氯通道阻断剂对大鼠急性分离DRG神经元GABA激活电流的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:探讨大鼠DRG神经元GABA激活电流的离子机制。
     方法:应用全细胞膜片钳记录技术,观察钙激活氯通道阻断剂尼氟灭酸及容积调控氯通道阻断剂NPPB对大鼠急性分离DRG神经元GABA激活电流的影响。
     结果: (1)尼氟灭酸可浓度依赖性地抑制GABA激活电流,IC50为27.19±4.87μmol/L,抑制率为63.9 % (n = 12);NPPB对GABA激活电流的抑制率为29.7 % (n = 9);尼氟灭酸与NPPB混合对GABA激活电流的抑制率为79.2 % (n = 6)。(2)去除细胞外液及电极内液中Ca~(2+),GABA激活电流幅值明显降低,抑制率为47.4 %(n = 6);预灌流尼群地平阻断Ca~(2+)内流,对GABA激活电流幅值的抑制达49.6% (n = 4)。
     结论:钙激活氯通道及容积调控氯通道可能参与了GABAA受体激活导致Cl-外流。细胞外Ca~(2+)可经由电压依赖性钙通道内流,激活钙激活氯通道,参与GABA激活电流的形成。
     二、尼氟灭酸对福尔马林致痛大鼠的行为学影响
     目的:观察尼氟灭酸是否有镇痛作用,探讨其在初级感觉信息传递过程中的作用。
     方法:将24只SD大鼠随机分为3组,F组:大鼠足底部注射福尔马林;NS组:大鼠足底部注射生理盐水;NFA组:大鼠腹腔注射尼氟灭酸后足底部注射福尔马林。以每5 min为一单元,记录足底部注射后每5 min大鼠注射侧缩腿次数及舔足时间以及每一单元内大鼠缩腿及咬/舔注射侧后爪的累积时间,持续60 min。
     结果:(1)除静止相外,其余时间段F组及NFA组的缩腿次数与NS组相比均显著增多(p < 0.05),F组第一相0 ~ 5 min及第二相15 ~ 20 min、20 ~ 25 min、30 ~ 35 min、35 ~ 40 min舔爪时间长于NS组(p < 0.05),NFA组第一相0 ~ 5 min及第二相15 ~ 20 min、20 ~ 25 min、30 ~ 35 min的舔爪时间也长于NS组(p < 0.05)。(2) NFA与F组相比第一相的缩腿次数较多(p < 0.05),舔爪时间较长(p < 0.05),第二相缩腿次数20 ~ 25 min、30 ~ 35 min、35 ~ 40 min、40 ~ 45 min少于F组(p < 0.05),第二相舔爪时间20 ~ 25 min、25 ~30 min、30 ~ 35 min、35 ~ 40 min短于F组(p < 0.05)。(3) NFA组第一相缩腿及咬/舔注射侧后爪的累积时间较F组长,而第二相缩腿及咬/舔注射侧后爪的累积时间较F组短。
     结论:尼氟灭酸在福尔马林致痛大鼠模型第一相急性痛期起到致痛作用;尼氟灭酸在福尔马林致痛大鼠模型第二相持续反应期起到镇痛作用。
Part 1. The effects of chloride channel blockers on GABA-activated current of isolated adult rat dorsal root ganglion neurons
     Objective: To investigate the effect of calcium-activated chloride channels (CaCC) blocker niflum -ic acid and volume-regulated chloride channels (VRCC) blocker NPPB on GABA- activated curr ent (IGABA).
     Methods: The effect of CaCC blocker niflumic acid and VRCH blocker NPPB on GABA-activat- ed current was examined in acutely dissociated neurons of rat dorsal root ganglia by using whole- cell patch clamp methods.
     Conclusion: It was suggested that CaCC and VRCH may be involved in the IGABA in rat DRG ne- urons. The increase of intracellular Ca~(2+) concentration caused by influx of extracellular Ca~(2+) may be able to activate CaCC and modulate the IGABA .
