自然气候环境下粉煤灰混凝土耐久性预计方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文将气候环境作用与粉煤灰混凝土微环境响应结合起来,通过建立与混凝土微环境相关的耐久性退化模型(包括碳化深度预计模型、氯盐侵蚀速率预计模型及钢筋锈蚀速率预计模型),从而达到对自然气候环境下粉煤灰混凝土结构耐久性使用寿命进行预计的目的。
     借助于微观测试仪器,研究了不同龄期下粉煤灰混凝土浆体的微观结构;通过压汞试验法研究了粉煤灰掺量对混凝土孔隙结构的影响程度;通过理论分析及试验验证,研究了粉煤灰掺量对混凝土孔隙液pH值的影响。
     在恒定人工气候环境下,基于混凝土内部温度响应、相对湿度响应以及相关基本物理量(包括导热系数、湿质扩散系数及孔隙水饱和度)的研究,分析了粉煤灰混凝土微环境温度、相对湿度响应规律;并结合传热过程、传质过程的基本理论,建立了人工气候环境下粉煤灰混凝土微环境温度响应、相对湿度响应预计模型;同时借助自然气候环境温度和相对湿度作用谱,基于粉煤灰混凝土微环境响应预计模型,建立了自然气候环境下粉煤灰混凝土微环境响应的预计方法。
     基于粉煤灰混凝土中可碳化物质的含量以及CO2在粉煤灰混凝土内扩散速率的研究,从理论上推导了粉煤灰混凝土部分碳化区长度及完全碳化区长度的预测模型,并通过人工气候环境下碳化试验进行验证;建立了自然气候环境下粉煤灰混凝土碳化深度预计方法,并通过现场长期试验加以验证。
     在人工模拟海洋气候环境下,试验研究了海洋环境条件(包括海洋大气环境、海水环境及海洋潮汐环境)及粉煤灰掺量对氯离子传输速率的影响规律;基于海洋大气环境下氯离子传输机理及试验结果,建立了海洋大气环境下氯离子传输速率预计模型;建立了自然海洋大气环境下粉煤灰混凝土中氯离子侵蚀速率的预计方法,并通过现场长期试验加以验证。
     通过试验分别确定了碳化、氯盐侵蚀环境下钢筋脱钝的临界条件;基于钢筋不均匀锈蚀分布模型,从理论上推导了自由膨胀阶段钢筋锈蚀量的预计、混凝土保护层锈胀开裂前锈胀力分布模型以及锈胀开裂时钢筋临界锈蚀量预计;基于粉煤灰混凝土内钢筋锈蚀时变模型,建立了自然气候环境下混凝土内钢筋锈蚀速率预计方法,并通过长期试验加以验证。
     基于上述系列研究成果,分别研究了碳化环境、氯盐侵蚀环境下钢筋脱钝耐久性使用寿命,以及锈胀开裂使用寿命的预计方法,并给出具体算例分析过程。
Durability degradation models (including carbonation depth prediction, chloride ionerosion rate prediction, reinforced bar corrosion rate prediction) related tomicro-environment were established by combining natural climate environment withmicro-environment response in fly ash concrete, so as to achieve durability service lifeprediction of fly ash concrete structures in natural climate environment.
     Microstructure of fly ash concrete cement paste at different ages was studied bymicroscopic instrument; the effect of fly ash replacement on pore structure of fly ashconcrete was researched by mercury intrusion method; the impact of fly ash replacement onpore solution pH value was studied by theoretical analysis and experimental verification.
     Micro-environment temperature response, micro-environment relative humidityresponse and basic physical quantities (including thermal conductivity, wet mass diffusioncoefficient and pore water saturation) of fly ash concret were tested in artificially controlledclimate environment, to analysis micro-environment response law in fly ash concrete; themodels predicting micro-environment temperature and relative humidity response in fly ashconcrete were created by combining the basic theory of mass transfer process, heat transferprocess with test results; at the same time, with the role of natural climate temperaturespectra and relative humidity spectra, the methods predicting micro-environment response infly ash concrete in natural climate environment were studied.
     The models predicting full carbonation length and partial carbonation length wereraised based on carbonizable substances contents andCO2diffusion rate in fly ash concrete,and verified by carbonation tests in artificially controlled climate environment; the methodpredicting carbonation depth in fly ash concrete in natural climate environment wasestablished, and verified through on-site long-term test.
