水稻镉胁迫响应差异机理和调控效应的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水稻是我国第一大粮食作用,全国约有60%的人口以稻米为主食。我国稻米Cd污染的现象严重,危害了广大人民群众的健康,研究水稻Cd污染具有重要的意义。本研究采用不同基因型水稻,在Cd胁迫下研究了水稻的生长发育、生理活动及其差异,探讨了耐Cd性的生理生化机制。此外还研究了调控措施对水稻Cd吸收的影响。主要研究结果如下:
     1、不同基因型水稻Cd积累特征及其差异的研究
     选取秀水63、甬优8号、扬稻6号、两优培九和汕优63,5种有代表性的不同基因型水稻,设置5个Cd浓度梯度,在盆栽条件下研究了水稻Cd吸收和积累的特征。结果表明,植株Cd含量随着水稻生育进程逐渐降低,且不同基因型降低程度不同。水稻地上部各器官Cd含量存在显著地基因型差异。土壤Cd添加量为5mg·kg-1,秀水63籽粒Cd含量仅为0.17mg·kg-1,没有超过国标规定的限值(0.2mg·kg-1),其它品种均超过标准限值,但超标幅度不大,可以认为在Cd中轻度污染土壤中筛选和种植籽粒低积累Cd水稻品种是可行的。水稻籽粒Cd富集能力存在显著地基因型差异,甬优8号富集能力最强,秀水63最弱,而且容易受到土壤Cd浓度的影响,低Cd条件下水稻籽粒富集能力比高Cd条件下强,水稻Cd转运能力也受到环境和土壤Cd浓度共同作用的影响。籽粒Cd含量与各个生育时期植株Cd含量存在显著或极显著的相关关系,且不同基因型水稻的相关系数不同,说明不同生育时期吸收的Cd对籽粒Cd积累的贡献作用不同。供试品种成熟期叶片和茎鞘Cd含量与籽粒Cd含量表现出显著或极显著的相关关系。
     2、Cd胁迫对不同基因型水稻生长及营养元素吸收的影响
     采用以上5种有代表性的不同基因型水稻,设置对照和Cd胁迫两种处理,研究了Cd胁迫对不同基因型水稻的生长发育、产量以及Ca、Mg、P和K等矿质营养元素吸收的影响。研究结果表明,Cd胁迫显著地降低了水稻的产量、穗数和结实率,但粒重受影响不显著。Cd胁迫降低了各生育时期的干物质重,其主要表现在生育前中期,随着生育进程逐渐减弱。Cd对水稻生长发育和产量影响存在显著地基因型的差异,汕优63和秀水63受Cd胁迫程度小,耐Cd性强,为Cd耐性品种,两优培九、甬优8号和扬稻6号受Cd胁迫程度大,耐Cd性弱,为Cd敏感性品种。Cd胁迫影响了水稻对Ca、Mg、P和K的吸收和积累,分为促进和抑制两种作用,即促进了Ca的吸收,抑制了Mg、P和K的吸收,同时也影响其在地上部各器官的分配和积累,且存在着基因型的差异。研究发现,Cd耐性品种Ca含量与对照相比增加幅度较Cd敏感性品种大,而在Mg、P和K中没有出现这种现象,以此可以推断,水稻耐Cd性可能与Ca元素代谢存在一定的关系。
     3、Cd胁迫下不同耐性水稻光合特性、抗氧化酶系统和氮代谢的研究
     选取以上研究的Cd耐性和Cd敏感性水稻品种,研究了Cd胁迫下水稻不同生育时期光合特性、抗氧化酶活性和氮代谢酶活性的响应及其差异。研究结果表明,Cd胁迫抑制了水稻叶片的Pn,随着水稻的生长发育抑制程度逐渐降低,对Cd耐性品种的抑制程度小于Cd敏感性品种,Cond、Ci和Tr也有类似的表现。Cd胁迫导致膜脂过氧化程度加剧,导致水稻叶片MDA含量的增加,Cd敏感性品种MDA的增加幅度大于Cd耐性品种。Cd胁迫提高了水稻叶片SOD、POD和CAT活性,与CK相比,SOD和CAT在分蘖期和拔节期活性提高程度较为显著,抽穗期和灌浆期的显著性降低,POD分蘖期和拔节期提高程度不显著,抽穗期和灌浆期显著性提高。Cd耐性品种抗氧化酶活性的提高程度大于Cd敏感性品种。氮代谢酶活性也受到Cd胁迫的影响,与CK相比,NR的活性分蘖期和拔节期受到抑制,抽穗期和灌浆期的活性则提高,GS活性则全生育期受到抑制,GOT和GPT活性前中期受到抑制,后期则活性其提高。与Cd敏感性品种相比,Cd胁迫对Cd耐性品种氮代谢酶活性的抑制程度小,而提高程度大。因此可以看出,水稻耐Cd性与光合特性、抗氧化酶和氮代谢酶活性有关。
     4、不同耐Cd性水稻Cd亚细胞分布和化学形态含量差异的研究
     采用土培试验,结合蔗糖差速离心法和化学试剂逐级提取法,研究了Cd耐性品种和Cd敏感性品种水稻叶片中Cd的亚细胞分布和不同化学形态的含量及其生育时期的变化。研究结果表明,随着水稻的生长发育,叶片细胞各组分Cd含量逐渐减低。细胞中的Cd大部分积累在细胞壁和可溶性组分中。Cd耐性品种细胞壁和可溶性组分Cd含量显著地高于Cd敏感性品种,细胞器Cd含量显著地低于Cd敏感性品种,在生育前期表现尤为明显。水稻叶片中Cd的化学形态主要以氯化钠提取态为主,其次为醋酸和盐酸提取态,乙醇和水提取态较低,不同生育时期Cd化学形态含量和分布比例会发生变化。与Cd敏感性品种相比,Cd耐性品种移动活性较强的乙醇和水提取态含量和分布比例较低,而难以移动的提取态含量和分布比例较高,在生育前中期表现尤为显著。因此,可以推断水稻耐Cd性与Cd的亚细胞分布和存在的化学形态有关。研究还发现,水稻籽粒Cd含量较高可能与灌浆期细胞可溶性组分含量以及移动活性较强的化学结合形态含量较高有关。
     5、Cd胁迫下Si对不同Cd积累型水稻Cd耐性和吸收的影响
     选取两个不同Cd积累型水稻品种,在水培条件下研究了Si对不同Cd浓度胁迫的解毒效应及其机理。研究结果表明,Cd浓度低时Si显著地缓解了Cd对水稻生长的抑制作用,Cd浓度高时Si缓解作用不显著,高积累品种汕优63缓解效果好于低积累品种武育粳3号。与Cd处理相比,Cd低浓度时加Si显著地促进了水稻游离脯氨酸含量和SOD、CAT活性的提高,显著地降低了MDA的含量,汕优63效果好于武育粳3号,在Cd高浓度时显著性下降。Si增加了水稻细胞壁Cd的含量和分布比例,减少了可溶性组分和细胞器的含量和分布比例,降低水稻体内移动活性强的Cd的化学结合态的含量和分布比例,提高了移动活性弱的化学结合态的含量和分布比例,且在低Cd浓度效果好于高Cd浓度,汕优63的效果好于武育粳3号。因此,Si在一定范围内可以通过提高抗氧化酶活性,维持细胞膜稳定以及减少Cd的吸收和运输来缓解Cd对水稻的毒害作用,且存在品种间的差异,高积累型品种缓解效果较低积累型品种好。
     6、麦秸杆对Cd在水稻-土壤系统中迁移的影响
     通过室外砂土和黏土的大型土柱栽培试验,研究了麦秸杆对Cd在水稻-土壤中迁移的影响。研究结果表明,随着水稻的生长发育,水稻植株Cd含量逐渐降低,麦秸秆促进了水稻对Cd的吸收,增加了水稻植株Cd的含量,水稻地上部各器官Cd含量也受麦秸影响而增加,籽粒和茎鞘较为显著。麦秸秆可以显著提高土壤中有效态Cd的含量,黏土中的提高程度大于砂土。麦秸秆促进了Cd向籽粒的转运,提高了水稻籽粒Cd的富集系数,与Cd单一处理相比,砂土中添加麦秸秆使籽粒Cd富集系数增加了50%,黏土中增加了61.5%,黏土的提高幅度大于砂土。Cd进入土壤后会随着水分流动向下迁移,砂土中的迁移能力大于黏土,随着土壤深度的增加Cd含量逐渐减少。添加麦秸杆可以降低Cd在土壤中向下迁移的能力,降低幅度黏土大于砂土。因此,Cd污染土壤中添加麦秸促进了Cd在水稻-土壤系统中的向上迁移,阻止了其向下的迁移。
     7、不同生育期类型水稻对Cd积累的研究
     以江苏省有代表性的早熟中粳、中熟中粳、迟熟中粳、早熟晚粳和中熟晚粳5种生育期类型的56个粳稻品种为材料,在Cd污染农田中研究了不同生育期类型粳稻品种Cd的积累特性。结果表明,56个供试水稻品种籽粒Cd含量变化范围为0.014~0.054mg·kg-1,水稻籽粒Cd含量在品种间差异显著,其中籽粒Cd含量最高的品种是ELTO,扬粳687、泗阳1382、广陵香粳和武香粳9号籽粒Cd含量最低。不同生育期类型水稻籽粒Cd含量以早熟中粳较高,中熟中粳较低,分别为0.024和0.020mg·kg-1。不同生育期类型水稻籽粒Cd富集系数差异不显著,而转运系数存在生育期类型差异。
Rice is the first food crop and about60%of population with it as the stable food in China. Rice cadmium pollution is becoming more and more serious, and has threatened the human health seriously. Therefore, it is very important for researching rice cadmium pollution. In this study, the effect of cadmium on the growth and development, physiological activity and their differences were investigated with the different genotypes rice in all stages. Moreover, the methods to regulate cadmium toxicity and absorption were researched. The main results are as follows:
     1Characteristic of cadmium accumulation and differences in different genotypes rice
     An experiment was set to research the different characters of cadmium absorption and accumulation between different genotypes rice in potted condition, with Xiushui63, Yongyou8, Yangdao6, Liangyoupeijiu and Shanyou63et al five different genotypes rice. The results showed that cadmium absorption capacities were different in different growth stage and genotypes rice, the content of cadmium in rice plant reduced gradually with development of rice. Cadmium concentration in grain, leaf and stem were significant difference between different genotypes rice, and increased dramatically with addition of soil cadmium concentration. In this study, cadmium content in grain of Xiushui63was only0.17mg-kg-1when the cadmium concentration of soil was more than5mg-kg-1, which under the limit value (0.2mg-kg-1) by the national standard, others exceed standard limit, but only little. Therefore, it is feasible for screening and cultivating rice variety which the grain accumulation lower cadmium. Abilities of enrich cadmium in grain were significant diversity, Yongyou8was the strangest and Xiushui63was the weakest. They were affected by soil cadmium concentration, which were stranger in low cadmium than high cadmium. The capacities of cadmium transport were influenced by soil cadmium concentration and genotypes interaction. Correlation analysis indicated that there were significant or extremely significant correlations in cadmium content of grain and each growth stage. The correlation coefficients were difference between different genotype rice, which showed that the contributions of cadmium absorption at different growth stage to grain cadmium accumulation were different between genotypes rice. The correlations of cadmium content among stem, leaf and grain were significant or extremely significant in all rice.
