大鼠背根神经节细胞质膜蛋白质组学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
细胞质膜(plasma membrane,PM)是所有细胞的结构基础。质膜蛋白质执行细胞与外界环境以及细胞与细胞之间的物质交换、能量转换和信号传递等功能。在已经发现的药物靶标中,大约有2/3是质膜蛋白质。因此,细胞质膜蛋白质组学研究具有重要的理论意义和应用前景。然而,尽管近年来蛋白质化学与蛋白质组学研究技术取得了很大的发展,但膜蛋白尤其是整合膜蛋白的分析仍然是一个巨大的挑战,这是因为大多数膜蛋白质不仅丰度低,而且由于疏水性强而溶解性差和易于聚集沉淀,给蛋白质的提取、酶解和鉴定带来了很多困难,因此质膜蛋白质组学研究成为蛋白质组学研究中的难点。
     背根神经节(dorsal root ganglion,DRG)细胞是一种初级感觉神经元,能传导触觉、痛觉、温觉等神经冲动。它们沟通脊髓与机体内外环境的联系,不仅传输和调节机体的各种感觉,而且还具有接受和传递机体各种伤害性感受的功能,因而在神经病理性疼痛的发生与维持中起着重要的作用。开展DRG细胞膜蛋白的研究具有重要意义,将为探讨神经系统疾病的发生机制、疾病的诊断和新药开发将提供重要的理论基础。由于大鼠DRG神经组织体积较小而质膜蛋白质又大多具有低丰度和强疏水性的特点,所以在样品的采集、溶解和蛋白质鉴定等方面给DRG细胞质膜蛋白质组学研究带来了更大的挑战。
     为了从少量DRG细胞样品中综合性分析鉴定质膜蛋白质,本研究采用了差速离心结合双水相法富集大鼠DRG质膜的策略。Westernblotting结果显示经过这种富集策略处理的样品中质膜相对浓度是差速离心后的2.3倍,是粗匀浆样品的15倍。鉴于传统的二维凝胶电泳不适合膜蛋白质的分离,所以采用了SDS-PAGE来分离DRG质膜蛋白质样品。分离后的样品经过trypsin酶解,CapLC-MS/MS鉴定和生物信息学分析。通过IPI数据库的搜索,共得到了729个非冗余蛋白质,其中547个有GO注释信息,159(21.8%)个为质膜蛋白质。
     为了更好地鉴定DRG细胞质膜上的蛋白质尤其是低丰度蛋质,随后的研究中,在DRG质膜的双水相富集后增加了高盐高pH洗涤的步骤和Shotgun消化策略。本次研究共鉴定了954个蛋白质,通过基于SDS-PAGE和Shotgun消化的策略分别鉴定了其中的620个和334个蛋白质。在954个鉴定的蛋白质中,有205个蛋白质明确定位在质膜。这些质膜蛋白质包括细胞结构蛋白质(22.8%),信号和受体蛋白质(25.7%),离子通道和转运蛋白质(24.3%),酶(8.3%),细胞黏附因子(12.1%)以及一些具有其它功能的蛋白质(6.8%)。更多的低丰度的质膜蛋白质(包括离子通道蛋白和受体蛋白)得到了鉴定,如chloride intracellμLar channel protein 4(IPI00208249),Sodium channel(IPI00326646),Isoform 2 of sigma 1-type opioidreceptor(IPI00202168)等。这些研究有助于我们加深对DRG细胞质膜蛋白质在细胞与外界环境进行物质和能量交换、信号传导等方面的理解。
     大多数细胞的生物学功能都是由蛋白复合体而非单一蛋白质来完成的。因此,蛋白质复合物的研究已成为蛋白质组学中最重要研究内容之一。本研究用含温和去垢剂的缓冲液提取大鼠DRG细胞细胞浆和膜组分中的蛋白质复合物后,采用BN-PAGE结合SDS-PAGE的方法对复合物进行电泳分离并用CapLC-MS/MS进行分析。一共鉴定了460个非冗余蛋白质,包括属于若干细胞浆和膜组分的蛋白质复合物的亚基。
Plasma membrane (PM) is the structural base of all cells. Due to the presence of specific membrane proteins, PM plays important biological roles in exchange of substance, energy and information between cell and its environment as well as between cells themselves. Of the known drug targets, about two-thirds are PM proteins. Therefore, the proteomic analysis of PM has important theoretical significances and application prospects. However, although protein chemistry and proteomics have been greatly developed in recent years, the analysis of membrane proteins especially integral membrane proteins still presents an analytical challenge, because most membrane proteins not only are low-abundant, but also are not readily soluble in pure aqueous buffers due to their hydrophobicity and tendency of aggregation, thereby making the extraction, enzymolysis and identification of the proteins difficult. Therefore, the analysis of membrane proteome has become a difficult point in proteomics.