     Part 2. The effects of niflumic acid on rat’s behavior response in formalin test.
     Objective: To investigate the analgesic effect of niflumic acid in rat formalin induced inflammato- ry pain .
     Methods: 24 SD rats were randomly divided into 3 groups, Group NS: normal saline group; Gro- up F: formalin group; Group NFA: Niflumic acid group. Investigate and record the fliching , bitin- gand liching time after 5min, 10 min, 15 min, 20 min, 25 min, 30 min, 35 min, 40 min, 45 min, 50 min, 55 min, 60 min.
     Results:(1) Compare the F group and the NFA group with the NS group,fliching , biting/liching ti- me obviously increased (P<0.05),except 5min ~10 min showed no diff-erence (P>0.05), fliching , biting/liching time obviously increased (P<0.05). (2) Compare NFA group with F group, the flich- ing and biting/liching time obviously increased in the first phase (p < 0.05), the fliching and biting /liching time obviously decreased obviously in the second phase 20~25 min、25 ~30 min、30 ~ 35 min、35 ~ 40 min (P<0.05).
     Conclusion: According to the experimental results, effects of niflumic acid increase pain in the f- irst phase of formalin test by inhibiting the presynaptic inhibition and release pain in the second p- hase of formalin test by inhibiting the synthesis of PGs.
引文
[1] Rush AM, Cummins TR, Waxman SG. Multiple sodium channels and their roles in electrogenesis within dorsal root ganglion neurons. Physiol.2007,579 (Pt 1) :1-14.
    [2]杨鲲,王过渡,李云庆等.电生理学特性得到确定的大鼠脊髓背根神经节细胞谷氨酸和P物质的共存.生理学报.1998,50(4):453-459.
    [3] Si JQ, Zhang ZQ, Li CX, et al. Modulatory Effect of Substance P on GABA- activated currents from rat dorsal root ganglion. Acta Pharmacologica Sinic a.2004, 20(4): 324-328.
    [4] Bormann I. The‘ABC’of G ABA receptors . Trends Pharmacol Sci. 2000, 21 (1) :16-19.
    [5] C. L. Adams,A.J. Lawrence. CGP7930: A Positive Allosteric Modulator of the GABAB Receptor. CNS Drug Reviews.2007,(13) 3:308-316.
    [6] Muroi, Y., C. Czajkowski, and M.B. Jackson. Local and global ligand-induced changes in the structure of the GABAA receptor. Biochemistry. 2006,45:7013–7022.
    [7] Macdolnald RL , Olsen RW. GABA receptor channels. Annu Rev Neurosc i .1994,17∶569-602.
    [8] Jones MV, Westbrook GL. Desensitized states prolong GABAA channel respon ses to brief agonist pulses.Neuron.1995,15:181-191.
    [9] Wu J,Harata N, Akaike N.Роtentiation by sevoflurane of theγ-aminobutyric acid-induced chloride current in acutely dissociated CA1 pyramidal neurons from rat hippocampus1 .Br Pharmacol.1996,119:131-139.
    [10] Kendig JJ,Gibbs LM1.The GABAA receptor in anesthesiay isofluranel. Anes thesiology.1994,81:14-71.
    [11] Jones MV , Harrison NL. Effects of volatile anesthetics on the kinetics of inhibit-tory postsynaptic currents in cultured rat hippocampal neurons. Neurophysio l .1993 ,70 :1339-13491.
    [12] Luscher C, Jan LY, Stoffel M, et al. G protein-coupled inwardly rectifying Kir channels (GIRKs) mediate postsynaptic but not presynaptic transmitter actions in hippocampal neurons. Neuron .1997,19: 687–695.
    [13] Poncer JC, McKinney RA, Ga hwiler BH, et al. Either N- or P-type calcium channels mediate GABA release at distinct hippocampal inhibitory synapses. Neuron. 1997,18:463–472.
    [14] Simonds WF. G protein regulation of adenylate cyclase. Trends Pharmacol Sc i.1999,20: 66–73.