     2Effect of cadmium on growth and absorption of nutrition elements in different genotypes rice
     A pot experiment was conducted to research the effect of cadmium on growth and absorption of Ca, Mg, P, K. Cadmium was added into soil to form two levels, i.e.0(CK) and25mg-kg-1(Cd tolerance), with Xiushui63, Yongyou8, Yangdao6, Liangyoupeijiu and Shanyou63et al five different genotypes rice. The results showed that the yield, panicle number, filled spikelet rate were reduced significantly under cadmium stress, but the reduction of grain weight was not significant. Rice dry matter production was restrained by cadmium and weakened gradually with growing process. There was difference in affecting by cadmium between different genotype rice. The growth of Shangyou63and Xiushui63affected by cadmium were less, which indicated their resistances to cadmium were strong. The growth of Liangyoupeijiu, Yongyou8and Yangdao6affected by cadmium were more, which indicated their resistances to cadmium were weak. The result also indicated that the affect of cadmium stress on mineral nutrient concentrations in shoot differed types and mineral nutrients. When exposed to cadmium stress, reduced effect could be noted for K, P and Mg, thus resulting in reduced concentration. On the other hand, increased effect was found for Ca. It was not only affected rice absorbing Ca, Mg, P and K, but also affect its distribution and accumulation on the organs of ground parts under cadmium stress, which existed difference between different genotypes rice. Compared with CK, the Ca content in cadmium resistence strong varieties increased larger than resistence weak, but not in Mg, P and K. This indicated that maybe there was a relationship in cadmium resistence and calcium metabolism.
     3Research on differences of photosynthetic characteristics, antioxidant and Nitrogen metabolism enzymes in different resistence rice under cadmium stress
     An experiment was set to research the responses and differences of photosynthetic characters, antioxidants and nitrogen metabolism enzymes activities under cadmium stress in different growth stage with different cadmium resisitence rice varieties. The results indicated that photosynthetic rate was restrained by cadmium and the extent of inhibition reduced following development of rice. The extents of restrain in resistance varieties were lower than sensitive. Stomatal conductance, intercellular CO2concentration and transpiration rate had the similar performance. Cadmium lead to membrane lipid peroxidat more severe which promoted MDA content increased, and cadmium sensitivity varieties increased more than resistance varieties. The activities of antioxidant enzymes were promoted by cadmium such as SOD, CAT and POD, which resistance promoted more than sensitive. Compared with CK, SOD and CAT activity increased more significant in tillering and jointing stage than in heading and filling stage, and POD activity was opposite. Nitrogen metabolism enzymes activities were also affected by cadmium. Compared with CK, nitrate reductases activities were restrained in tillering and jointing stages but were promoted in heading and filling stage under cadmium stress. Glutamine synthetases activities were inhabited in whole growth period. Glutamic oxalacetic and glutamic-pyruvic transaminases were inhabited in early and medium stage and promoted in later stage. Compared with sensitive varieties, the inhibitions of nitrogen metabolism enzymes activities in resistance varieties by cadmium were less and promotion were more. In conclusion, the rice resistance to cadmium stress may have relation with photosynthesis, antioxidants and nitrogen metabolism enzymes activities.
     4Differences of subcelluar distribution and chemical forms in different cadmium resistence rice
     A soil culture experiment combined with the method of soucrose differential centrifugation and chemical reagent stepped extraction was carried out to research the subcellular distribution and chemical forms of cadmium and change with growth development in rice leaves, and the differences between cadmium resistive and sensitive rice varieties were compared. The results showed that with rice growing, the cadmium content in all fractions of rice leaves reduced, and most of cadmium accumulated in cell wall and soluble substance. Compared with sensitive varieties, resistive varieties had significant higher cell wall and soluble fraction of cadmium and significant lower organelle fraction of cadmium in leaves, especially at early stage. The greatest amount of cadmium in leaves was in the extraction solution of NaCl, followed HAC and HCl, ethanol and water were lower. Concentration and percent distribution of cadmium in different extractions would change at different growth stage. Compared with sensitive varieties, cadmium content and distribution in ethanol and water extraction, which had stronger mobile activity, of resistive varieties were lower, and the extraction which difficult to move were higher. This performance was particularly significant at early stage. Therefore, the capacities of rice resistance to cadmium have relation with the subcellular distribution and chemical forms of cadmium in rice. The study also found that high cadmium content in grain may have relationship with the higher soluble fraction and mobility stronger extraction in rice in filling stage.