     The effects of ocean environment(including ocean atmospheric environment, seawaterenvironment and ocean tidal environment) and fly ash replacement on chloride ion erosionrate were studied experimentally in artificially simulated ocean environment, and the modelpredicting chloride ion erosion rate in ocean atmospheric environment was set up accordingto chloride ion erosion mechanism in unsaturated concrete and test results; the methodpredicting chloride ion erosion rate in fly ash concrete in natural ocean atmosphericenvironment was established, and verified through on-site long-term test.
     The critical conditions of reinforced bar depassivation in carbonatinon and chloride ionerosion environment were determined experimentally in artificially controlled climate environment; reinforced bar corrosion at free expansion stage, rust expansion forcedistribution before concrete surface craking were studied theoretically based onnon-uniform reinforced bar corrosion distribution model, as well as rebar critical corrosionwhen concrete surface cracks due to rust expansion; prediction method of reinforced barcorrosion rate in fly ash concrete in natural climate environment was established accordingto reinforced bar corrosion rate time-varying mode, and verified through on-site long-termtest.
     Based on above research results, durability service life prediction methods of reinforcedbar depassivation in carbonation and chloride ion erosion environment, as well as rustexpansion cracking service life were studied respectively, and specific numerical exampleswere given.
引文
[1]姚燕.王玲.田培.高性能混凝土[M].北京:化学工业出版社,2005.
    [2]吴中伟,廉慧珍.高性能混凝土[M].北京:中国铁道出版社,1999.
    [3]冯乃谦.高性能混凝土结构[M].北京:机械工业出版社,2004.
    [4]张誉.混凝土结构耐久性概论[M].上海:上海科学技术出版社,2003.
    [5]牛荻涛.混凝土结构耐久性与寿命预测[M].北京:科学出版社,2003.
    [6]金伟良.赵羽习.混凝土结构耐久性[M].北京:科学出版社,2002.
    [7]钱觉时.粉煤灰特性与粉煤灰混凝土[M].北京:科学出版社,2002.
    [8]冯乃谦.普通混凝土、高强混凝土与高性能混凝土[J].建筑技术,2004,35(1):20-23.
    [9]覃维祖.粉煤灰在混凝土中的应用[J].粉煤灰综合利用,2000(3):1-7.
    [10]Alain Bilodeau,V.Mohan Malhotra.High volume fly ash system:concrete solution for sustaintabledevelopment[J].ACI Materials Journal,2000,97(1):41-48.
    [11]唐明述.水泥混凝土与可持续发展[J].中国有色金属学报,2004,14(1):164-172.
    [12]鄢朝勇.混凝土材料的可持续发展与粉煤灰绿色高性能混凝土[J].国外建材科技,2005,26(4):5-7.
    [13]覃维祖.利用粉煤灰开发高性能混凝土若干问题的探讨[J].粉煤灰,2000(5):3-6.
    [14]POON C S, LAM L, WONG Y L. A study on high strength concrete prepared with large volumes oflow calcium fly ash[J].Cement Concrete Research,2000,30(3):447-455.
    [15]陈肇元.朱金铨.吴佩刚.高强混凝土及其应用[M].北京:清华大学出版社,1996.
    [16]艾红梅.大掺量粉煤灰混凝土配合比设计与性能研究[D].辽宁:大连理工大学,2005.
    [17]王福元.粉煤灰混凝土应用现状及发展[J].河南建材,2001(2).
    [18]姬永生.自然与人工气候环境下钢筋混凝土退化过程的相关性研究[D].徐州:中国矿业大学力学与建筑工程学院,2007.
    [19]李果.钢筋混凝土耐久性的环境行为与基本退化模型研究[D].徐州:中国矿业大学力学与建筑工程学院,2003.
    [20]蒋建华.气候环境作用定量模式及其在混凝土结构寿命预计中应用[D].徐州:中国矿业大学力学与建筑工程学院,2011.
    [21]孙红萍.表层混凝土导热系数与湿质扩散系数的规律研究[D].徐州:中国矿业大学力学与建筑工程学院,2011.
    [22]马文彬.气候环境变化与混凝土内微环境的响应规律研究.[D].江苏:中国矿业大学建筑工程学院.2007.
    [23]綦春明,代明,刘庆恒.掺粉煤灰对混凝土孔结构影响的试验研究[J].工程建设,2008,40(2):8-11.
    [24]施惠生,方泽锋.粉煤灰对水泥浆体早期水化和孔结构的影响[J].硅酸盐学报,2004,32(1):95-98.