     Dorsal root ganglion (DRG) neurons are primary sensory neurons that conduct neuronal impulses related to pain, touch and temperature senses. DRG cells connect the spinal cord with internal and external environment of the organism. They not only transmit and accommodate sensations but also accept and convey nociception of the organism, so they play an important role in the origination and maintenance of neuropathologic pain. The proteomic analysis of DRG plasma membrane proteins is of outstanding significance and will lay a valuable theoretical base for investigating disease attack mechanism of neuron system, disease diagnosis and new drug development. DRG is a small-sized nerve tissue and most PM proteins are of hydrophobic and low abundant nature, thereby making the PM proteomic analysis of DRG more challenging in sample collection, dissolution and protein identification, etc.
     To comprehensively identify proteins of plasma membrane from small amounts of DRG cells, this study utilized aqueous polymer two-phase partition in combination with differential velocity centrifugation to enrich PM. Western blot analysis showed that the concentration of PM in plasma membrane-enriched preapration was 2.3 times higher than that in crude plasma membrane, 15 times higher than that in whole tissue lysate. In view of that traditional two-dimensional gel electrophoresis is not suitable for the separation of membrane proteins, the present study adopted SDS-PAGE to separate the proteins in DRG PM sample, followed trypsin enzymolysis, CapLC-MS/MS and bioinformatics analysis. By searching against the rat IPI protein sequence database, a total of 729 non-redundant proteins were identified from the PM preparation, of which 547 had a gene ontology (GO) annotation for cellular component, and 159 (21.8%) were unambiguously identified as PM proteins.
     To identify PM proteins especially low-abundance PM proteins from DRG cells even better, the subsequent study employed multiple analytical strategies including the addition of high salt and high pH solution washing after aqueous two-phase partition and the shotgun digestion. A total of 954 proteins were identified from DRG PM samples, of which 620 and 334 were identified with SDS-PAGE-based and shotgun-based strategies, respectively. Of the 954 identified proteins, 205 proteins were unambiguously identified as PM proteins, including 22.8% binding and structural proteins, 25.7% signal proteins and receptors, 24.3% ion channels and transporters, 8.3% catalytic proteins, 12.1% cell adhesion proteins. Other annotated proteins (6.8%) have activities such as protein folding and trafficking. More low-abundance PM proteins (including ion channel and receptors) were identified, such as chloride intracellular channel protein 4(IPI00208249), Sodium channel (IPI00326646), Isoform 2 of sigma 1-type opioid receptor (IPI00202168). The study would help to our understanding of the fundamental functions of DRG cellular PM proteins in the exchange of materials and energy between cells and its environment, and signal transduction, etc.
     Most of the biological functions of cells are carried out by protein complexes rather than a single protein. Therefore, the study of protein complexes has become one of most important subjects in proteomics. In the study, protein complexes in cytoplasm and membranes were extracted with mild-detergent-contaning buffer, separated using BN-PAGE combined with SDS-PAGE, and analyzed by CapLC-MS/MS. A total of 460 non-redundant proteins were identified, including the protein subunits belonging to dozens of protein complexes from cytoplasm and membranes.
引文
[1] Yates, J.R., Gilchrist, A., Howell, K.E., and Bergeron, J.J. Proteomics of organelles and large cellular structures. Nat Rev Mol Cell Biol,2005,6: 702-714.
    [2] Au, C. E., Bell, A. W., Gilchrist, A., Hiding, J., Nilsson, T., and Bergeron, J. J. Organellar proteomics to create the cell map. Curr Opin Cell Biol, 2007, 19: 376-385.
    [3] Wallin E, Von H. G. Genome wide analysis of integral membrane proteins from eubacterial, archaean, and eukaryotic organisms. Prot Sci,1998,7:1029-1038.
    [4] Hopkins L., Groom C. R. The druggable genome. Nat Rev Drug Discov, 2002,1:727-730
    [5] Adam, P. J., Boyd, R., Tyson, K. L., Fletcher, G. C., Stamps, A., Hudson, L., Poyser, H. R., Redpath, N., Griffiths, M., Steers, G., Harris, A. L., Patel, S., Berry, J., Loader, J. A., Townsend, R. R., Daviet, L., Legrain, P., Parekh, R., and Terrett, J. A. Comprehensive proteomic analysis of breast cancer cell membranes reveals unique proteins with potential roles in clinical cancer. J. Biol. Chem., 2003,278: 6482-6489.
    [6] Blonder, J., Terunuma, A., Conrads, T. P., Chan, K. C., Yee, C., Lucas, D. A., Schaefer, C. F., Yu, L. R., Issaq, H. J., Veenstra, T. D., and Vogel, J. C. A proteomic characterization of the plasma membrane of human epidermis by high-throughput mass Spectrometry. J. Invest. Dermatol., 2004,123: 691-699.
    [7] Rahbar, A. M, and Fenselau, C. Integration of Jacobson's pellicle method into proteomic strategies for plasma membrane proteins. J Proteome Res, 2004, 3: 1267-1277.