     5Effect on cadmium tolerance and absorption in two cadmium accumulation rice types by silicon
     The alleviation effect of silicon on cadmium toxicity to rice plants was investigated using a hydroponic experiment with three cadmium levels, two silicon levels and two different cadmium accumulated rice types. The result indicated that the inhibition were greatly alleviated due to silicon addition to the culture in low cadmium treatment but no significant in high. The alleviated effect in Shangyou63was better than Wuyujing3. Compared with the plant treated with cadmium alone, silicon addition markedly increased praline content and SOD and CAT activities, reduced MDA content, which was better in Shangyou63than Wuyujing3, in low cadmium treatment and the function declined in high cadmium treatment. The cadmium content and percent distribution of cell wall was increased and the content and percent distribution of soluble and organelle were reduced by silicon addition. Moreover, by addition silicon, on one hand, the content and percent distribution of the extractions, which had stronger mobile activity, were reduced. On other hand the extractions, which were difficult to move, were increased. This effect which in low cadmium treatment was better than high treatment and Shangyou63was better than Wuyujing3. In conclusion, silicon alleviated the cadmium toxicity may through enhancing the capacity of defense against oxidative stress and reducing absorption and transportation. There were differences in that alleviation between different varieties, the high cadmium accumulated varieties was better than low.
     6Effect of wheat straw on cadmium remove in rice-soil system
     The experiment of rice cultivated in sandy and clay soil columns were conducted under outdoor condition to investigate the effects of wheat straw on cadmium remove in rice-soil systems in artificial cadmium-contaminated soils. The results indicated that cadmium content of rice reduced gradually with growth development. Addition wheat straw promoted rice to absorbing cadmium and increasing content of overground organs which were significant in grain and stem. Compared with Cd treatment, addition wheat residue led to increasing contents of cadmium availability significantly which was greater in caly than in sandy soil. Wheat straw promoted the cadmium transporting into grain and increasing the concentration factor. Compared with Cd treatment, the concentration factor increased50.0%and61.5%in sandy and clay soils by adding straw, respectively. Cadmium entered into soil and removed downward with water flow and the cadmium migrated ability in sandy was greater than clay. With soil depth increasing, cadmium content became less and less. Wheat straw reduced the cadmium migrated ability which in clay soil was greater than in sandy soil. In conclusion, wheat straw in cadmium contamination soil promoted cadmium migrating up, but restrained migrating down.
     7Accumulation of cadmium in japonica rice varieties with different growth period types
     The experiment was set to investigate the accumulation characteristics of cadmium in rice of different growth types in cadmium pollution farmland, with early-(125-135d), medium-(136-145d), and late-maturing (146-155d) medium japonica as well as early-(156-165d) and medium-maturing (166-175d) late japonica varieties. The result showed that the range of grain Cadmium content was0.014-0.054mg-kg-1for56rice varieties. The content of cadmium in grain showed significant variances among rice varieties, the highest variety are ELTO, the lowest varieties were Yangjing687, Siyang1382, Guanglingxiangjing and Wuxiangjing9. There was also difference in the content of cadmium of rice among different growth types. The content of cadmium in grain of early-maturing medium japonica was the highest and medium-maturing medium japonica was the lowest, were0.024and0.020mg-kg-1respectively. Concentration factor and transference coefficient were the important characteristic indexes in screening the low cadmium accumulating varieties of rice. In this research, the accumulation factors were different but not significant among different growth types rice. The transference coefficient showed significant difference among different growth types rice.
引文
[1]崔玉静,赵中秋,刘文菊,陈世宝,朱永官.镉在土壤—植物—人体系统中迁移积累及其影响因子.生态学报,2003,23(10):2133-2143.
    [2]黄冬芬,奚岭林,杨立年,王志琴,杨建昌.不同耐镉基因型水稻农艺和生理性状的比较研究.作物学报,2008,34(5):809-817.
    [3]Alfven T, Jarup L, Elinder C G. Cadmium and lead in blood in relation to low bone mineral density and tubular proteinuria. Environmental Health Perspectives,2002,110(7):699-702.
    [4]Nakagawa H, Nishijo M. Environmental cadmium exposure, hypertension and cardiovascular risk. Journal of Cardiovascular Risk,1996,3(1):11-17.
    [5]夏汉平.土壤—植物系统中的镉研究进展.应用与环境生物学报,1997,3(3):289-298
    [6]顾继光,林秋奇,胡韧,诸葛玉平,周启星.土壤-植物系统中重金属污染的治理途径及其研究展望.土壤通报,2005,36(1):128-133.
    [7]陈怀满.土壤—植物系统中的重金属污染.北京:科学出版社,1996.71-85.
    [8]甄燕红,成颜君,潘根兴,李恋卿.中国部分市售大米中Cd、Zn、Se的含量及其食物安全评价.安全与环境学报,2008,8(1):119-122.
    [9]王贵玲,蔺文静.污水灌溉对土壤的污染及其整治.农业环境科学学报,2003,22(2):163-166.
    [10]Wong C S, Lia X D, Zhang G, Qi S H, Peng X Z. Atmospheric deposition of heavy metals in the Pearl River Delta, China. Atmosphere Environment,2003,37(6):767-776.
    [11]Nan Z R, Zhao C Y, Li J J, Chen F H, Sun W. Relations between soil properties and selected heavy metal concentrations in spring wheat(Trifeum aestivwn L.)grown in contaminated soils. Water Air Soil Pollution, 2002,133(1-4):205-213.
    [12]Sterekeman T, Douay F, Proix N, Fourrier H. Vertical distribution of Cd, Pb, and Zn in soils near smelters in the North of France. Environmental Pollution,2000,107(3):377-389.
    [13]郑喜坤,鲁安怀,高翔,赵谨,郑德圣.土壤中重金属污染现状与防治方法.土壤与环境,2002,11(1):79-84.
    [14]Guvenc N, Alagha O, Tuncel G. Investigation of soil multi-element composition in Antalya, Turkey. Environment International,2003,29(5):631-640.
    [15]石宁宁,丁艳锋,赵秀峰,王强盛.某农药工业园区周边土壤重金属含量与风险评价.应用生态学报,2010,21(7):1835-1843.
    [16]Myung C J. Heavy metal contamination of soils and waters in and around the Imcheon Au-Ag mine, Korea. Applied Geochemistry,2001,16(11-12):1369-1375.
    [17]McLaughlin M J, Parker D R, Clarke J M. Metals and micronutrients-food safety issues. Field Crops Research,1999,60(1-2):143-163.
    [18]陈怀满,郑春荣.中国土壤重金属污染现状与防治对策.人类环境杂志,1999,28(2):130-134.
    [19]Li L F, Zeng X B, Li G X, Mei X R. Heavy metal pollution of Wenyu River sediment and its risk assessment. Acta Scientiae Cireumstantiae,2007,27(2):289-297.
    [20]宁建凤,邹献中,杨少海,陈勇,巫金龙,孙丽丽.广东大中型水库底泥重金属含量特征及潜在生态风险评价.生态学报,2009,29(11):6059--6067.
    [21]Adrie V, Bert H. Sourees of Cd, Cu, Pb and Zn in biowaste. Science Total Environment,2002, 300(1-3):87-98.
    [22]邵国胜,Muhammadj H,章秀福,张国平.镉胁迫对不同水稻基因型植株生长和抗氧化酶系统的影响.中国水稻科学,2004,18(3):239-241.
    [23]Sun Y H, Li Z J, Guo B, Chu G X, Wei C Z, Liang Y C. Arsenic mitigates cadmium toxicity in rice seedlings. Environmental and Experimental Botany,2008,64(3):264-270.
    [24]刘莉.镉胁迫对水稻幼苗干物质积累和活性氧代谢的影响.浙江农业学报,2005,17(3):147-150.
    [25]Hu Y L, Ge Y, Zhang C H, Ju T, Cheng W D. Cadmium toxicity and translocation in rice seedlings are reduced by hydrogen peroxide pretreatment. Plant Growth Regulation,2009,59(1):51-61.
    [26]何俊瑜,任艳芳,朱诚,蒋德安.镉胁迫对不同水稻品种种子萌发、幼苗生长和淀粉酶活性的影响.中国水稻科学,2008,22(4):399-404.
    [27]施农农,陈志伟,贾秀英.镉胁迫下水稻种子的萌芽生长及体内水解酶的活性变化.农业环境保护,1999,18(5):213-216.