    [25]廉慧珍.童良.陈恩义.建筑材料物相研究基础[M].北京:清华大学出版社,1996.
    [26]Jiang L H.The interfacial zone and bond strength between aggregates and cement pastes incorporatinghigh volumes of fly ash[J].Cement and Concrete Composites,1999,21(4):313-316.
    [27]王涛.朴相兰.朱慎林.高等传递过程原理[M].北京:化学工业出版社,2005.
    [28]赵铁军.混凝土渗透性[M].北京:科学出版社,2006.
    [29]Papadakis V G,Vayenas C G. Physical and chemical characteristics affecting the durability of concrete[J].ACI Materials Journal,1991,8(2):186-196.
    [30]张誉,蒋利学.基于碳化机理的混凝土碳化深度实用数学模型[J].工业建筑,1998,28(1):16-19.
    [31]耿欧.混凝土构件中钢筋锈蚀速率预计模型研究D].徐州:中国矿业大学力学与建筑工程学院,2008.
    [32]朱辉.表层混凝土的氧扩散指标预计模型研究[D].徐州:中国矿业大学力学与建筑工程学院,2008.
    [33]Hassan K E,Cabrera J G,Maliehe R S.The effect of mineral admixtures on the properties of high-performance concrete[J].Cement and Concrete Composites,2000,22(4):267-271.
    [34]金祖权,孙伟,张云升等.粉煤灰混凝土的多因素寿命预测模型[J].东南大学学报(自然科学版),2005,35(I):149-154.
    [35]张奕,郭恩震荡.传热学[M]].东南大学出版社,2004.
    [36]Kim K H,Jeon S E,Kim J K et al.An experimental study on thermal conductivity of concrete, Cementand Concrete Research,2003,33:363-371.
    [37]孙无二.建筑材料导热系数的回归计算[J].低温建筑技术,1994,55(3):16-18.
    [38]胡雪蛟,杜建华,王补宣.液相饱和度对多孔介质稳态导热系数的影响[J].工程热物理学报,2001(6):125-128.
    [39]刘光廷,黄达海.混凝土湿热传导与湿热扩散特性试验研究(I)[J].三峡大学学报,2002,24(1):12-18.
    [40]刘光廷,黄达海.混凝土湿热传导与湿热扩散特性试验研究(II)[J].三峡大学学报,2002,24(2):97-106.
    [41]Ramazan Demirboga.Thermal conductivity and compressive strength of concrete incorporation withmineral admixtures[J].Building and Environment,2007,42(7):2467-2471.
    [42]Ramazan Demirboga, brahim Türkmen, Mehmet Burhan Karako.Thermo-mechanical properties ofconcrete containing high-volume mineral admixtures[J]. Buildingand Environment,2007,42(1):349-354.
    [43]Ramazan Demirboga, Rüstem Gül.Thermal conductivity and compressive strength of expandedperlite aggregate concrete with mineral admixtures[J].Energy and Buildings,2003,35(11):1155-1159.
    [44]Ramazan Demirboga, Rüstem Gül.The effects of expanded perlite aggregate, silica fume and fly ashon the thermal conductivity of lightweight concrete[J]. Cement and Concrete Research,2003,33(5):723-727
    [45]王新友,蒋正武,高相东.混凝土中水分迁移机理与模型研究评述[J].建筑材料学报,2002,5(1):66-71.
    [46]Wong S F,Wee T H.Study of water movement in Concrete[J].Magazine of Concrete Research,2001,53(3):205-220.
    [47]Andrade C,Sarria J,Alonso C.Relative humidity in the interior of concrete exposed to natural andartificial weathering[J].Cement and Concrete Research,1999,29(6):1249-1259.
    [48]DELGADO J M P Q. Measurement of diffusion coefficients in building materials using the initial rateof sorption [J]. Diffusion and Defect Data. Part A, Solid State Data, Defect and Diffusion Forum.2006,Vols.258-260:85-90.
    [49]黄达海,刘光廷.混凝土等温传湿过程的试验研究[J].水利学报,2002(6):96-100.
    [50]Sulapha P,Wong S F,Wee T H.Carbonation of concrete containing mineral admixtures.[J].MaterialCivil Engineering,2003,15(2):134-143.
    [51]Cengiz D A. Accelerated carbonation and testing concrete made with fly ash [J].Construction andBuilding Materials,2003,17(3):147-152.