    [15] Robbins MJ, Calver AR, Filippov AK, et al. GABAB2 is essential for G-protein coupling of the GABAB receptor heterodimer. Neurosci.2001,21: 8043–8052.
    [16] Borg-Graham LJ, Monier C, Fregnac Y. Visual input evokes transient and strong shunting inhibition in visual cortical neurons.Nature. 1998,393: 369-373.
    [17] Askwith CC, Benson CJ, Welsh MJ, et al. DEG/ENaC ion channels involved in sensory transduction are modulated by cold temperature. Proc Natl Acad Sci USA. 2001, 98(11): 6459-6463.
    [18] Antal M , Petko M , Polgar E , et al . Direct evidence of an extensive GABAergic innervation of the spinal dosal horn by fibres descending from the rostral ventromedial medulla. Neuroscience.1996 ,73 :509-518.
    [19]李韶,安杰,李之望等.咖啡因对大鼠背根神经节急性分离神经元GABA-激活电流的抑制作用.Acta Physiol Sin.1996,56(3):384-388.
    [20] Rudomin P,Schmidt RF. presynaptic inhibition in the vertebrate spinal cord revisited. Exp Brain Res,1999,129:31-37.
    [21] Xiao HS, Huang QH, Zhang FX, et al. Identificaiton of gene expression profile of dorsal root ganglion in the rat peripheral axotomy model of neuropathic pain. Proc Natl Acad Sci USA.2002, 99(12):8360-8365.
    [22] Gahwiler BH, Brown DA.GABAB-receptor-activated K+ current in voltage-clamped CA3 pyramidal cells in hippocampal cultures. Proc Natl Acad Sci. 1985, 82: 1558-1562.
    [23] Newberry NR, Nicoll RA. Comparison of the action of baclofen with g-aminobutyric acid on rat hippocampal pyramidal cells in vitro. Physiol Lond, 1985, 360: 161-185.
    [24] Stuart GJ, Redman SJ. The role of GABAA and GABAB receptors in presynaptic inhibition of Ia EPSPs in cat spinal motoneurones. Physiol. 1992, 447: 675-692.
    [25] Devuyst O, Jouret F, Auzanneau C, et al. Chloride channels and endocytosis: new insights from Dent’s disease and CLC-5 knockoutmice. Nephron Physiol. 2005, 99:69-73.
    [26] Hevers W, Luddens H. The diversity of GABAA receptors. Pharmacological and electrophysiological properties of GABAA channel subtypes. Mol. Neurobiol 1998; 18: 35-86.
    [27] Jentsch T J , Valentin S , Frank W, et al . Molecular structure and physiological function of chloride channels. Physiol Rev. 2002 , 82: 503~568.
    [28] Lee D, Su H, O’Dowd DK. GABA receptors containing Rdl subunits mediate fast inhibitory synaptic transmission in Drosophila neurons. Neurosci .2003,23:4625-4634.
    [29] Galvez T, Prezeau L, Milioti G, Franek M, Joly C, Froestl W, BettlerB, Bertrand HO,Blahos J, Pin JP (2000a) Mapping the agonist-binding site of GABAB type 1 subunit sheds light on the activation process of GABAB receptors. J Biol Chem 275: 41166-41174
    [30] Akerman CJ, Cline HT. Depolarizing GABAergic conductances regulate the balance of excitation to inhibition in the developing retinotectal circuit in vivo. Neurosci . 2006,26: 5117–5130.
    [31] Staley KJ, Mody I. Shunting of excitatory input to dentate gyrusgranule cells by a depolarizing GABAA receptor-mediated postsynaptic conductance. Neurophysiol. 1992, 68: 197-212.
    [32] Mladinic M, Becchetti A, Didelon F, Bradbury A, Cherubini E.Low expression of the ClC-2 chloride channel during postnatal development: a mechanism for the paradoxical depolarizing action of GABA and glycine in the hippocampus. Proc Biol Sci .1999, 266:1207-1213.