    [28]章秀福,王丹英,储开富,杨春刚,牟仁祥,陈铭学,朱智伟,何庆富,廖西元.镉胁迫下水稻SOD活性和MDA含量的变化及其基因型差异.中国水稻科学,2006,20(2):194-198.
    [29]王逸群,郑金贵,陈文列,陈莲云.Hg2+、Cd2+污染对水稻叶肉细胞伤害的超微观察.福建农林大学学报:自然科学版,2004,33(4):409--413.
    [30]史静,潘根兴,李恋卿.外加Cd对两水稻品种细胞超微结构的影响研究.生态毒理学报,2008,3(4):403-409.
    [31]杨肖娥,龙新宪,倪吾钟.超积累植物吸收重金属的生理及分子机制.植物营养与肥料学报,2002,8(1):8-15.
    [32]Uraguchi S, Mori S, Kuramata M, Kawasaki A, Arao T, Ishikawa S. Root-to-shoot Cd translocation via the xylem is the major process determining shoot and grain cadmium accumulation in rice. Joural of Experimental Botany,2009,60(9):2677-2688.
    [33]Tanaka K, Fujimaki S, Fujiwara T, Yoneyama T, Hayashi H. Quantitative estimation of the contribution of the phloem in cadmium transport to grains in rice plants (Oryza sativa L.). Soil Science Plant Nutrition, 2007,53(1):72-77.
    [34]Kato M, Ishikawa S, Inagaki K, Chiba K, Hayashi H, Yanagisawa S, Yoneyama T. Possible chemical forms of cadmium and varietal differences in cadmium concentrations in the phloem sap of rice plants (Oryza sativa L.). Soil Science Plant Nutrition,2010,56(6):839-847.
    [35]Fujimaki S, Suzui N, Ishioka NS, Kawachi N, Ito S, Chino M, Nakamura S. Tracing cadmium from culture to spikelet:noninvasive imaging and quantitative characterization of absorption, transport, and accumulation of cadmium in an intact rice plant. Plant Physiology,2010,152(4):1796-1806.
    [36]Rodda M, Li G, Reid R. The timing of grain Cd accumulation in rice plants:the relative importance of remobilization within the plant and root Cd uptake post-flowering. Plant Soil,2011,347:105-114.
    [37]Uraguchi S and Fujiwara T. Cadmium transport and tolerance in rice:perspectives for reducing grain cadmium accumulation. Rice,2011,5:5.
    [38]汪晓丽,盛海君,刘杨,陶玥玥.镉对水稻幼苗根系细胞膜电位和膜透性的影响.农业环境科学学报,2010,29(4):630-635.
    [39]何俊瑜,任艳芳,王阳阳,李兆君.不同耐性水稻幼苗根系对镉胁迫的形态及生理响应.生态学报,2011,31(2):522-528.
    [40]Cieslinski G, Van Rees K C J, Szmigielska A M, Krishnamurti G S R, Huang P M. Low-molecular-weight organic acids in rhizosphere soils of durum wheat and their effect on cadmium bioaccumulation. Plant and Soil,1998,203(1):109-117.
    [41]Shi J, Li L Q, Pan G X. Variation of grain Cd and Zn concentrations of 110 hybrid rice cultivars grown in a low-Cd paddy soil. Journal of Environmental Sciences,2009,21(2):168-172.
    [42]张玉烛,王凯荣,刘见平,黄志农,曾翔,周尚泉.稻米质量安全控制技术研究与示范.作物研究,2006,4:287-296.
    [43]王凯荣,龚惠群.两种基因型水稻对环境镉吸收与再分配差异性比较研究.农业环境保护,1996,15(4):145-149,176.
    [44]程旺大,张国平,姚海根,Peter D,王润屹.粳稻籽粒中砷、镉、铬、镍、铅等重金属含量的品种和粒位效应.中国水稻科学,2005,19(3):273-279.
    [45]Li Z W, Li L Q, Pan G X, Chen J. Bioavailability of Cd in a soil-rice system in China:soil type versus genotype effects. Plant and Soil,2005,271(1-2):165-173.
    [46]程旺大,张国平,姚海根,吴伟,汤美玲,朱祝军,徐民.晚粳稻籽粒中As、Cd、Cr、Ni、Pb等重金属含量的基因型与环境效应及其稳定性.作物学报,2006,32(4):573-579.
    [47]宋阿琳,娄运生,梁永超.不同水稻品种对铜镉的吸收与耐性研究.中国农学通报,2006,22(9):408-411.
    [48]曾翔,张玉烛,王凯荣,周立军.不同品种水稻糙米含镉量差异.生态与农村环境学报,2006,22(1):67-69.
    [49]周鸿凯,何觉民,陈小丽,莫俊杰,黎华寿.大田生产条件下不同品种水稻植株中镉的分布特点.农业环境科学学报,2010,29(2):229-234.
    [50]杨春刚,廖西元,章秀福,朱智伟.不同基因型水稻籽粒对镉积累的差异.中国水稻科学,2006,20(6):660-662.
    [51]吴启堂,陈卢,王广寿.水稻不同品种对镉吸收累积的差异和机理研究.生态学报,1999,19(1):104-107.
    [52]Costa G, Morel J L. Cadmium uptake by lupinus albus(L):Cadmium excretion, a possible mechanism of cadmium tolerance. Journal of Plant Nutrition,1993,16(10):1921-1929.
    [53]Zhao F J, Hamon R E, Lombi E. Characteristics of cadmium uptake in two contrasting ecotypes of the hyperaccumulator Thlaspi caerulescens. Journal of Experiment Botany,2002,53(368):535-543.
    [54]Yu H, Wang J L, Fang W, Yuan J G, Yang Z Y. Cadmium accumulation in different rice cultivars and screening for pollution-safe cultivars of rice. Science of the Total Environment,2006,370(2-3):302-309.
    [55]Baryla A, Carrier P, Coulomb C, Sahut C, Havaux M. Leaf chlorosis in oilseed rape plants (Brassica napus) grown on cadmium polluted soil:causes and consequences for photosynthesis and growth. Planta, 2001,212(5-6):696-709.
    [56]李荣春Cd、Pb及其复合污染对烤烟叶片生理生化及细胞亚显微结构的影响.植物生态学报,2000,24(2):238-242.
    [57]Massimo C, Roland V, Karen V L, Herman C, Flavia N I. Effects of in vivo copper treatment on the photosynthetic apparatus of two Triticum durum cultivars with different stress sensitivity. Physiologia plantarum,1997,100(4):901-908.
    [58]Quartacci M F, Pinzino C, Cristina L M. Growth in excess copper induces changes in the lipid composition and fluidity of PS II enriched membranes in wheat. Physiologia Plantarum,2000,108(1): 87-93.
    [59]Uribe E G, Stark B. Inhibition of photosynthetic energy conversion by cupric ion. Evidence for Cu2+-coupling factor I interaction. Plant Physiology,1982,69(5):1040-1045.
    [60]Schoder W P, Arellano J B, Bittner R, Baron M, Eckert H J, Renger G. Flash-induced absorption spectroscopy studies of copper interaction of with photosystem II in higher plants. Joural of Biological chemical.1994,269(52):32865-32870.
    [61]Yruela I, Gatzen G, Picorel R, Holzwarth A R. Cu (Ⅱ)-inhibitory effect on photosystem II from higher plants:a picosecond time-resolved fluorescence study. Biochemistry,1996,35(29):9469-9474.
    [62]葛才林,骆剑峰,刘冲,殷朝珍,王泽港,马飞,罗时石.重金属对水稻光合作用和同化物输配的影响.核农学报,2005,19(3):214-218.
    [63]陈平,余土元,陈惠阳,周厚高.硒对镉胁迫下水稻幼苗生长及生理特性的影响.广西植物,2002,22(3):277-282.
    [64]徐红霞,翁晓燕,毛伟华,杨勇.镉胁迫对水稻光合、叶绿素荧光特性和能量分配的影响.中国水稻科学,2005,19(4):338-342.
    [65]刘登义,王友保Cu、As对作物种子萌发和幼苗生长影响的研究.应用生态学报,2002,13(2):179-182.