    [52]陈树东,孙伟,张云升等.粉煤灰混凝土二维、三维碳化深度的预测[J].东南大学学报,2007,37(4):645-650.
    [53]J.Khunthongkeaw,S.Tangtermsirikul,T.Leelawat.A study on carbonation depth prediction for fly ashconcrete[J].Construction and Building Materials,2006,20(9):744-753.
    [54]Kritsada Sisomphon,Lutz Franke.Carbonation rates of concretes containing high volume ofpozzolanic materials[J].Cement and Concrete Research,2007,37:1647-1653.
    [55]李淑进,施惠生,赵铁军等.粉煤灰混凝土耐久性的若干研究[J].粉煤灰综合利用,2003(2):20-22.
    [56]Papadakis V G. Effect of supplementary cementing materials on concrete resistance againstcarbonation and chloride ingress[J].Cement Concrete Res,2000,30:291-299.
    [57]Atis C D.Accelerated carbonation and testing of concrete made with fly ash[J].Constr BuildMater,2003,17(3):147-152.
    [58]Malhotra V M, Zhang M H,Read P H et al.Long-term mechanical properties and durabilitycharacteristics of highstrength/high-performance concrete incorporating supplementary cementingmaterials under outdoor exposure conditions[J]. ACI Material Journal,2000,97(5):518-525.
    [59]Sulapha P,Wong S F,Wee T H et al.Carbonation of concrete containing mineral admixtures[J]. J.MaterCivil Eng,2003,15(2):134-143.
    [60]吴建华.高强高性能大掺量粉煤灰混凝土研究[D].重庆:重庆大学,2004.
    [61]Loo Y H, Chin M S et al.A carbonation prediction model for accelerated carbonation testing ofconcrete[J].Magazine of Concrete Research,1994,46(168).
    [62]Hobbs D W.Carbonation of concrete containing PFA[J].Magazine of Concrete Research,1994,46
    [63]Papadakis V G, Fardis M N et al.Fundamental modeling and experimental investigation of concretecarbonation[J].ACI Material Journal,1991,88:
    [64]陈立亭.混凝土碳化模型及其参数研究[D].西安:西安建筑科技大学,2007.
    [65]刘欣.与混凝土微环境相关的碳化速率预计模型[D],徐州:中国矿业大学力学与建筑工程学院,2010.
    [66]Jiang L H,Baoyu L, Cai Y B,A model for predicting carbonation of high-volume fly ash concrete[J],Cement and Concrete Research,2000,30(5):699-702.
    [67]张云升,孙伟,陈树东等.弯拉应力作用下粉煤灰混凝土的1D和2D碳化[J].东南大学学报,2006,37(1):118-122.
    [68]Kritsada Sisomphon,Lutz Franke.Carbonation rates of concretes containing high volume of pozolanicmaterials[J].Cement and Concrete Research37(2007)1647-1653.
    [69]洪定海.混凝土中钢筋的腐蚀与保护[M].北京:中国铁道出版社,1998.
    [70]冷发光.荷载作用下混凝土氯离子渗透性及其测试方法研究[D].北京:清华大学,2002.
    [71]季海霞.与混凝土微环境相关的氯盐侵蚀预计模型[D],徐州:中国矿业大学力学与建筑工程学院,2010.
    [72]刘志勇,孙伟.基于饱海水电阻率的海工混凝土氯离子扩散系数测试方法的试验研究[J].混凝土,2005,186(4):26-28.
    [73]马昆林,谢友均,唐湘辉.粉煤灰对混凝土中氯离子的作用机理研究[J].粉煤灰综合利用,2007(1):13-15.
    [74]R.Polder.Test methods for on site measurement of resistivity of concrete[J].Material and Structures/Materiaux et Constructions,2000,vol.33(12):603-611.
    [75]Byung H O,Soo W C,Bong S J et al.Development of high-performance concrete having highresistance to chloride penetration[J].Nuclear Engineering and Design,2002,212(1):221-231.
    [76]何智海,刘宝举.粉煤灰混凝土抗氯离子渗透性能的试验研究[J].粉煤灰综合利用,2007(4):24-27.
    [77]Choi Y S, Kim J G, Lee K My.Corrosion behavior of steel bar embedded in fly ash concrete,Corrosion Science[J].2006,48(7):1733-1745.