    [8] Marmagne, A, Salvi, D., Rolland, N, Ephritikhine, G., Joyard, J, and Barbier-Brygoo, H. Purification and fractionation of membranes for proteomic analyses. Methods Mol Biol, 2006, 323:403-420.
    [9] Zhang, L., Xie, J., Wang, X., Liu, X., Tang, X., Cao, R., Hu, W., Me, S., Fan, C., and Liang, S. Proteomic analysis of mouse liver plasma membrane: use of differential extraction to enrich hydrophobic membrane proteins. Proteomics, 2005,5:4510-4524.
    [10] Zhang, L. J., Wang, X. E., Peng, X., Wei, Y. J, Cao, R., Liu, Z., Xiong, J. X., Yin, X. F., Ping, C., and Liang, S. Proteomic analysis of lowabundant integral plasma membrane proteins based on gels. Cell Mol Life Sci, 2006, 63: 1790-1804
    
    [11] Brookes, P. S., Pinner, A., Ramachandran, A., Coward, L., Barnes, S., Kim, H., and Darley-Usmar, V. M. High throughput two-dimensional blue-native electrophoresis: a tool for functional proteomics of mitochondria and signaling complexes. Proteomics, 2002,2: 969-977.
    
    [12] Da Cruz, S., Xenarios, I., Langridge, J., Vilbois, F., Parone, P. A., and Martinou, J. C. Proteomic analysis of the mouse liver mitochondrial inner membrane. J Biol Chem, 2003, 278: 41566-41571.
    [13] Da Cruz, S., and Martinou, J. C. Purification and proteomic analysis of the mouse liver mitochondrial inner membrane. Methods Mol Biol, 2008, 432: 101-116.
    [14] Zhou, T. Y., Zhou, J., Cao, R., Shen, J. Y., Chen, P., Wang, X. C. Separation of Adult Rat Hippocampal Plasma Membrane and Its Proteomic Analysis. Chinese Journal of Biochemistry and Molecular Biology, 2006,22(9): 733-743.
    [15] Morre, D. J., and Morre, D. M. Preparation of mammalian plasma membranes by aqueous two-phase partition. Biotechniques, 1989, 7: 946-948
    [16] Marmagne, A., Rouet, M. A., Ferro, M., Rolland, N., Alcon, C., Joyard, J., Garin, J., Barbier-Brygoo, H., and Ephritikhine, G. Identification of new intrinsic proteins in Arabidopsis plasma membrane proteome. Mol Cell Proteomics, 2004, 3: 675-691
    [17] Santoni, V. Plant plasma membrane protein extraction and solubilization for proteomic analysis. Methods Mol Biol, 2007, 355: 93-109. Komatsu, S. Plasma membrane proteome in Arabidopsis and rice. Proteomics, 2008, 8: 4137-4145.
    [18] Persson, A., and Jergil, B. The purification of membranes by affinity partitioning. Faseb.J., 1995,9:1304-1310.
    
    [19] Ekblad, L., Jergil, B., and Gierow, J. P. Purification of rabbit lacrimal gland plasma membranes by aqueous two-phase affinity partitioning. J. Chromatogr. B Biomed. Sci. Appl., 2000, 743: 397-401.
    [20] Persson, A., and Jergil, B. Purification of plasma membranes by aqueous two-phase affinity partitioning. Anal. Biochem., 1992,204: 131-136.
    [21] Schindler, J., Lewandrowski, U., Sickmann, A., Friauf, E., and Nothwang, H. G. Proteomic analysis of brain plasma membranes isolated by affinity two-phase partitioning. Mol. Cell. Proteomics, 2006, 5: 390-400.,
    [22] Schindler, J., Lewandrowski, U., Sickmann, A., and Friauf, E. Aqueous polymer two-phase systems for the proteomic analysis of plasma membranes from minute brain samples. J. Proteome Res., 2008,7:432-442.
    [23] Cao, R., Li, X., Liu, Z., Peng, X., Hu, W., Wang, X., Chen, P, Xie, J., and Liang, S. Integration of a two-phase partition method into proteomics research on rat liver plasma membrane proteins. J Proteome Res, 2006, 5: 634-642.
    [24] Lawson, E. L., Clifton, J. G., Huang, F., Li, X., Hixson, D. C., and Josic, D. Use of magnetic beads with immobilized monoclonal antibodies for isolation of highly pure plasma membranes. Electrophoresis, 2006, 27: 2747-2758.
    [25] Jacobson, B. S., Stolz, D. B., and Schnitzer, J. E. Identification of endothelial cell-surface proteins as targets for diagnosis and treatment of disease. Nat Med, 1996, 2: 482-484.
    [26] Chaney, L. K., and Jacobson, B. S. Coating cells with colloidal silica for high yield isolation of plasma membrane sheets and identification of transmembrane proteins. J Biol Chem, 1983, 258: 10062-10072.