    [66]葛才林,骆剑峰,刘冲,殷朝珍,王泽港,马飞,罗时石.重金属对水稻呼吸速率及相关同功酶影响的研究.农业环境科学学报,2005,24(2):222-226.
    [67]Devriese M, Tsakaloudi V, Garbayo I, Leon R, Vilchez C, Vigara J. Effect of heavy metals on nitrate assimilation in the eukaryotic microalga Chlamydomonas reinhardtii. Plant Physiologic Biochemical, 2001,39(5):443-448.
    [68]Chien H F, Kao C H. Accumulation of ammonium in rice leaves in response to excess cadmium. Plant Science,2000,156(1):111-115.
    [69]Brant W. Touchette, JoAnn Burkholder. Nitrate reductase activity in a submersed marine angiosperm: Controlling influences of environmental and physiological factors. Plant Physiology Biochemical.2001, 39 (7-8):583-593.
    [70]M. Abd El-Samad Hamdia, M.A.K. Shaddad and M.M. Doaa. Mechanisms of salt tolerance and interactive effects of Azospirillum brasilense inoculation on maize cultivars grown under salt stress conditions. Plant Growth Regulation,2004,44(2):165-174.
    [71]N. Boussama, O. Ouariti, A. Suzuki, M.H. Ghorbal. Cd-Stress on Nitrogen Assimilation. Journal of Plant Physiology,1999,155(3):310-317.
    [72]邵国胜,谢志奎,张国平.杂草稻和栽培稻氮代谢对镉胁迫反应的差异.中国水稻科学,2006,20(2):189-193.
    [73]李彩凤,马凤呜,赵越,李文华.氮素形态对甜菜氮糖代谢关键酶活性及相关产物的影响.作物学报,2003,29(1):128-132.
    [74]常思敏,马新明.砷对烤烟氮代谢的影响.作物学报,2007,33(1):132-136.
    [75]孙金华,吴梦淦,宋鸿遇.谷氨酰胺合成酶参与Rhodopseudomonas capsulata固氮活性的氨瞬间调节.植物生理学报,1985,11(2):171-179.
    [76]沈同,王镜岩.生物化学(下).北京:高等教育出版社,1991:222-226.
    [77]张艳英,周楠,刘鹏,徐根娣,陈文荣,蔡妙珍.铜胁迫对烟草幼苗氮代谢的影响.生态学报,2009,29(12):9779-9784.
    [78]江行玉,赵可夫.植物重金属伤害及其抗性机理.应用与环境生物学报,2001,7(1):92-99.
    [79]Christopher S C. Phytochelatin biosynthesis and function in heavy-metal detoxification. Current Opinion in Plant Biology,2000,3(3):211-216
    [80]邬飞波,张国平.植物螯合肽及其在重金属耐性中的作用.应用生态学报,2003,14(4):632-636.
    [81]程旺大,姚海根,张国平,汤美玲,Peter Domin.镉胁迫对水稻生长和营养代谢的影响.中国农业科学,2005,38(3):528-537.
    [82]Wu F B, Zhang G P, Yu J S. Interaction of cadmium and four microelements for uptake and translocation in different barley genotypes. Communications in Soil Science and Plant Analysis,2003,34(13-14): 2003-2020.
    [83]Zhang G P Fukami M, Sekimoto H. Influence of cadmium on mineral concentrations and yield components in wheat genotypes differing in Cd tolerance at seedling stage. Field Crops Research,2002, 77(2-3):93-98.
    [84]Liu J G, Liang J S, Li K Q, Zhang Z J, Yu B Y, Lu X L, Yang J C, Zhu Q S. Correlations between cadmium and mineral nutrients in absorption and accumulation in various genotypes of rice under cadmium stress. Chemosphere,2003,52(9):1467-1473.
    [85]Dahiya D J, Singh J P, Kumar V. Nitrogen uptake in wheat as influenced by the presence of nickel. Arid Soil Research and Rehabilitation,1994,8(1):51-58.
    [86]Narwal R P, Singh M, Singh J P, Dahiya D J. Cadmium-zinc interaction in maize grown on sewer water irrigated soil. Arid Soil Research and Rehabilitation,1993,7(2):125-131.
    [87]Gussarsson M, Jensen P. Effects of copper and cadmium on uptake and leakage of K+in birch roots. Tree Physiology,1992,11(3):305-313.
    [88]李隼,黄胜东,赵福庚,重金属镉对水稻根毛细胞钾离子吸收过程的影响.植物生理学报,2011,47(5):481-487.
    [89]Perfus-Barbeoch L, Leonhardt N, Vavasseur A, Forestier C. Heavy metal toxicity:Cadmium permeates through calcium channels and disturbs the plant water status. The Plant Journal,2002,32(4):539-548.
    [90]Connolly E L, Fett J P, Guerinot M L. Expression of the IRT1 metal transporter is controlled by metals at the levels of transcript and protein accumulation. Plant Cell,2002,14(6):1347-1357.
    [91]Vert G, Grotz N, Dedaldechamp F, Gaymard F, Guerinot M L, Briat J F, Curie C. IRT1, an Arabidopsis transporter essential for iron uptake from the soil and for plant growth. Plant Cell,2002,14(6): 1223-1233.
    [92]Takahashi R, Ishimaru Y, Senoura T, Shimo H, Ishikawa S, Arao T, Nakanishi H, Nishizawa N K. The OsNRAMP1 iron transporter is involved in Cd accumulation in rice. Journal of Experiment Botany,2011, 62(14):4843-4850.
    [93]Miyadate H, Adachi S, Hiraizumi A, Tezuka K, Nakazawa N, Kawamoto T, Katou K, Kodama I, Sakurai K, Takahashi H, Satoh-Nagasawa N, Watanabe A, Fujimura T, Akagi H. OsHMA3, a P1B-type of ATPase affects root-toshootcadmium translocation in rice by mediating efflux into vacuoles. New Phytol,2011, 189(1):190-199.
    [94]Ueno D, Yamaji N, Kono I, Huang C F, Ando T, Yano M, Ma J F. Gene limiting cadmium accumulation in rice. PNAS,2010,107(38):16500-16505.
    [95]Argiiello J M, Eren E, Gonzalez-Guerrero M. The structure and function of heavy metal transport PIB-ATPases. Biometals,2007,20(3-4):233-248.
    [96]Hall J L. Cellular mechanisms for heavy metal detoxification and tolerance. Journal of Experiment Botany,2002,53(366):1-11.
    [97]Schutzendubel A, Pollea A. Plant responses to abiotic stress:heavy metal-induced oxidative stress and protection by mycorrhization. Journal of Experimental Botany,2002,53(372):1351-1365.
    [98]邵国胜,Muhammad Jaffar Hassan,章秀福,张国平.镉胁迫对不同水稻基因型植株生长和抗氧化酶系统的影响,中国水稻科学,2004,18(3):239-244.
    [99]杨居荣,贺建群.镉污染对植物生理生化的影响.农业环境保护,1995,14:193-197.
    [100]王贵民,陈国祥,王习达,吴国荣,马广岳,吴晓慧.水稻两优培九与汕优63苗期镉毒害下抗性差异的研究.农业环境科学学报,2004,23(2):217-220.
    [101]杨居荣,贺建群,张国祥,毛显强.农作物对镉毒害的耐性机理探讨.应用生态学报,1995,6:87-91.
    [102]张金彪,黄维南.镉对植物的生理生态效应的研究进展.生态学报,2000,20(3):514-523.
    [103]杨居荣,鲍子平,蒋婉茹.不同耐镉作物体内镉结合体的对比研究.作物学报,1995,21(5):605-611.
    [104]Nishizono H, Ichikawah H, Suzikis S. The role of the root cell wall in the heavy metal tolerance of Athyr iumyokoscense. Plant and Soil,1987,101(1):15-20.
    [105]Kupper H, Zhao F J, Mcgath S P. Cellular compartmentation of zinc in leaves o f the hyperaccumulator Thlasp icaerulescens. Plant Physiology,1999,119(1):305-311.
    [106]于辉,杨中艺,杨知建,向佐湘.不同类型镉积累水稻细胞镉化学形态及亚细胞和分子分布.应用生态学报,2008,19(10):2221-2226.