    [78]Ngala V T,Page C L,Parrot L J et al.Diffusion in Cementitious materials:the further investigations ofchloride and oxygen diffusion in well-cured OPC/30%PFA pastes[J]. Cement and concrete research,1995,25(4):819-826.
    [79]沈旦申.冒镇恶.粉煤灰优质混凝土[M].上海:上海科学技术出版社,1992.
    [80]JONES M R,DHIR R K,GILL J P.Concrete surface treatment:effect of exposure temperature onchloride diffusion resistance [J].Cement and Concrete Research,1995,25(1):197-208.
    [81]田俊峰,潘德强.海工高性能混凝土抗氯离子侵蚀耐久寿命预测[J].中国港湾建设,2002,4(2):1-6.
    [82]Stephen L A,Dwayne A J,Matthew A M et al.Predicting the service life of concrete marine structures:an environmental methodology[J]. ACI Structural Journal,1998,95(1):27-36
    [83]余红发,孙伟.混凝土在多重因素作用下的氯离子扩散方程[J].建筑材料学报,2002,5(3):240-247.
    [84]徐惠.碳化与氯盐侵蚀环境下粉煤灰混凝土的耐久性研究[D].徐州:中国矿业大学力学与建筑工程学院,2009.
    [85]王仁超,朱琳,李振富.混凝土氯离子综合机制扩散模型及敏感性研究[J].哈尔滨工业大学学报,2004,36(6):824-828.
    [86]刘志勇,孙伟,杨鼎宜.基于氯离子渗透的海工混凝土寿命预测模型进展[J].工业建筑,2004,34(6):61-64.
    [87]宋少民,李红辉,邢峰.大掺量粉煤灰混凝土抵抗碳化和钢筋锈蚀研究[J].武汉理工大学学报,2008,30(8):38-42.
    [88]Saraswathy V, Muralidharan S,Thangavel K et al.Influence of activated fly ash on corrosion-resistance and strength of concrete[J].Cement and Concrete Composites,2003,25(7):673-680
    [89]T.Liu,R.W.Weyers,Modeling the Dynamic Corrosion Process in Chloride Contaminated ConcreteStructures. Cement and Concrete Research,1998,28(3):365-379.
    [90]Kim.Accelerated short-term techniques to evaluate the corrosion performance of steel in fly ashblended concrete[J].Building and Environment,2007,42:78-85.
    [91]高仁辉,秦鸿根,庞超明.粉煤灰掺量、氯离子含量和PH值对混凝土中钢筋锈蚀的影响[J].混凝土与水泥制品,2005,141(1):1-3.
    [92]刘竞,邓德华,胡旭丽.粉煤灰对混凝土护筋性的复合影响[J].混凝土与水泥水泥品,2008(1):13-17.
    [93]Zivica V, Krajci L, Bagel L et al.Significane of the ambient temperature and the steel material in theprocess of concrete reinforcement corrosion[J].Construction and building materials,1997,11(2):99-103.
    [94]沈德建,李祖阳.环境温度对混凝土中钢筋锈蚀率的影响[J].建筑技术开发,2002,29(3):34-35.
    [95]左勇志,闫玉海,宋晓冰.温度对碳化引起的钢筋混凝土腐蚀速率影响研究[J].工业建筑,2003,33(3):8-10.
    [96]Lopez W, Gonzalez J A, Andrade C.Influence of temperature on the service life of rebars [J].Cementand concrete research,1993(23):1130-1140.
    [97]Lpoez W et al, Influence of the degree of pore saturation on the resistivity of concrete and theorrosion rate of steel reinforcement[J].Cement and Concrete Research,1993,23.
    [98]许超.混凝土结构耐久性寿命预测及可靠度分析研究[D].合肥:合肥工业大学,2007.
    [99]徐善华,牛获涛,王庆霖.钢筋混凝土结构碳化耐久性分析[J].建筑技术开发,2002,29(8):8-10.
    [100]中国工程建设标准化协会标准《混凝土结构耐久性评定标准》CECS220:2007.北京:2007.
    [101]史波,赵国藩.基于可靠度的锈蚀钢筋混凝土结构使用寿命预测[J].大连理工大学学报,2007,47(1):61-67.
    [102]樊云昌.曹兴国等.混凝土中钢筋钢筋腐蚀的防护与修复[M].北京:中国铁道出版社,2001.
    [103]Kayyali O A et al.The Cl-/OH-ratio in chloride-contaminated concrete—a most importantcriterion[J].Magazine of Concrete Research,1995,47(172):235-242.
