噬菌体随机环7肽库筛选胰岛素受体高亲和肽作为肝细胞癌靶向载体
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景:肿瘤细胞高表达分子被作为肿瘤靶向治疗的药物靶点。肿瘤靶向治疗有三种研究策略。第一种策略是获得肿瘤药物靶点的单克隆抗体。第二种策略是噬菌体肽库筛选获得与药物靶点分子高亲和力结合的小分子肽。第三种策略是获得生长因子片段及其衍生物,以阻断生长因子受体的功能。
     胰岛素受体是一种生长因子受体,在肝癌细胞表面表达高于正常肝细胞,是肝癌靶向治疗的侯选靶点分子之一。噬菌体肽库是在一种噬菌体外壳蛋白末端连接上大量结构各异的肽链。当肽库与胰岛素受体结合,只有与受体具有高亲和力的多肽被筛选出来。通过提取噬菌体DNA测序获得多肽的氨基酸残基序列。再用多肽合成仪人工合成多肽。这种多肽可能具有肝癌等肿瘤靶向性。用噬菌体肽库筛选肿瘤高表达分子的高亲和力多肽是研究肿瘤靶向药物的一条重要途径。
     目的:噬菌体随机环7肽库筛选能与胰岛素受体高亲和力结合的多肽,人工合成多肽作为放射性核素或肿瘤化疗药物载体,用于肝癌的放射性核素显像诊断和肝癌的靶向治疗。
     方法:筛选:将大鼠肝胰岛素受体包被在培养皿上,用噬菌体环7肽库与胰岛素受体结合,收集结合在固相受体上的噬菌体。扩增筛选获得的噬菌体后用于下一轮筛选。通过数轮筛选,获得与受体亲和力高的噬菌
BACKGROUND: Overexpression of growth factor receptors and some glycoprotein has been implicated in most of the tumors. The over expressed molecules of the tumor cell are the best sites in tumor targeting and anticancer therapies. Three methods could be employed in tumor targeting therapy. The first is to generate a monoclonal antibody against tumor high expressed molecules. The second is to select a high affinity peptide of the growth factor receptors or glycoprotein from the phage display peptide library. The third is to obtain an analogue or antilogous of the growth factors. Insulin receptors, a kind of growth factor receptors over expressed on the surface of the hepatocellular carcinoma (HCC) cells, have become potential targeted sites in HCC therapy. Phage display peptide library is a vast library of random peptide sequences expressed as fusions with coat proteins of bacteriophages. An in vitro selection process could elute the specifically-bound phages of insulin receptors. Individual phage clones are characterized by DNA sequencing. A new- peptide is synthesized
    corresponding to the DNA sequence. The new peptide will be a potential HCC-targeting molecular.AIM: The purpose of this study is to look for peptide ligands of insulin receptors by a bio-panning of a disulfide constrained phage display peptide library. We hypothesized that the peptides will play an important role in HCC diagnostic imaging and/or targeting therapy.METHODS: Rat liver insulin receptors were immobilized on a polystyrene plate by incubating in 0.1mol/L NaHCO3 overnight at 4℃. Panning was carried out by incubating a library of phage- displayed peptides with immobilized insulin receptors for 40min at room temperature. The bound phages were eluted with 0.2M glycine-HCl and amplified with 200μl Ecol.ER2738 in 20ml LB-Medium in a 250ml Erlenmeyer flask. After three round of bio panning, 12 microphage colons were picked out to amplify. 11 clones were finally sequenced according to the ELISA.A new disulfide constrained peptide CY-10 (CQSKHWRHCY) was synthesized corresponding to insert sequence. The apparent affinity constant of 125I-CY-10 binding to insulin receptors was revealed by saturation binding assay and Scachard analysis.The radioactivity of 125I-CY-10 bound to SMMC 7721 cells to the L-02 cells was compared first. Then the bio distribution of 125I-CY-10 in mice bearing human tumor was conducted following the administration of the 125I-CY-10 at 5,15,60,180,360,900min. The whole body posterior image of 131I-CY-10 in mouse bearing tumor performed 24 hr post injection. RESULTS: After three rounds, enzyme-linked immunosorbent assay (ELISA) was employed to investigate 12 individual clones bound with the insulin
    receptors. All of the 12 clones were ELIS A positive. We picked out 11 clones that with a high OD value for DNA sequence. The results shows that all of the 11 colons have the same insert oligonucletide sequences ATGACGCCAATGCTTCGACTG. According to the oligonucletide sequence, a new peptide CQSKHWRHC-Y (named CY-10) was synthesized. The apparent affinity constant of 125I-CY-10 (Kd value) bind with insulin receptor is 8.909 ×10-8mol/L. The insulin receptor exhibits a 1.715-fold affinity for CY-10 than for insulin.The HCC SMMC 7721 cells bound much more 125I-CY-10 than L-02 cells. The biodistribution shows that the hepatocellular carcinoma tissue of the mice bearing human SMMC 7721 tumors has a higher uptake of 125I-CY-10 than the muscle, the bone and the brain. The 125I-CY-10 activities in tumor tissue reach maximum peak values at 3hr post-injection. The ratio of tumor to muscle at 3 hour is 2.2218. The whole body imaging of 131I-CY-10 shows a high tumor uptake.CONCLUSSION: This study generated a high-affinity peptide of insulin receptor. The uptake of peptide CY-10 in HCC tumor tissue of the naked mice uptake is high. CY-10 could be a potent targeted reagent of HCC.