    [27] Li, X., Xie, C., Cao, J., He, Q., Cao, R., Lin, Y., Jin, Q., Chen, P., Wang, X., and Liang, S. An in vivo membrane density perturbation strategy for identification of liver sinusoidal surface proteome accessible from the vasculature. J Proteome Res, 2009, 8:123-132.
    [28] Scheurer, S. B., Rybak, J. N., Roesli, C., Brunisholz, R. A., Potthast, F., Schlapbach, R., Neri, D., and Elia, G. Identification and relative quantification of membrane proteins by surface biotinylation and twodimensional peptide mapping. Proteomics, 2005, 5: 2718-2728.
    [29] Zhao, Y., Zhang, W., Kho, Y., and Zhao, Y. Proteomic analysis of integral plasma membrane proteins. Anal Chem, 2004, 76: 1817-1823.
    [30] Chen, P., Li, X., Sun, Y., Liu, Z., Cao, R., He, Q., Wang, M., Xiong, J., Xie, J., Wang, X., and Liang, S. Proteomic analysis of rat hippocampal plasma membrane: characterization of potential neuronal-specific plasma membrane proteins. J. Neurochem., 2006, 98:1126-1140.
    [31] Zhang, L., Wang, X., Peng, X., Wei, Y., Cao, R., Liu, Z., Xiong, J., Ying, X., Chen, P., and Liang, S. Immunoaffinity purification of plasma membrane with secondary antibody superparamagnetic beads for proteomic analysis. J. Proteome Res., 2007, 6: 34-43.
    [32] Lewandrowski, U., Moebius, J., Walter, U., and Sickmann, A. Elucidation of N-glycosylation sites on human platelet proteins: a glycoproteomic approach. Mol Cell Proteomics, 2006, 5: 226-233
    [33] Lewandrowski, U., Zahedi, R. P., Moebius, J., Walter, U., and Sickmann, A. Enhanced N-glycosylation site analysis of sialoglycopeptides by strong cation exchange prefractionation applied to platelet plasma membranes. Mol Cell Proteomics, 2007.6:1933-1941
    [34] Zhang, H., Li, X. J., Martin, D. B., and Aebersold, R. Identification and quantification of N-linked glycoproteins using hydrazide chemistry, stable isotope labeling and mass Spectrometry. Nat Biotechnol, 2003,21:660-666.
    [35] Zhang, H., Yi, E. C., Li, X. J., Mallick, P., Kelly-Spratt, K. S., Masselon, C. D., Camp, D. G., 2nd, Smith, R. D., Kemp, C. J., and Aebersold, R. High throughput quantitative analysis of serum proteins using glycopeptide capture and liquid chromatography mass Spectrometry. Mol Cell Proteomics, 2005, 4: 144-155.
    [36] Sun, B., Ranish, J. A., Utleg, A. G., White, J. T., Yan, X., Lin, B., and Hood, L. Shotgun glycopeptide capture approach coupled with mass Spectrometry for comprehensive glycoproteomics. Mol Cell Proteomics, 2007, 6: 141-149.
    [37] Josic, D., and Clifton, J. G. Mammalian plasma membrane proteomics. Proteomics, 2007, 7: 3010-3029.
    [38] Lu, B., McClatchy, D. B., Kim, J. Y., and Yates, J. R., 3rd. Strategies for shotgun identification of integral membrane proteins by tandem mass Spectrometry. Proteomics, 2008, 8: 3947-3955.
    [39] Chen, P., Zhang, L., Li, X., Wang, X., Cao, R., Liu, Z., Xiong, J., Peng, X., Wei, Y., Ying, X., Wang, X., and Liang, S. Evaluation of strategy for analyzing mouse liver plasma membrane proteome. Sci China C Life Sci, 2007, 50: 731-738.
    [40] Zhou, J., Zhou, T., Cao, R., Liu, Z., Shen, J., Chen, P., Wang, X., Liang, S. Evaluation of the Application of Sodium Deoxycholate to Proteomic Analysis of Rat Hippocampal Plasma Membrane. J. Proteome Res. 2006, 5(10): 2547-2553.
    [41] Wu, C. C., and Yates, J. R., 3rd. The application of mass Spectrometry to membrane proteomics. Nat. Biotechnol., 2003,21: 262-267.
    [42] McCarthy, F. M., Burgess, S. C., van den Berg, B. H. J., Koter, M. D., Pharr, G. T. Differential detergent fractionation for non-electrophoretic eukaryote cell proteomics. J. Proteome Res., 2005,4: 316-324.
    [43] Burre, J., Zimmermann, H., and Volknandt, W. Immunoisolation and subfractionation of synaptic vesicle proteins. Anal Biochem, 2007, 362: 172-181.
    [44] Dosemeci, A., Makusky, A. J., Jankowska-Stephens, E., Yang, X., Slotta, D. J., and Markey, S.P. Composition of the synaptic PSD-95 complex. Mol. Cell. Proteomics, 2007, 6: 1749-1760.