    [107]王芳,丁杉,张春华,葛滢.不同镉耐性水稻非蛋白巯基及镉的亚细胞和分子分布.农业环境科学学报,2010,29(4):625-629.
    [108]He J Y, Zhu C, Ren Y F, Yan Y P, Cheng C, Jiang D A, Sun Z X. Uptake, subcellulaur distribution, and chemical forms of cadmium in wild-type and mutant rice. Pedosphere,2008,18(3):371-377.
    [109]Carrier P, Baryla A, Havaux M. Cadmium distribution and microlocalization in oilseed rape (Brassica napus) after long-term growth on cadmium-contaminated soil. Planta,2003,216(6):939-950.
    [110]Cobbet C S. Phytoehelatins and Their Roles in Heavy Metal Detoxification. Plant Physiology,2000, 123(3):825-832.
    [111]Clemens S, Palmgren M G, Kramer K. Along way ahead:understanding and engineering plant metal accumulation. Trends Plant Science,2002,7(7):309-315.
    [112]Bhatia N P, Walsh K B, Baker A J M. Detcetion and quantification of ligands involved in nickel detoxification in a herbaceous Ni hyPeraccumulator Stackhousia tryonii Bailey. Journal of Experimental Botany,2005,56(415):1343-1349.
    [113]Gekeler W, Grill E, Winnacker E L. Survey of the plant kingdom for the ability to bind heavy metals through phytochelatins. Zeit schrift Fur Naturforschung Journal of Biosciences C,1989,44:361-369.
    [114]Rauser W E. Phytochelatins and related peptides. Plant Physiology,1995,109(4):1141-1149.
    [115]Huange, Hatch E, Goldsbrough P B. Selection and characterization of cadmium tolerant cells in tomato. Plant Science,1987,52(3):211-222.
    [116]娄来清,沈振国.金属硫蛋白和植物螯合肽在植物重金属耐性中的作用.生物学杂志,2001,18(3):1-4.
    [117]许嘉琳,鲍子平,杨居荣,刘虹.农作物体内铅、镉、铜的化学形态研究.应用生态学报,1991,2(3):244--248.
    [118]胡延玲,张春华,居婷,葛滢.镉胁迫下两种水稻GSH和GST应答差异的研究.农业环境科学学报,2009,28(2):305-310.
    [119]蔡悦.水稻耐镉的基因型差异及外源GSH缓解镉毒的机理研究.浙江大学博士论文,2010.
    [120]肖清铁,戎红,周丽英,刘杰,林文雄,林瑞余.水稻叶片对镉胁迫响应的蛋白质差异表达.应用生态学报,2011,22(4):1013-1019.
    [121]杨海琳.土壤重金属污染修复的研究.环境科学与管理,2009,34(6):130-135.
    [122]宋静,朱荫湄.土壤重金属污染修复技术.农业环境保护,1998,17(6):271-273.
    [123]董悦,刘晓群,李翠兰,于东梅,张士勇.土壤重金属污染研究进展.现代农业科技,2009,4: 143-145.
    [124]秦娜.农业土壤重金属污染及防治.山西水土保持科技,2010,1:7-9.
    [125]Zeng F R, Shafaqat A, Zhang H T, Ouyang Y N, Qiu B Y, Wu F B, Zhang G P. The influence of pH and organic matter content in paddy soil on heavy metal availability and their uptake by rice plants. Environmental Pollution,2011,159(1):84-91.
    [126]Vega F A, Covelo E F, Andrade M L. Effects of sewage sludge and barley straw treatment on the sorption and retention of Cu, Cd and Pb by coppermine Anthropic Regosols. Journal of Hazardous Materials,2009,169(1-3):36-45.
    [127]王开峰,彭娜,王凯荣.长期施用有机肥对稻田土壤重金属含量及其有效性的影响.水土保持学报,2008,22(1):105-108.
    [128]杨丽娟,李天来,付时丰.长期施肥对菜田土壤微量元素有效性的影.植物营养与肥料学报,2006,12(4):549-553.
    [129]曾清如,周细红,毛小云.不同氮肥对铅锌矿尾矿污染土壤中重金属的溶出及水稻苗吸收的影响.土壤肥料,1997,3:7-14.
    [130]张敬锁,李花粉,张福锁,姚广伟.不同形态氮素对水稻体内镉形态的影响.中国农业大学学报,1998,3(5):90-94.
    [131]胡坤,喻华,冯文强,秦鱼生,蓝兰,廖鸣兰,王昌全,涂仕华.中微量元素和有益元素对水稻生长和吸收Cd的影响.生态学报,2011,31(8):2341-2348.
    [132]刘昭兵,纪雄辉,彭华,石丽红,李洪顺.水分管理模式对水稻吸收累积镉的影响及其作用机理.应用生态学报,2010,21(4):908-914.
    [133]曹仁林,贾晓葵,张建顺.镉污染水稻土防治研究.天津农林科技,1999,12(6):12-17.
    [134]纪雄辉,梁永超,鲁艳红,廖育林,聂军,郑圣先,李兆军.污染稻田水分管理对水稻吸收积累镉的影响及其作用机理.生态学报,2007,27(9):3930-3939.
    [135]张福锁.我国肥料产业与科学施肥战略研究报告.北京:中国农业大学出版社,2008:61-71.
    [136]顾继光,林秋奇,胡韧.土壤—植物系统中重金属污染的治理途径及其研究展望.土壤通报,2005,36(1):128-133.
    [137]Yong S O, Usman A R A, Lee S S, Abd El-Azeem S A M, Choi B, Hashimoto Y, Yang J E. Effects of rapeseed residue on lead and cadmium availability and uptake by rice plants in heavy metal contaminated paddy soil. Chemosphere,2011,85(4):677-682.
    [138]陕红,李书田,刘荣乐.秸秆和猪粪的施用对土壤镉有效性的影响和机理研究.核农学报,2009, 23(1):139-144.
    [139]单玉华,李昌贵,陈晨,王小治,封克.施用秸秆对淹水土壤镉、铜溶出的影响.生态学杂志,2008,27(8):1362-1366.
    [140]陈怀满,郑春荣.植物物料对淹水土壤物理化学性质的影响.土壤,1989,21(5):234-238.
    [141]Shi Q H, Bao Z Y, Zhu Z J, He Y, Qian Q, Yu J. Silicon-mediated alleviation of Mn toxicity in Cucum is sativus in relation to activities of superoxide dismutase and ascorbate peroxidase. Phytochemistry,2005, 66(13):1551-1559.
    [142]周建华,王永锐.硅营养缓解水稻幼苗Cd、Cr毒害的生理研究.应用与环境生物学报,1999,5(1):11-15.
    [143]张丽娜,宗良纲,任偲,沈振国.硅对低镉污染水平下水稻幼苗生长及吸收镉的影响.农业环境科学学报,2007,26(2):494-499.
    [144]Liang Y C, Wong J W C, Wei L. Silicon-mediated enhancement of cadmium tolerance in maize (Zea mays L.) grown in cadmium contaminated soil. Chemosphere,2005,58(4):475-484.
    [145]赵颖,李军.硅对水稻吸收镉的影响.东北农业大学学报,2010,41(3):59-64.
    [146]史新慧,王贺,张福锁.硅提高水稻抗镉毒害机制的研究.农业环境科学学报,2006,25(5):1112-1116.
    [147]Wang L J, Wang Y H, Chen Q, Cao W D, Lia M, Zhang F S. Silicon induced cadmium tolerance of rice Oryza sativa L. seedlings. Plant Nutrition,2000,23(10):1397-1406.
    [148]陈翠芳,钟继洪,李淑仪.施硅对抑制植物吸收重金属镉的效应研究进展.生态学杂志,2007,26(4):567-570.
    [1]黄冬芬,奚岭林,杨立年,王志琴,杨建昌.不同耐镉基因型水稻农艺和生理性状的比较研究.作物学报,2008,34(5):809-817.
    [2]崔玉静,赵中秋,刘文菊,陈世宝,朱永官.镉在士壤—植物—人体系统中迁移积累及其影响因子.生态学报,2003,23(10):2133-2143.