引文
1. Minino AM, Arias E, Kochanek KD, Murphy SL, Smith BL. Deaths: final data for 2000. Natl Vital Stat Rep. 2002;50:1-119
    2. Lu JB, Sun XB, Dai DX, Zhu SK, Chang QL, Liu SZ, Duan WJ. Epidemiology of gastroenterologic cancer in Henan Province, China. World J Gastroenterol. 2003;9:2400-3.
    3. Livraghi T. Radiofrequency ablation, PEIT, and TACE for hepatocellular carcinoma. J Hepatobiliary Pancreat Surg. 2003; 10(1) :67-76.
    4. Hsu C, Cheng JC, Cheng AL. Recent advances in non-surgical treatment for advanced hepatocellular carcinoma. J Formos Med Assoc. 2004 Jul;103(7):483-95.
    5. Kruskal JB, Goldberg SN. Emerging therapies for hepatocellular carcinoma: opportunities for radiologists. J Vasc Interv Radiol. 2002 Sep;13(9Pt2):S253-8.
    6. Mohr L, Yeung A, Aloman C, Wittrup D, Wands JR. Antibody-directed therapy for human hepatocellular carcinoma. Gastroenterology. 2004 Nov; 127(5 Suppl 1):S225-31.
    7. Ravoet C, Bleiberg H, Gerard B. Non-surgical treatment of hepatocarcinoma. J Surg Oncol Suppl. 1993;3:104-11.
    8. Mori T. Cancer-specific ligands identified from screening of peptide-display libraries. Curr Pharm Des. 2004;10(19):2335-43.
    9. Haubner R, Wester HJ. Radiolabeled tracers for imaging of tumor angiogenesis and evaluation of anti-angiogenic therapies. Curr Pharm Des. 2004;10(13):1439-55.
    10. Samoylova TI, Morrison NE, Cox NR. Molecular markers of glial tumors: current targeting strategies. Curr Med Chem. 2003 May; 10(10):831-43.
    11. Smith GP. Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface[J]. Science. 1985, 228:1315-7.
    12. Williams C. Biotechnology match making: screening orphan ligands and receptors. Curr Opin Biotechnol 2000 Feb;ll(l):42-6.
    13. Ryu DD, Nam DH. Recent progress in biomolecular engineering. Biotechnol Prog. 2000 Jan-Feb;16(l):2-16.
    14. Smith KA, Nelson PN, Warren P, Astley SJ, Murray PG, Greenman J. Demystified...recombinant antibodies. J Clin Pathol 2004 Sep; 57(9):912-7.
    15. Ruoslahti E. Targeting tumor vasculature with homing peptides from phage display. Semin Cancer Biol. 2000 Dec; 10(6):435-42.
    16. Kataoka A, Ishida M, Murakami S, Ohno S. Sensitization of chemotherapy by anti-HER. Breast Cancer. 2004; 11 (2): 105-15.
    17. Witte L, Hicklin DJ, Zhu Z, Pytowski B, Kotanides H, Rockwell P, Bohlen P. Monoclonal antibodies targeting the VEGF receptor-2 (F1k1/KDR) as an anti-angiogenic therapeutic strategy. Cancer Metastasis Rev. 1998 Jun;17(2):155-61.
    18. Romanov VI. Phage display selection and evaluation of cancer drug targets. Curr Cancer Drug Targets. 2003 Apr;3(2): 119-29.
    19. Kallen KJ, Grotzinger J, Rose-John S. New perspectives on the design of cytokines and growth factors. Trends Biotechnol. 2000 Nov; 18(11):455-61.
    20. Marrs B, Delagrave S, Murphy D. Novel approaches for discovering industrial enzymes. Curr Opin Microbiol. 1999 Jun;2(3):241-5.
    21. Smith J, Kontermann RE, Embleton J, Kumar S. Antibody phage display technologies with special reference to angiogenesis. FASEB J. 2005 Mar;19(3):331-41.
    22. E1-Mousawi M, Tchistiakova L, Yurchenko L, Pietrzynski G, Moreno M, Stanimirovic D, Ahmad D, Alakhov V. A vascular endothelial growth factor high affinity receptor 1-specific peptide with antiangiogenic activity identified using a phage display peptide library. J Biol Chem.
     2003 Nov 21;278(47):46681-91.
    23. Hetian L, Ping A, Shumei S, Xiaoying L, Luowen H, Jian W, Lin M, Meisheng L, Junshan Y, Chengchao S. A novel peptide isolated from a phage display library inhibits tumor growth and metastasis by blocking the binding of vascular endothelial growth factor to its kinase domain receptor. J Biol Chem. 2002 Nov 8;277(45):43137-42.