    [33] Wang XQ, Deriy LV, Foss S, Huang P, Lamb FS, Kaetzel MA, Bindokas V, Marks JD, Nelson DJ. CLC-3 channels modulate excitatory synaptic transmission in hippocampal neurons. Neuron.2006,52: 321–333.
    [34] Qu ZQ,Wei RW, Hartzell HC. Characterization of Ca2+ -activated Cl- currents in mouse kidney inner medullary collecting duct cells. Physiol. 2003, 285:326-335.
    [35] Mathieu Boudes, Chamroeun Sar, Aurélie Menigoz. et al. Best1 is a gene regulated by nerve injury and required for Ca2+-activated Cl- current expression in axotomized sensory neurons. Neurosci. 2009, 29(32): 10063–10071.
    [36] Boese SH, Glanville M, GrayMA, et al. The swelling-activated anion conductance in the mouse renal inner medullary collecting duct cell line m MCD-K2. Membr Biol. 2000,177∶51- 64.
    [37] Jentsch TJ , Valentin S , Frank W, et al. Molecular structure and physiological function of chloride channels. Physiol Rev,2002, 82:503-568.
    [38] Janssen L J , Sims SM. Ca2+-dependent Cl- current in trachealmooth muscle cells. Physiol. 1995, 38 :163-169.
    [39] Manolopoulos VG, Liekens S ,Koolwijk P ,et al. Inhibition of angiogenesis by blockers of volume-regulated anion channels. Gen Pharmacol. 2000,34:107-116.
    [40] Jan E , Dominique T, Iris C , et al. Cellular function and control of volume regulated anion channels. Cell Biochem Biophys.2001, 35:1-12.
    [41] Rudomin P, Schmidt RF. presynaptic inhibition in the vertebrate spinal cord revisited. Exp Brain Res.1999,129: 31-37.
    [42] Kaila K. Ionic basis of GABAA receptor channel function in the nervous system. Prog Neurobiol.1994,42: 489-537.
    [43] Si JQ, Zhang ZQ, Li CX, et al. Modulatory effect of substance P on GABA- activ -ated currents from rat dorsal root ganglion. Acta Pharmacol Sin. 2004, 20(4):324 -328.
    [44] Rudomin P, Schmidt RF. presynaptic inhibition in the vertebrate spinal cord revisited. Exp Brain Res.1999,129:31-37.
    [45] Szabat E, Soinila S, Linnala A, et a1. A new monoclonal antibody against the GABA-protein conjugate shows immunoreactivity in sensory neurons of the rat. Neuroscience. 1992, 47(2): 409-420.。
    [46] Alvarez FJ, Kavookjian AM, Light AR. Synaptic interactions between GABA- immunoreactive profiles and the terminals of functionally defined myelinated nociceptors in the monkey and cat spinal cord. Neurosci. 1992, 12(8): 2901-2291.
    [47] Sivilotti L, Nistri A. GABA receptor mechanisms in the central nervous system. Prog. Neurobiol. 1991, 36: 35-92.
    [48] Gahwiler BH, Brown DA.GABAB-receptor-activated K+ current in voltage-clamped CA3 pyramidal cells in hippocampal cultures. Proc Natl Acad Sci. 1985, 82: 1558-1562.
    [49] Newberry NR, Nicoll RA. Comparison of the action of baclofen with G-aminobutyric acid on rat hippocampal pyramidal cells in vitro. Physiol Lond. 1985, 360: 161-185.
    [50] Kaila K. Ionic basis of GABAA receptor channel function in the nervous system. Prog Neurobiol.1994,42: 489-537.
    [51] Merskey H, Bogduk N. Classification of Chronic Pain: Descriptions of Chronic Pain Syndromes and Definitions of Pain Terms. IASP Press. 1994: 394-342.
    [52] Chavas J, Marty A. Coexistence of excitatory and inhibitory GABA synapses in the cerebellar interneuron network. Neurosci. 2003,23: 2019-2031.
    [53] Mercado A, Mount DB, Gamba G. Electroneutral cation-chloride cotransporters in the central nervous system. Neurochem Res. 2004,29:17-25.