    [3]He J Y, Zhu C, Ren Y F, YanY P, Jiang D A. Genotypic variation in grain cadmium concentration of low land rice. Journal of Plant Nutrition and Soil Science,2006,169(5):711-716.
    [4]甄燕红,成颜君,潘根兴,李恋卿.中国部分市售大米中Cd、Zn、Se的含量及其食物安全评价.安全与环境学报,2008(1):119-122.
    [5]李坤权,刘建国,陆小龙,杨建昌,张祖建,朱庆森.水稻不同品种对镉吸收及分配的差异.农业环境科学学报,2003,22(5):529-532.
    [6]Florijn P J, Van Beusichem M L. Uptake and distribution of cadmium in maize inbred lines. Plant and Soil,1993,150(1):25-32.
    [7]Florijn P J, Nelemans J A, Van Beusichem M L. Cadmium uptake by lettuce varieties. Netherlands Journal of Agricultural Science,1991,39:103-114.
    [8]吴启堂,陈卢,王广寿.水稻不同品种对镉吸收累积的差异和机理研究.生态学报,1999,19(1):104-107.
    [9]仲维功,杨杰,陈志德,王才林,张永春,常志州,周益军.水稻品种及其器官对土壤重金属元素Pb、Cd、Hg、As积累的差异.江苏农业学报,2006,22(4):331-338.
    [10]Yu H, Wang J L, Fang W, Yuan J G, Yang Z Y. Cadmium accumulation in different rice cultivars and screening for pollution-safe cultivars of rice. Science of the Total Environment,2006,370(2-3):302-309.
    [11]刘侯俊,梁吉哲,韩晓日,李军,芦俊俊,张素静,冯璐,马晓明.东北地区不同水稻品种对镉的累积特性研究.农业环境科学学报,2011,30(2):220-227.
    [12]周鸿凯,何觉民,陈小丽,莫俊杰,黎华寿.大田生产条件下不同品种水稻植株中镉的分布特点.农业环境科学学报,2010,29(2):229-234.
    [13]杨春刚,廖西元,章秀福,朱智伟,陈铭学,王丹英,牟仁祥,陈温福,周淑清.不同基因型水稻籽粒对镉积累的差异.中国水稻科学,2006,20(6):660-662.
    [14]曾翔,张玉烛,王凯荣,周立军,张岳平,谢建红,屠乃美.不同品种水稻糙米含镉量差异.生态与农村环境学报,2006,22(1):67-69,83.
    [15]程旺大,姚海根,张国平,汤美玲,Peter Dominy镉胁迫对水稻生长和营养代谢的影响.中国农业科学,2005,38(3):528--537.
    [16]Moral R, Gilkes R J, Moreno-caselles J. A comparison of extractants for heavy metals in contaminated soils from Spain. Communications in soil science and plant analysis,2002,33(15-18):2781-2791.
    [17]Rodda M, Li G, Reid R. The timing of grain Cd accumulation in rice plants:the relative importance of remobilization within the plant and root Cd uptake post-flowering. Plant Soil,2011,347:105-114.
    [18]Costa G, Morel J L. Cadmium uptake by lupinus albus (L):Cadmium excretion, a possible mechanism of cadmium tolerance. Journal of Plant Nutrition,1993,16(10):1921-1929.
    [19]Zhao F J, Hamon R E, Lombi E. Characteristics of cadmium uptake in two contrasting ecotypes of the hyperaccumulator Thlaspi caerulescens. Journal of Experiment Botany,2002,53(368):535-543.
    [20]Uraguchi S, Mori S, Kuramata M. Root-to-shoot Cd translocation via the xylem is the major process determining shoot and grain cadmium accumulation in rice. Journal of Experiment Botany,2009,60(9): 2677-2688.
    [1]黄冬芬,奚岭林,杨立年,王志琴,杨建昌.不同耐镉基因型水稻农艺和生理性状的比较研究.作物学报,2008,34(5):809-817.
    [2]崔玉静,赵中秋,刘文菊,陈世宝,朱永官.镉在土壤—植物—人体系统中迁移积累及其影响因子.生态学报,2003,23(10):2133-2143.
    [3]He J Y, Zhu C, Ren Y F, YanY P, Jiang D A. Genotypic variation in grain cadmium concentration of low land rice. Journal of Plant Nutrition and Soil Science,2006,169(5):711-716.
    [4]Yu H, Wang J L, Fang,W Yuan J G, Yang Z Y. Cadmium accumulation in different rice cultivars and screening for pollution-safe cultivars of rice. Science of the Total Environment,2006,370(2-3):302-309.
    [5]Liu J G, Liang J S, Li K Q, Zhang Z J, Yu B Y, Lu X L, Yang J C, Zhu Q S. Correlations between cadmium and mineral nutrients in absorption and accumulation in various genotypes of rice under cadmium stress. Chemosphere,2000,52(9):1467-1473.
    [6]Zhang G P Fukami M, Sekimoto H. Influence of cadmium on mineral concentrations and yield components in wheat genotypes differing in Cd tolerance at seedling stage. Field Crops Research,2002, 77(2-3):93-98.
    [7]Gussarson M, Asp H, Adalateeinsson S, Jensen P. Enhancement of cadmium effects on growth and nutrient composition of birch by buthionine sulphoximine. Journal of Experimental Botany,1996,47(2): 211-215.
    [8]Aina R, Labra M, Fumagalli P, Vannini C, Marsoni M, Cucchi U, Bracale M, Sgorbati S, Citterio S. Thiol-peptide level and proteomic changes in response to cadmium toxicity in Oryza sativa L. roots. Environment Experiment Botany,2007,59(3):381-392.
    [9]Lin A J, Zhang X H, Chen M, Cao Q. Oxidative stress and DNA damages induced by cadmium accumulation. Journal of Environment Science,2007,19(5):596-602.
    [10]Wang C X, Mo Z, Wang H, Wang Z, Cao Z H. The transportation time-dependent distribution of heavy metals in paddy crops. Chemosphere,2003,50(6):717-723.
    [11]杨居荣,鲍子平,蒋婉茹.不同耐镉作物体内镉结合体的对比研究.作物学报,1995,21(5):605-611.
    [12]于辉,杨中艺,杨知建,向佐湘.不同类型镉积累水稻细胞镉化学形态及亚细胞和分子分布.应用生态学报,2008,19(10):2221-2226.
    [13]徐勤松,施国新,周耀明,吴国荣,王学.镉在黑藻叶细胞中的亚显微定位分布及毒害效应分析.实验生物学报,2004,37(6):461-469.
    [14]Costa G, Morel J L. Cadmium uptake by lupinus albus (L):Cadmium excretion, a possible mechanism of cadmium tolerance. Journal of Plant Nutrition,1993,16:1921-1929.
    [15]Zhao F J, Hamon R E, Lombi E. Characteristics of cadmium uptake in two contrastion ecotypes of the hyperaccumulator Thlaspi caerulescens. Journal of Experiment Botany,2002,53(368):535-543.
    [16]Uraguchi S, Mori S, Kuramata M. Root-to-shoot Cd translocation via the xylem is the major process determining shoot and grain cadmium accumulation in rice. Journal of Experiment Botany,2009, 60(9):2677-2688.
    [17]吴启堂,陈卢,王广寿.水稻不同品种对镉吸收累积的差异和机理研究.生态学报,1999,19(1):104-107.
    [18]Fujimaki S, Suzui N, Ishioka N S, Kawachi N, Ito S, Chino M, Nakamura S. Tracing cadmium from culture to spikelet:noninvasive imaging and quantitative characterization of absorption, transport, and accumulation of cadmium in an intact rice plant. Plant Physiology,2010,152(4):1796-1806.
    [19]王凯荣,龚惠群.两种基因型水稻对环境镉吸收与再分配差异性比较研究.农业环境保护,1996,15(4):145-149,176.
    [20]Wu F B, Zhang G P, Yu J S. Interaction of cadmium and four microelements for uptake and translocation in different barley genotypes. Communications in Soil Science and Plant Analysis,2003,34(13-14): 2003-2020.