    [45] Kashino, Y., Harayama, T., Pakrasi, H. B., and Satoh, K. Preparation of membrane proteins for analysis by two-dimensional gel electrophoresis. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2007, 849: 282-292.
    [46] Durr, E., Yu, J., Krasinska, K. M., Carver, L. A., Yates, J. R., Testa, J. E.,Oh, P., and Schnitzer, J. E. Direct proteomic mapping of the lungmicrovascular endothelial cell surface in vivo and in cell culture. NatBiotechnol, 2004, 22: 985-992.
    [47] Alexandersson, E., Saalbach, G., Larsson, C., and Kjellbom, P.Arabidopsis plasma membrane proteomics identifies components oftransport, signal transduction and membrane trafficking. Plant CellPhysiol, 2004,45: 1543-1556.
    [48] Dormeyer, W., van Hoof, D., Braam, S. R., Heck, A. J., Mummery, C. L.,and Krijgsveld, J. Plasma membrane proteomics of human embryonicstem cells and human embryonal carcinoma cells. J Proteome Res, 2008,7: 2936-2951.
    [49] Harsha, H. C., Molina, H., and Pandey, A. Quantitative proteomics usingstable isotope labeling with amino acids in cell culture. Nat Protoc, 2008,3: 505-516.
    [50] Kristiansen, T. Z., Harsha, H. C., Gronborg, M., Maitra, A., and Pandey,A. Differential Membrane Proteomics Using (18)O-Labeling To Identify Biomarkers for Cholangiocarcinoma. J Proteome Res, 2008, 7: 4670- 4677.
    [51] Zhang, W., Zhou, G., Zhao, Y., and White, M. A. Affinity enrichment ofplasma membrane for proteomics analysis. Electrophoresis, 2003,24:2855-2863.
    [52] Florens, L., Liu, X., Wang, Y., Yang, S., Schwartz, O., Peglar, M.,Carucci, D. J., Yates, J. R., 3rd, and Wub, Y. Proteomics approachreveals novel proteins on the surface of malaria-infected erythrocytes.Mol Biochem Parasitol, 2004, 135: 1-11.
    [53] Washburn, M. P., Wolters, D., Yates, J. R. Large-scale analysis of theyeast proteome by multidimensional protein identification technology .Nat. Biotechnol, 2001,19:242-247.
    [54] Braun, R. J., Kinkl, N., Beer, M., and Ueffing, M. Two-dimensional electrophoresis of membrane proteins. Anal Bioanal Chem, 2007, 389: 1033-1045.
    [55] Wittig, I., Braun, H. P., and Schagger, H. Blue native PAGE. Nat. Protoc, 2006, 1:418-428.
    [56] Reisinger, V., and Eichacker, L. A. Analysis of Membrane Protein Complexes by Blue Native PAGE. Proteomics, 2006,6: 6-15.
    [57] Babusiak, M., Man, P., Petrak, J., and Vyoral, D. Native proteomic analysis of protein complexes in murine intestinal brush border membranes. Proteomics, 2007, 7: 121-129.
    [58] Peirce, M. J., Wait, R., Begum, S., Saklatvala, J., and Cope, A. P. Expression profiling of lymphocyte plasma membrane proteins. Mol. Cell. Proteomics, 2004, 3:56-65.
    [59] Delom, F., Szponarski, W., Sommerer, N., Boyer, J. C., Bruneau, J. M., Rossignol, M., and Gibrat, R. The plasma membrane proteome of Saccharomyces cerevisiae and its response to the antifungal calcofluor. Proteomics, 2006,6: 3029-3039.
    [60] Han, D. K., Eng, J., Zhou, H., and Aebersold, R. Quantitative profiling of differentiation-induced microsomal proteins using isotope-coded affinity tags and mass Spectrometry. Nat Biotechnol, 2001,19: 946-951.
    [61] Zischka, H., Keller, H., Kellermann, J., Eckerskorn, C., and Schuster, S.C. Proteome analysis of the thermoreceptive pit membrane of the western diamondback rattlesnake Crotalus atrox. Proteomics, 2003, 3:78-86.
    [62] Zischka, H., Gloeckner, C. J., Klein, C., Willmann, S., Swiatek-de Lange, M., and Ueffing, M. Improved mass spectrometric identification of gelseparated hydrophobic membrane proteins after sodium dodecyl sulfate removal by ion-pair extraction. Proteomics, 2004,4: 3776-3782.
    [63] Lu, X., and Zhu, H. Tube-gel digestion: a novel proteomic approach for high throughput analysis of membrane proteins. Mol Cell Proteomics, 2005, 4: 1948-1958.
    [64] Washburn, M. P., Wolters, D., and Yates, J. R., 3rd. Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat Biotechnol, 2001, 19: 242-247.