    [104]王新友,李宗津.混凝土使用寿命预测的研究进展[J].建筑材料学报,1999,2(3):249-256.
    [105]Shamsad Ahmad,Reinforcement corrosion in concrete structures, its monitoring and service lifeprediction––a review,Cement and Concrete Composites,2003,25(4-5):459-471.
    [106]淡丹辉,王庆霖.钢筋混凝土结构锈胀裂缝的计算机模拟[J].西安交通大学学报,2000,35(5):484-487.
    [107]潘振华,牛荻涛,王庆霖.钢筋锈蚀开裂条件的试验研究[J].工业建筑,1999,29(5):46-49.
    [108]Morinaga S.Prediction of service life of reinforced concrete buildings based on the corrosion rate ofreinforcing steel[J].Durability of buildings material and components,Proceedings of the5thinternational conference helded in Brighton,UK,1990.
    [109]T.El Maaddawy,K.Soudki.A model for prediction of time from corrosion initiation to corrosioncracking[J].Cement and Corcrete Composites,29(3),2007:168-175.
    [110]惠云玲.混凝土结构钢筋锈蚀耐久性损伤评估及寿命预测方法[J].工业建筑,1997,27(6):19-22.
    [111]Andrade C,Alonso C,Molina F J. Cover cracking as a function of rebar corrosion:part I:experimentaltest[J]. Material and Structures,1993,26(163):453-464.
    [112]Weyers R.E.Service life model for concrete structures in chloride environments[J]. ACIMater.Journal,1998,95(4):445-453.
    [113]牛荻涛,王订霖,王林科.锈蚀开裂后混凝土中钢筋锈蚀量的预测[J].工业建筑,1996,26(4):11-13.
    [114]惠云玲.混凝土中钢筋锈蚀程度和预测试验研究[J].工业建筑,1997,27(6):6-9.
    [115]吴庆.基于钢筋锈蚀的混凝土构件性能退化预计模型[D],徐州:中国矿业大学力学与建筑工程学院,2007.
    [116]中华人民共和国国家标准,《用于水泥和混凝土中的粉煤灰》(GB/T1596-2005).
    [117]中华人民共和国国家标准,《水泥分析方法》GBT176/2008.
    [118]中华人民共和国国家标准,《水泥标准稠度用水量、凝结时间、安定性检验方法》GB/T1346-2001.
    [119]中华人民共和国国家标准,GBJ146-90《粉煤灰混凝土应用技术规范》.
    [120]中华人民共和国国家标准,GB50081-2002《普通混凝土力学性能试验方法》.
    [121]冯乃谦,邢锋.混凝土与混凝土结构的耐久性[M].北京:机械工业出版社,2009.
    [122]郭成举.混凝土的物理和化学[M].北京:中国铁道出版社,2004.
    [123]Effect of fly ash on Portland cement systems: Part II. High-calcium fly ash,Cement and ConcreteResearch,2000,30(10):1647-1654.
    [124]Effect of fly ash on Portland cement systems: Part I. Low-calcium fly ash,Cement and ConcreteResearch,1999,29(11):1727-1736.
    [125]NORRIS A, SAAFI M, ROMINE P. Temperature and moisture monitoring in concrete structuresusing embedded nanotechnology/micro-electromechanical systems(MEMS)sensors [J]. Constructionand Building Materials,2008,22(2):111-120.
    [126]C.Andrade,J.Sarria,C.Alonso.Relative humidity in the interior of concrete exposed to naturaland artificial weathering[J].Cement and Concrete Research,1999,29(8):1249-1259.
    [127]HUET B, L’HOSTIS V, et al. Steel corrosion in concrete: Determinist modeling of cathodic reactionas a function of water saturation degree[J]. Corrosion Science,2007,49(4):1918-1932.
    [128]库马.梅塔,保罗J.M.蒙特罗,覃维祖、王栋民、丁建彤译.混凝土微观结构、性能和材料[M].北京:中国电力出版社,2008.
    [129]冯乃谦.新实用混凝土大全[M].北京:科学出版社,2005.
    [130]周新刚.混凝土结构耐久性与损伤防治[M].北京:中国建材工业出版社,1999.
    [131]沙庆云.传递原理[M].大连:大连理工大学出版社,2003.