    [54] Jarolimek W, Lewen A, Misgeld U. A furosemide-sensitive K+- Cl- cotransporter counteracts intracellular Cl- accumulation and depletion in cultured rat midbrain neurons. Neurosci.1999, 19: 4695-4704.
    [55] Sylvain André, Hassan Boukhaddaoui, Brice Campo, et al . Axotomy-Induced Expression of Calcium-Activated Chloride Current in Subpopulations of Mouse Dorsal Root Ganglion Neurons. Neurophysiol . 2003,90: 3764-3773,.
    [56] Deschenes M, Feltz P, Lamour Y. A model for an estimate in vivo of the ionic basis of presynaptic inhibition: an intracellular analysis of the GABA-induced depolarization in rat dorsal root ganglia.Brain Res.1976,118: 486-493.
    [57] Bi-Hua Bie,Zhi-Qi Zhao. Nitric oxide inhibits GABA-evoked current in dorsal root ganglion neuron via PKG-dependent pathway. Brain Research Bulletin. 2001,55(3), 335-339.
    [58] Jentsch T J , Valentin S , Frank W, et al . Molecular structure and physiological function of chloride channels. Physiol Rev. 2002 , 82: 503-568.
    [59] Mathieu Boudes, Chamroeun Sar, Aurélie Menigoz. et al. Best1 is a gene regulated by nerve injury and required for Ca2+-activated Cl? current expression in axotomized sensory neurons. Neurosci. 2009, 29(32): 10063-10071
    [60] Hogg RC , Wang Q , Large WA. Action of niflumic acid on evoked and sponta neous calcium-activated chloride and potassium currents in smooth muscle cells from rabbit portal vein. Pharmacol ,1994,112 (3) : 977-984.
    [61] Sorota S. Pharmacologic properties of the swelling-induced chloride current of dog atrial myocytes. Cardiovasc. Electrophysiol,1994,5:1006-16.
    [62] Jentsch T.J., Stein V., Weinreich F., et al. A molecular structure and physiological function of chloride channels. Physiol. Rev,2002,82:503-508.
    [63] Collin T, Chat M, Lucas MG, Moreno H, Racay P, Schwaller B,Marty A, LlanoI.Developmental changes in parvalbumin regulate presynaptic Ca2+ sign aling. Neurosci.2005,25: 96-107.
    [64] ALiantonio, V Giannuzzi, A Picollo et al. Niflumic acid inhibits chloride condu ctance of rat skeletal muscle by directly inhibiting the CLC-1 channel and by increasing intracellular calcium. British Journal of Pharmacology.2007,150: 235-247.
    [65] Hartzell C, Putzier I, Arreola. Calcium-activated chloride channels. Annu Rev Physiol.2005,67: 719-758.
    [66] Cashman JN. The mechanism s of action of NSAID s in analgesia. Drugs, 1996, 52 (supply 5) :13.
    [67] Peretz A,Degani N,Nachman R, et al. Meclofenamic acid and diclofenac, novel templates of KCNQ2/Q3 potassium channel openers, depress cortical neuronactivity and exhibit anticonvulsant properties. Mol Pharmacol. 2005, 67:1053-1066.
    [68]张宇,王瑞.大鼠痛行为观察在中枢痛调制研究中的应用.山西医科大学学报.2002,31 (6):563.
    [69] Dubuisson D, Dennis SG. The formalin test, a quantitativestudy of the analgesic effect of morphine , meperidine, andbrainstem stimulation in rats and cats. Pai n.1977, 4: 161-174.
    [70] Hao S, Takahata O, Iwasaki H. Intrathecal endomorphin-1 produces antinocice ptive activities modulated by alpha-2-a-drenoceptors in the rat tail flick, tail pressure and formalintests. Life Sci. 2000, 66 (15):195-204.
    [71] Okuda K,Sakurada C, Takahashi M, et al. Characterization of nociceptive responses and spinal releases of nitric oxide metabolites and glutamate evoked by different concentratio ns of formalin in rats. Pain. 2001, 92 (1 -2):107 -115.