    [65] Rodriguez-Ortega, M. J., Norais, N., Bensi, G., Liberatori, S., Capo, S., Mora, M., Scarselli, M., Doro, F., Ferrari, G., Garaguso, I., Maggi, T., Neumann, A., Covre, A., Telford, J. L., and Grandi, G. Characterization and identification of vaccine candidate proteins through analysis of the group A Streptococcus surface proteome. Nat Biotechnol, 2006,24: 191-197.
    [66] Blonder, J., Conrads, T. P., Yu, L. R., Terunuma, A., Janini, G. M., Issaq, H. J., Vogel, J. C., and Veenstra, T. D. A detergent- and cyanogens bromide-free method for integral membrane proteomics: application to Halobacterium purple membranes and the human epidermal membrane proteome. Proteomics, 2004, 4: 31-45.
    [67] Blonder, J., Conrads, T. P., and Veenstra, T. D. Characterization and quantitation of membrane proteomes using multidimensional MS-based proteomic technologies. Expert Rev Proteomics, 2004,1: 153-163.
    [68] Blonder, J., Goshe, M. B., Xiao, W., Camp, D. G., 2nd, Wingerd, M.,Davis, R. W., and Smith, R. D. Global analysis of the membrane subproteome of Pseudomonas aeruginosa using liquid chromatographytandem mass Spectrometry. J Proteome Res, 2004, 3:434-444.
    [69] Blonder, J., Hale, M. L., Lucas, D. A., Schaefer, C. F., Yu, L. R., Conrads, T. P., Issaq, H. J., Stiles, B. G., and Veenstra, T. D. Proteomic analysis of detergent-resistant membrane rafts. Electrophoresis, 2004,25: 1307-1318
    [70] Blonder, J., Rodriguez-Galan, M. C., Chan, K. C., Lucas, D. A., Yu, L.R., Conrads, T. P., Issaq, H. J., Young, H. A., and Veenstra, T. D. Analysis of murine natural killer cell microsomal proteins using twodimensional liquid chromatography coupled to tandem electrospray ionization mass Spectrometry. J Proteome Res, 2004, 3: 862-870.
    [71] Blonder, J., Rodriguez-Galan, M. C., Lucas, D. A., Young, H. A., Issaq, H. J., Veenstra, T. D., and Conrads, T. P. Proteomic investigation of natural killer cell microsomes using gas-phase fractionation by mass Spectrometry. Biochim Biophys Acta, 2004,1698: 87-95.
    [72] Blonder, J., Yu, L. R., Radeva, G., Chan, K. C., Lucas, D. A., Waybright, T. J., Issaq, H. J., Sharom, F. J., and Veenstra, T. D. Combined chemical and enzymatic stable isotope labeling for quantitative profiling of detergent-insoluble membrane proteins isolated using Triton X-100 and Brij-96. J Proteome Res, 2006, 5: 349-360.
    [73] Bykova, N. V., Stensballe, A., Egsgaard, H., Jensen, O. N., and Moller, I. M. Phosphorylation of formate dehydrogenase in potato tuber mitochondria. J. Biol. Chem., 2003, 278: 26021-26030.
    [74] Hurwitz, N., Pellegrini-Calace, M., and Jones, D. T. Towards genome-scale structure prediction for transmembrane proteins. Philos. Trans. R. Soc. Lond B Biol. Sci., 2006, 361:465-475.
    [75] Xu, E. W., Kearney, P., and Brown, D. G. The use of functional domains to improve transmembrane protein topology prediction. J. Bioinform. Comput. Biol., 2006,4: 109-123.
    [76] G, V. H. Membrane protein structure prediction. Hydrophobicityanalysis and the positive rule. J Mol Biol 1992, 225: 487-494.
    [77] Krogh, A. L., B.; Heijne, G.; Sonnhammer, E. L. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J. Mol. Biol, 2001, 305: 567-580.
    [78] Mitaku, S., Ono, M., Hirokawa, T., Boon-Chieng, S., and Sonoyama, M. Proportion of membrane proteins in proteomes of 15 single-cell organisms analyzed by the SOSUI prediction system. Biophys Chem, 1999, 82: 165-171.
    [79] Tusnady, G. E., Simon, I. The HMMTOP transmembrane server. Bioinformatics, 2001,17:849-850.
    [80]朱粹青,唐崇仁,陆世铎,董红星.针刺对鼠部分背根切断模型的背根神经节和背髓背角 内生长相关蛋白GAP43表达的影响。中国组织化学与细胞化学杂志.1999,8:261-267.
    [81]王丽琴,宋学琴,王晓娟等.大鼠背根神经节细胞的纯化培养.脑与神经疾病杂志,2003,11:265-267.
    [82]王廷华,吴良芳,廖德阳等.成年猫L6DRG神经元按大小分类的形态学证据.昆明医学院学报.2000,1:47-50.
    [83]Fang X.B.The population of the dorsal root ganglion cells,which have central process in ventral root and the immunoreactivity[J].BrainRes,1987,402(2):393-398.