    [132]Xiao-Yong Wang, Han-Seung.Lee A model for predicting the carbonation depth of concretecontaining low-calcium fly ash.Construction and Building Materials,2009,23(2):725-733.
    [133]邱轶兵.试验设计与数据处理[M].合肥:中国科学技术大学出版社,2008.
    [134]中华人民共和国国家标准,《水运工程混凝土试验规程》JTJ270-98.
    [135]中华人民共和国国家标准,《普通混凝土长期性能与耐久性能试验方法》(GB/T50082-2009).
    [136]夏兰廷,黄桂桥,张三平.金属材料的海洋腐蚀与防护[M].北京:冶金工业出版社,2003.
    [137]张奕.氯离子在混凝土中的输运机理研究[D].杭州:浙江大学,2008.
    [138]W. Chalee, C. Jaturapitakkul, P. Chindaprasirt. Predicting the chloride penetration of fly ash concretein seawater[J].Marine Structures,2009,22(3):341-353.
    [139]Halit Yaz c. The effect of silica fume and high-volume Class C fly ash on mechanical properties,chloride penetration and freeze–thaw resistance of self-compacting concrete[J].Construction andBuilding Materials,2008,22(4):456-462
    [140] Chindaprasirt, C. Chotithanorm, H.T. Cao, V. Sirivivatnanon. Influence of fly ash fineness on thechloride penetration of concrete[J].Construction and Building Materials,2007,21(2):356-361.
    [141]Byung Hwan Oh, Seung Yup Jang. Effects of material and environmental parameters on chloridepenetration profiles in concrete structures[J]. Cement and Concrete Research,2006(9).
    [142]金伟良,张奕,卢振勇.非饱和状态下氯离子在混凝土中的渗透机理及计算模型[J].硅酸盐学报,2008,36(10):1362-1369
    [143]Hong K, Hooton R D. Effects of Cyclic Chloride Exposure on Penetration of ConcreteCover[J].Cement and Concrete Research,1999,29(9):1379-1386.
    [144]刘军,邢锋,董必钦.沿海大气中氯离子对混凝土结构作用研究[J].混凝土,2008(1):14-16.
    [145]M.A. Mustafa, K.M. Yusof. Atmospheric chloride penetration into concrete in semitropical marineenvironment[J].Cement and Concrete Research,1994,24(4):661-670.
    [146]G.R. Meira, C. Andrade, C. Alonso.Durability of concrete structures in marine atmospherezones-The use of chloride deposition rate on the wet candle as an environmental indicator[J].Cementand Concrete Composites,2010,32(6):427-435.
    [147]G.R. Meira, C. Andrade, I.J. Padaratz. Chloride penetration into concrete structures in the marineatmosphere zone-Relationship between deposition of chlorides on the wet candle and chloridesaccumulated into concrete[J].Cement and Concrete Composites,2007,29(9):667-676.
    [148]刘军,邢锋,董必钦.模拟大气氯离子对混凝土作用的研究方法[J].混凝土,2008(11):7-9.
    [149]林瑞泰.多孔介质传热传质引论[M].北京:科学出版社,1995.
    [150]仵彦卿.多孔介质污染物迁移动力学[M].上海:上海交通大学出版社,2007.
    [151]Qiang Yuan, Caijun Shi, Geert De Schutter, Katrien Audenaert, Dehua Deng. Chloride binding ofcement-based materials subjected to external chloride environment–A review[J]. Construction andBuilding Materials,2009,23(1):1-13.
    [152]吴相豪,周金岩,李怀恒.环境因素影响粉煤灰混凝土固化氯离子能力的试验研究[J].粉煤灰,2011(5):5-8.
    [153]罗睿,蔡跃波,王昌义等.磨细矿渣抗氯离子侵蚀性能的机理研究[J].土木工程学报,2002,35(6):100-104.
    [154]高妍.混凝土内钢筋锈蚀初期行为研究[D].徐州:中国矿业大学力学与建筑工程学院,2010.
    [155]袁迎曙,姬永生,牟艳君.混凝土内钢筋锈蚀层发展和锈蚀量分布模型研究[J],2007,40(7):5-10.
    [156]居住区大气中氯卫生检验标准方法——甲基橙分光光度法(GB11736-89).北京:中国标准出版社,1989.
    [157]刘玉.钢筋锈蚀机理及氮离子影响机制的研究[D].厦门大学,2007.
    [158]中华人民共和国国家标准,《公共场所空气中二氧化碳检验方法》GB/T18204.24.