    24. Musch A, Rabe C, Paik MD, Berna MJ, Schmitz V, Hoffmann P, Nischalke HD, Sauerbruch T, Caselmann WH. Altered Expression of TGF-beta Receptors in Hepatocellular Carcinoma - Effects of a Constitutively Active TGF-beta Type I Receptor Mutant. Digestion. 2005 Mar16;71(2):78-91.
    25. Chen L, Yang Z, Wang G, Wang C. Expression of angiopoietin-2 gene and its receptor Tie2 in hepatocellular carcinoma. J Tongji Med Univ. 2001; 21(3):228-30, 235.
    26. Bae DG, Kim TD, Li G, Yoon WH, Chae CB. Anti-Flt1 Peptide, a Vascular Endothelial Growth Factor Receptor 1-Specific Hexapeptide, Inhibits Tumor Growth and Metastasis. Clin Cancer Res. 2005 Apr 1;11(7):2651-2661.
    27. Efimova EA, Glanemann M, Liu L, Schumacher G, Settmacher U, Jonas S, Langrehr JM, Neuhaus P, Nussler AK. Effects of human hepatocyte growth factor on the proliferation of human hepatocytes and hepatocellular carcinoma cell lines. Eur Surg Res. 2004 Sep-Oct; 36(5):300-7.
    28. Nishio M, Furukawa K. Incorporation, remodeling and re-expression of exogenous gangliosides in human cancer cell" lines in vitro and in vivo.
     Nagoya J Med Sci. 2004 May;67(l-2):35-44.
    29. Yazaki PJ, Sherman MA, Shively JE, Me D, Williams LE, Wong JY, Colcher D, Wu AM, Raubitschek AA. Humanization of the anti-CEA T84.66 antibody based on crystal structure data. Protein Eng Des Sel. 2004 May; 17(5):481-9.
    30. Ferrer M, Harrison SC. Peptide ligands to human immunodeficiency virus type 1 gp120 identified from phage display libraries. J Virol 1999 Jul;73(7):5795-802.
    31. Holmberg A, Blomstergren A, Nord O, Lukacs M, Lundeberg J, Uhlen M. The biotin-streptavidin interaction can be reversibly broken using water at elevated temperatures. Electrophoresis. 2005 Feb;26(3):501-10.
    32. Shukla GS, Krag DN. Selection of tumor-targeting agents on freshly excised human breast tumors using a phage display library. Oncol Rep. 2005 Apr; 13(4):757-64.
    33. Liu R, Enstrom AM, Lam KS. Combinatorial peptide library methods for immunobiology research. Exp Hematol. 2003 Jan;31(l):l 1-30.
    34. Wang SX, Zhou HY, Ma XY, Chen G, Lu YP, He FX, Ma D. Selection of targets locating on the surface of epithelial ovarian cancer cells by using phage peptide library. Zhonghua Fu Chan Ke Za Zhi. 2003 Jul;38(7):412-4. Chinese.
    35. Guo Y, Zhang J, Wang JC, Yan FX, Zhu BY, Huang HL, Liao DF. Identification of Peptides Inhibiting Adhesion of Monocytes to the Injured Vascular Endothelial Cells through Phage-displaying Screening. Acta Biochim Biophys Sin (Shanghai). 2005 Apr;37(4):227-33.
    36. Westerlund-Wikstrom B. Peptide display on bacterial flagella: principles
     and applications, Int J Med Microbiol. 2000 Jul;290(3):223-30.
    37. Strickland TW, Williams JF, Pierce JG. Tyrosine residues of bovine thyrotropin. Accessibility to iodination in the intact hormone and isolated subunits, Int J Pept Protein Res. 1984 Oct;24(4):328-36.
    38. Ciantar M, Caruana DJ. Periotron 8000: calibration characteristics and reliability. J Periodontal Res. 1998 Jul;33(5):259-64.
    39.赵青 许立明 许远征 王颖芬.不同甲状腺机能与红细胞膜胰岛素受体的表达中华医学研究与实践.2004.002(005).-19-20
    40.唐灵 胡永玲 林枫 刘健翔 于健 苏珂 龙艳。2型糖尿病患者胰岛素抵抗与红细胞膜胰岛素受体的关系 中国老年学杂志.2003.023(008).-501-502
    41. Shimizu F, Kahn CR. . Insulin radioreceptor assay on murine splenic leukocytes and peripheral erythrocytes. Endocrinology. 1982 Feb; 110(2): 474-80.
    42. Beuschlein F, Fassnacht M, Klink A, Allolio B, Reincke M. ACTH-receptor expression, regulation and role in adrenocortial tumor formation. Eur J Endocrinol. 2001 Mar; 144(3): 199-206. 43. Almira EC, Reddy WJ. Effect of fasting on insulin binding to hepatocytes and liver plasma membranes from rats. Endocrinology. 1979 Jan;104(1):205-11.