    [84]Rambourg A.,Clermont Y.B.Ultrastructualfeatures of six types of neurons in rat dorsal root ganglion.J Neurocytol,1983,12:47-66.
    [85]Wu,C.C.,MacCoss,M.J.,Howell,K.E.,and Yates,J.R.,3rd.A method for the comprehensive proteomic analysis of membrane proteins.Nat Biotechnol,2003,21:532-538.
    [86]Shen J,Wang HY,Chen JY,Liang BL:Morphologic Analysis of Normal Human Lumbar Dorsal Root Ganglion by 3D MR Imaging.AJNR Am J Neuroradiol.2006,27:2098-2103
    [87]Simpson,R.J.,Connolly,L.M.,Eddes,J.S.,Pereira,J.J.,Moritz,R.L and Reid,G.E.Proteomic analysis of the human colon carcinoma cell line(LIM 1215):development of a membrane protein database.Electrophoresis,2000,21:1707-1732.
    [88]Cutillas,P.R.B.,J.;Marks,J.;Jacob,R.;Stieger,B.;Cramer,R.;Waterfield,M.;Burlingame,A.L.;Unwin,R.J.Proteomic analysis ofplasma membrane vesicles isolated from the rat renal cortex.Proteomics 2005,5:101-112.
    [89]Zhao,Y.,Zhang,W.,White,M.A.,and Zhao,Y.Capillary highperformance liquid chromatography/mass spectrometric analysis of proteins from affinity-purified plasma membrane.Anal Chem,2003,75:3751-3757.
    [90]Oh,P.,Li,Y.,Yu,J.,Durr,E.,Krasinska,K.M.,Carver,L.A.,Testa,J.E.,and Schnitzer,J.E.Subtractive proteomic mapping of the endothelial surface in lung and solid tumours for tissue-specific therapy.Nature,2004,429:629-635
    [91]吴书玉,王丽琴,宋学琴等.分离培养大鼠背根神经节神经元的一种优化培养基.河北医科大学学报,2004,25:31-33.
    [92]肖玉成.蜘蛛钠离子通道抑制神经毒素的结构与功能研究:[硕士学位论文].湖南师范大学.生命科学学院.2002.
    [93]Wang QW,Li Q,Li ZW.Inhibitory effects of clonidine on GABA-activated currents in DRG neurons.Acta Physiol.Sin.,1998,50:19-27.
    [94]王丽琴,宋学琴,王晓娟等.胚胎大鼠背根神经节细胞的分离培养、纯化及生物学特性的研究.细胞生物学杂志,2003,25:320-324.
    [95]Morre D.M.,Morre D.J.Aqueous two-phase partition applied to the isolation of plasma membranes and Golgi apparatus from cultured mammalian cells.J Chromatogr,B 2000,743:377-387.
    [96]Honscha W,Ottallahm M,Kistner A.A membrane-bound form of protein disulfide isomerase(PDI) and the hepatic uptake of organic anions.Biochim Biophys Acta 1993,1153:175-183.
    [97]Singer,S.J.N.,G.L.The structure and chemistry of mammalian cell membranes.Am J Pathol,1971,65:427-437.
    [98]司军强,胡宏镇,吴晓平等.大鼠背根神经节同一分离神经元膜受体电生理学及细胞神经递质免疫组织化学检测方法.中国应用生理学杂志,1996,12:77-81.
    [99]Malik-Hall M,Poon W.Y,Baker M D.Molecular Brain Research.2003,110(2):298-304.
    [100]Naciff J.M.,Kaetzel M.A.,Behbehani M.M.Differential expression of Annexins Ⅰ-Ⅵ in the rat dorsal root ganglia and spinal cord.Comp Neurol.1996,368:356-370.
    [101]贾军宏,马学毅,田东华等.神经生长因子对糖尿病大鼠背根神经节神经细丝蛋白变化的影响.军医进修学院学报.1998,19:259-261.
    [102]Olsson M,Durbeej M,Ekblom P.a novel basic helix- Loop-helix protein expressed broadly during early embryonic Organogenesis and prominently in Developing dorsal root ganglion.Cell tissue Res.2002,308:361-370
    [103]Ma D,Nothias F,Boyne L.J.Differential regulation of microtubule-associated protein 1B(MAP1B) in rat CNS and PNS during Development.Neurosci Res.1997,49:319-333
    [104]Komori N,Takemori N,Kim H.K.,Singh A.Proteomics study of neuropathic and non-neuropathic dorsal root ganglia:Altered protein regulation following segmental spinal nerve ligation injury.Physiol Genomics.2007,29:215-230
    [105]Zhang Y,Wang Y.H.,Zhang X.H.Proteomic analysis of differential proteins related neuroproteetion in the dorsal root ganglion following its chronic compression in rats. Exp Brain Res. 2008,189:199-209
    [106] Molloy, M. P., Herbert, B. R., Walsh, B. J., Tyler, M. I., Traini, M., Sanchez, J. C.,Hochstrasser, D. F., Williams, K. L., and Gooley, A. A. Extraction of membrane proteins bydifferential solubilization for separation using two-dimensional gel electrophoresis.Electrophoresis, 1998,19: 837-844.