    [72] Abbott FV, Granklin KBJ, Westbrook RF. The formalintest: scoring properties of the first and second phases of pain response in rats. Pain. 1995, 60: 91-102.
    [73] Coderre TJ , Katz J , V accarino AL , et al . Cont ribution of central neurop lastic ity topathological pain: review of clinical and experimental evidence. Pain.1993, 52 (3): 259.
    [74] Vane JR, Botting RM. Mechanism of action of nonsteroidal anti-inflammatory drugs. Am Med .1998,104: 25-85.
    [75] Cashman JN. The mechanism s of action of NSAIDs in analgesia Drugs. 1996, 52 (supp l5):13.
    [76] Vetter G, Geisslinger G, Tegeder I . Release of glutamate, nitric oxide and prost agl and in E2 and metabolic activity in the Spinal cord of rats following peripher al nociceptive stimulation. Pain.2001, 92(1-2): 213.
    [77] Nieves DJ, Cnop M, Retzlaff B, et al . The atherogenic lipoprotein profile asso ciated with obesity and insulin resistance is largely atributable to intra abdominal fat. Diabetes.2003,52 (1):172.
    [78] Abbot FV , Franklin K, Westbrook RF. The formalin test: scoring properties of the first and second phases of the pain response in rats . Pain.1995, 60(1):91.
    [1] Collingride CL.The role of NMDA receptors in learning and memory .Natrue. 1987, 330: 604-605.
    [2] Heather Chaffey,Paul L,Chazot.NMDA receptor subtypes: Structure, function and therap -eutics Current. Anaesthesia & Critical Care. 2008.19:183-201.
    [3] S.V.Coutinho,S.T.Meller and G.F.Gebhart.Intracolonic zymosan produces visceral hypera -lgesia in the rat that is mediated by spinal NMDA and non-NMDA receptors.Brain Res. 1996,4 :7-15.
    [4] McInnis J,Wang C,Anastasio N,et al.The role of superoxide and nuclear factor-kappa B signaling in N-methyl-D-aspartate-induced necrosis and apoptosis.Pharmacol Exp Ther. 2002,301(2):478-487.
    [5] Mori H,Mishina M.Structure and function of the NMDA receptor channel. Neuropharm acology.1995,34:119-137.
    [6] Dingledine R,Borges K,Bowie D,et al. The glutamate receptor ion channels. Pharmacol ogical Reviews.1999,51(1):7-61
    [7] Inturrisi CE.The role of N-methyl-D-aspartate ( NMDA) receptors in pain and morp hine tolerance.Minerva Anestesiol.2005,71 (728):401-403.
    [8] Gaunitz C,Schuttler A,Gillen C,et al.Formalin induced changes of NMDA receptor subunit expression in the spinalcord of the rat .Amino Acids.2002,23 (123):177-182.
    [9] Minami T,Mat sumura S,Okuda-Ashitaka E,et al.Characterization of the glutamatergic system for induction and maintenance of allodynia .Brain Res.2001, 895(122): 178-185.
    [10] J ansen KL,Faull RL ,Dragunow M,et al. Autoradiographic localization of NMDA, quisq -ualate and Kainic acid receptors in human spinal cord. Neurosci Lett.1990,108:53-57.
    [11] Antal M,Fukazawa Y,E?rd?gh M,Numbers,densities and colocalization of AMPA and NMDA type glutamate receptors at individual synapses in the superficial spinal dorsal horn of rats.Neurosci.2008, 28(39):9 692-701.
    [12] Momiyama A.Distinct synaptic and extrasynaptic NMDA receptors identified in dorsal horn neurones of t he adult rat spinal cord. Physiol.2000,52 (3):621-628.
    [13] Sheng M,Kim MJ.Postsynaptic signaling and plasticity mechanisms. Science.2002,298 (5594):776-780.
    [14] Lim IA,Hall DD,Hell JW. Selectivity and promiscuity of the first and second PDZ domains of PSD-95 and synapseassociated protein 102.Biol Chem.2002,277 (24): 697- 7 11.
