al. A highly sensitive and selective colorimetric and off–on fluorescentchemosensor for Cu2+based on rhodamine B derivative[J]. Sens Actuators B:Chem,2011,156:164546-552.
    [261] Du J,Fan J,Peng X. L. et al. The quinoline derivative of rationmetric and sensitive fluorescent zincprobe based on deprotonation [J] Sensors and Actuators B: Chemical,2010,144(1):337-341.
    [262] Curzons A D,Constable D J C,Mortimer D N. et al. So you think your process is green, how do youknow?---Using principles of sustainability to determine what is green-a corporate perspective [J].Green Chem,2001,3:1-6.
    [263].Han Z X,Luo H Y,Zhang X B.et al. A ratiometric chemosensor for fluorescent determiination ofHg2+based on a new porphyrin-qunolinedyad [J] spectrochimica Acta Part A: Molecular andBiomolecular Spectroscopy,2009,72(5):1084-1088.
    [264] Chizuru I,Shiraishi Y,Hirai T. Cu(II)-selective fluorescence of a bis-quinolylimine derivative.[J] JPholochem and Photobio A: Chem,2011,217:253-258.
    [265]雷瑞霞,刘永春.8-羟基喹啉-7-醛的合成改进及其光谱性质.[J]宝鸡文理学院学报(自然科学版)2008,2(3):206-209.
    [266] Huang L,Cheng J,Xie K F. et al.Cu2+-selective fluorescent chemosensor based on coumarin and itsapplication in biomaging [J].J Chem Soc Dalton Trans,2011,40:10815