    [107] Santoni, V., Molloy, M., and Rabilloud, T. Membrane proteins and proteomics: un amourimpossible? Electrophoresis, 2000, 21: 1054-1070.
    [108] Allen J.A., Halverson-Tamboli R.A., Rasenick M.M., Lipid raft microdomainsand neurotransmitter signalling. Nat Rev Neurosci. 2007, 8: 128-140.
    [109] Parente L.,, Solito E. Annexin 1: more than an anti-phospholipase protein. Inflamm Res. 2004,53: 125-132.
    
    [110] Suginta W., Karoulias N., Aitken A., Ashley R.H. Chloride intracellular channel protein CLIC4 (p64H1) binds directly to brain dynamin I in a complex containing actin, tubulin and 14-3-3 isoforms. Biochem J. 2001, 359: 55-64,
    [111] Ronnov-Jessen L, Villadsen R, Edwards J.C., Petersen O.W. Differential expression of a chloride intracellular channel gene, CLIC4, in transforming growth factor-beta1-mediated conversion of fibroblasts to myofibroblasts. Am J Pathol. 2002, 161:471-480,
    [112] Chuang J.Z., Milner T.A., Zhu M, Sung C.H. A 29 kDa intracellular chloride channel p64Hl is associated with large dense-core vesicles in rat hippocampal neurons. J Neurosci. 1999,19: 2919-2928
    [113] Lee S.H., Liu L, Wang Y.T., Sheng M. Clathrin adaptor AP2 and NSF interact with overlapping sites of GluR2 and play distinct roles in AMPA receptor trafficking and hippocampal LTD. Neuron. 2002, 36: 661-674
    [114] Soltys B.J., Gupta R.S. Mitochondrial proteins at unexpected cellular locations: export of proteins from mitochondria from an evolutionary perspective. Int. Rev. Cytol. 2000,194: 133-196.
    [115] Scheiffele P: Cell-cell signaling during synapse formation in the CNS. Annu Rev Neurosci. 2003,26: 485-508
    
    [116] Hebert C, Norris K, Delia C.R., Reynolds M. Cell surface colligin/Hsp47 associates with tetraspanin protein CD9 in epidermoid carcinoma cell lines. J. Cell Biochem. 1999, 73: 248-258.
    
    [117] Buettner R, Papoutsoglou G, Scemes E, Spray D.C. Evidence for secretory pathway localization of a voltage dependent anion channel isoform. Proc. Natl Acad. Sci. 2000, 97: 3201-3206.
    
    [118] Bahamonde M.I., Fernandez J.M., Guix F.X., Vazque Z.E. Plasma membrane voltage dependent anion channel mediates antiestrogen-activated maxiCl- currents in C1300 neuroblastoma cells. J. Biol. Chem. 2003,278: 284-289.
    [119] Gingras, A. C., Gstaiger, M., Raught, B., and Aebersold, R. Analysis of protein complexesusing mass Spectrometry. Nat Rev Mol Cell Biol, 2007, 8: 645-54.
    [120] Cravatt, B. F., Simon, G. M., and Yates, J. R., 3rd. The biological impact ofmass-spectrometry-based proteomics. Nature, 2007,450: 991-1000.
    [121] Collins, M. O., and Grant, S. G. Supramolecular signalling complexes in the nervous system.Subcell Biochem, 2007,43: 185-207.
    [122] Collura, V., and Boissy, G. From protein-protein complexes to interactomics. Subcell Biochem, 2007, 43: 135-83.
    [123] Vandenberghe, W., Nicoll, R. A., and Bredt, D. S. Stargazin is an AMPA receptor auxiliarysubunit. Proc Natl Acad Sci U S A, 2005,102: 485-90.
    [124] Fukata, Y., Tzingounis, A. V., Trinidad, J. C., Fukata, M., Burlingame, A. L., Nicoll, R. A., andBredt, D. S. Molecular constituents of neuronal AMPA receptors. J Cell Biol, 2005,169:399-404.
    [125] Ilka W, Hans-Peter B, Hermann S. Blue native page. Nat Protoc. 2006, 1:419-427
    [126] Jeon, S. J., Ishikawa, K. Characterization of novel hexadecameric thioredoxinperoxidase from Aeropyrum pernix K1. J. Biol. Chem. 2003, 278, 24174-24180
    [127] Yaffe M.B. How do 14-3-3 proteins work?—Gatekeeper phosphorylation and the molecular anvil hypothesis. FFBS Let. 2002, 513(1):53-5
    [128] Meyer, B., Wittig, I. Trifilieff, E., Karas, M. Schagger, HIdentification of two proteins associated with mammalian ATP synthase. 2007, 6:1690-1699.