    [15] Loftis JM,Janowsky A.The N-methyl-D-aspartate receptor subunit NR2B:localization, unctional properties,regulation,and clinical implications.Pharmacol .2003 ,97(1):55–85.
    [16] Ma QP,Hargreaves RJ.Localization of N-methyl-D-aspartate NR2B subunit on primary sensory neurons that give rise to small caliber sciatic nerve fibers in rats. Neuroscience. 2000,101 (3):699-707.
    [17] Zhuo M.Glutamate receptors and persistent pain:targeting forebrain NR2B subunits.Drug Discov Today . 2002,7(4):259-67.
    [18] Bliss TV,Lomo T.Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path.Physiol .1973,232 (2):331-56.
    [19] Ma QP, Woolf CJ. NMDA antagonists as potential analgesic drugs. Basel.2002,83-103.
    [20] Zheng X,Zhang L,Wang AP,et al.Ca2+ influx amplifies protein kinase C potentiation of recombinant NMDA receptors.Neurosci.1997,17(22): 8676-8686.
    [21] Yu X M,Salter M W. Src, a molecular switch govering gain control of synaptic transmit ssion mediated by NMDA receptors .Proc Natl Acad Sci.1999,96 (14):697-704.
    [22] Gaunitz C,Schuttler A,Gillen C,et al. Formalin induced changes of NMDA receptor sub -unit expression in the spinal cord of the rat. Amino Acids.2002,23 (123):177-182.
    [23] Carlton SM, Hargett GL,Coffeshall RE.Localization and activation of glutamate receptors in unmyelinated axons of rat glabrous skin. Neurosci Lett. 1995,197:25-28
    [24] Terayama R,Guan Y,Dubner R,et al.Activity-induced plasticity in brain stem pain modul atory circuitry after inflammation.Neuroreport. 2000,11:1915-1919.
    [25] Miki K, Zhou QQ, Guo W, et al. Changes in gene expression and neuronal phenotype in b rain stem pain modulatory circuitry after inflammation. Neurophysiol .2002, 87:750-76 0.
    [26] Ma QP,Hargreaves RJ.Localization of N-methyl-D-aspartate NR2B subunits on primary sensory neurons that give rise to small-caliber sciatic nerve fibers in rats.Neuroscience 2000,101(3):699-707.
    [27] Zhou S,Bonasera L,Carlton SM.Peripheral administration of NMDA, AMPA or KA results in pain behaviors in rats .Neuroreport.1996,7:895-900.
    [28] Leem JW,Hwang JH,Hwang SJ,et al.The role of peripheral N- methyl -D-aspartate rece ptors in Freund’s complete adjuvant induced mechanical hyperalgesia in rats.Neurosci Lett.2001,297:155-158.
    [29] Davidson EM,Coggeshall RE,Carlton SM.Peripheral NMDA and non-NMDA glutamate receptors contribute to nociceptive behaviors in the rat formalin test.Neuroreport,1997, 8:941-946.
    [30] S.M.Carlton,R.E.Coggeshall.Inflammation induced changes in peripheral glutamate rece ptor populations.Brain Research.1999,820:63-67.
    [31] Cairns BE,Svensson P,Wang K, et al. Activation of peripheral NMDA receptors contributes to human pain and rat afferent discharges evoked by injection of glutamate into the masseter muscle . Neurophysiol.2003,90:98-105.
    [32] Jackson DL,Graff CB,Richardson JD,et al.Glutamate participates in the peripheral modulation of thermal hyperalgesia.2004,25:663–673.
    [33] Wang H ,Liu RJ,Zhang RX,et al. Peripheral NMDA receptors contribute to activation of nociceptors : a c-fos expression study in rats.Neurosci Lett.1997,201:221-224.
    [34] Yu X M,Salter M,W.Src, a molecular switch govering gain control of synaptic transmissi on mediated by NMDA recep tors. Proc Natl Acad Sci USA.1999, 96 (14) : 7697-7704.