    [21]Dahiya D J, Singh J P, Kumar V. Nitrogen uptake in wheat as influenced by the presence of nickel. Arid Soil Research and Rehabilitation,1994,8(1):51-58.
    [22]Narwal R P, Singh M, Singh J P, Dahiya D J. Cadmium-zinc interaction in maize grown on sewer water irrigated soil. Arid Soil Research and Rehabilitation,1993,7(2):125-131.
    [23]Gussarsson M, Jensen P. Effects of copper and cadmium on uptake and leakage of K+in birch roots. Tree Physiology,1992,11(3):305-313.
    [24]李隼,黄胜东,赵福庚,重金属镉对水稻根毛细胞钾离子吸收过程的影响.植物生理学报,2011,47(5):481-487.
    [25]Perfus-Barbeoch L, Leonhardt N, Vavasseur A, Forestier C. Heavy metal toxicity:Cadmium permeates through calcium channels and disturbs the plant water status. The Plant Journal,2002,32(4):539-548.
    [26]Connolly E L, Fett J P, Guerinot M L. Expression of the IRT1 metal transporter is controlled by metals at the levels of transcript and protein accumulation. Plant Cell,2002,14(6):1347-1357.
    [27]Vert G, Grotz N, Dedaldechamp F, Gaymard F, Guerinot M L, Briat J F, Curie C. IRT1, an Arabidopsis transporter essential for iron uptake from the soil and for plant growth. Plant Cell,2002,14(6): 1223-1233.
    [28]Takahashi R, Ishimaru Y, Senoura T, Shimo H, Ishikawa S, Arao T, Nakanishi H, Nishizawa N K. The OsNRAMP1 iron transporter is involved in Cd accumulation in rice. Journal of Experiment Botany,2011, 62(14):4843-4850.
    [29]Miyadate H, Adachi S, Hiraizumi A, Tezuka K, Nakazawa N, Kawamoto T, Katou K, Kodama I, Sakurai K, Takahashi H, Satoh-Nagasawa N, Watanabe A, Fujimura T, Akagi H. OsHMA3, a PIB-type of ATPase affects root-to-shoot cadmium translocation in rice by mediating efflux into vacuoles. New Phytol,2011,189(1):190-199.
    [30]Ueno D, Yamaji N, Kono I, Huang C F, Ando T, Yano M, Ma J F. Gene limiting cadmium accumulation in rice. PNAS,2010,107(38):16500-16505.
    [31]Arguello J M, Eren E, Gonzalez-Guerrero M. The structure and function of heavy metal transport PIB-ATPases. Biometals,2007,20(3-4):233-248.
    [1]刘海亮,崔世民,李强,刘欣,彭永康.镉对作物种子萌发、幼苗生长及氧化同工酶的影响.环境科学,1992,13(5):31-35.
    [2]张金彪,黄维南.镉对植物的生理生态效应的研究进展.生态学报,2000,20(5):514-523.
    [3]夏汉平.土壤—植物系统中的镉研究进展.应用与环境生物学报,1997,3(3):289-298.
    [4]Milone M, Sgherri C, Clijsters H, Navari-Izzo F. Antioxidative responses of wheat treated with realistic concentration of cadmium. Environmental and experimental Botany,2003,50(3):265-276.
    [5]杨居荣,贺建群,黄翌,蒋婉茹.农作物镉耐性种内和种间差异Ⅱ.种内差.应用生态学报,1995,6(增刊):132-136.
    [6]Wang M Y, Chen A K, Wong M H, Qiu R L, Cheng H, Ye ZH. Cadmium accumulation in and tolerance of rice (Oryza sativa L.) varieties with different rates of radial oxygen loss. Environmental Pollution, 2011,159(6):1730-1736.
    [7]Zhang J, Sun W H, Li Z J, Liang Y C, Song A L. Cadmium fate and tolerance in rice cultivars. Agronomy for Sustainable Development,2009,29(3):483-490.
    [8]Yasemin E, Deniz T, Beycan A. Effects of cadmium on antioxidant enzyme and photosynthetic activities in leaves of two maize cultivars. Journal of Plant Physiology,2008,165(6):600-611.
    [9]Wu F B, Zhang G P, Yu J S. Interaction of cadmium and four microelements for uptake and translocation in different barley genotypes. Communication in Soil Science and Plant Analysis,2003,34(13-14): 2003-2020.
    [10]黄冬芬,奚岭林,杨立年,王志琴,杨建昌.不同耐镉基因型水稻农艺和生理性状的比较研究.作物 学报,2008,34(5):809-817.
    [11]Chang M L, Chen N Y, Liao L J, Cho C L, LIU Z H. Effect of cadmium on peroxidase isozyme activity in roots of two Oryza sativa cultivars. Botanical Studies,2012,53(1):31-44.
    [12]邵国胜,谢志奎,张国平.杂草稻和栽培稻氮代谢对镉胁迫反应的差异.中国水稻科学,2006,20(2):189-193.
    [13]葛才林,骆剑峰,刘冲,殷朝珍,王泽港,马飞,罗时石.重金属对水稻光合作用和同化物输配的影响.核农学报,2005,19(3):214-218.
    [14]秦天才,阮捷,王腊娇.镉对植物光合作用的影响.环境科学与技术,2000,9:33-35.
    [15]王逸群,郑金贵,陈文列,陈莲云Hg2+、Cd2+污染对水稻叶肉细胞伤害的超微观察.福建农林大学学报:自然科学版,2004,33(4):409-413.
    [16]Farquhar G D, Sharkey T D. Stomatal conductance and photosynthesis. Annual Review of Plant Physiology,1982,33:317-345.
    [17]Mobin M, Khan N A. Photosynthetic activity, pigment composition and antioxidatvie response of two mustard (Brassica juncea) cultivars differing in photosynthetic capacity subjected to cadmium stress. Journal of Plant Physiology,2007,164(5):601-610.
    [18]李福燕,李许明,赵雄,杨帆,张宇,漆智平.热带地区不同水稻品种对土壤镉胁迫的生理生化响应.生态学杂志,2010,29(4):821-825.
    [19]曾翔.水稻镉积累和耐性机理及其品种间差异研究.湖南农业大学博士论文,2006.
    [20]Schiitzendubel A, Polle A. Plant responses to abiotic stresses:heavy metal-induced oxidative stress and protection by mycorrhization. Journal of Experiment Botany.2002,53(372):1351-1365.
    [21]Ali M B, Chun H S, Kim B K, Lee C B. Cadmium-induced changes in antioxidant enzyme activities in rice. Journal of Plant Biology,2002,45(3):134-140.
    [22]Liu Z L, Chen W, He X Y. Cadmium-induced changes in growth and antioxidative mechanisms of a medicine plant(Lonicera japonica Thunb.). Journal of Medicinal Plants Research,2011,5(8):1411-1417, 18.
    [23]Shah K, Kumar R G, Verma S, Dubey RS. Effect of cadmium on lipid peroxidation, superoxide anion generation and activities of antioxidant enzymes in growing rice seedlings. Plant Science,2001,161 (6): 1135-1144.
    [24]Boussama N, Ouariti O, Suzuki A, Ghorbal M H. Cd-stress on nitrogen assimilation. Journal of Plant Physiology,1999,155(3):310-317.
    [25]Devriesea M, Tsakaloudib V, Garbayoc I, Leone R, Vilchezc C, Vigara J. Effect of heavy metals on nitrate assimilation in the eukaryotic microalga Chlamydomonas reinhardtii. Plant Physiology and Biochemistry,2001,39(5):443-448.
    [26]Brant W. Touchette, JoAnn Burkholder. Nitrate reductase activity in a submersed marine angiosperm: Controlling influences of environmental and physiological factors. Plant Physiol. Biochem.2001,39 (7-8):583-593.
    [27]Abd El-Samad Hamdia M, Shaddad M A K. Doaa M M. Mechanisms of salt tolerance and interactive effects of azospirillum brasilense inoculation on maize cultivars grown under salt stress conditions. Plant Growth Regulation,2004,44(2):165-174.
    [28]李彩凤,马凤呜,赵越,李文华.氮素形态对甜菜氮糖代谢关键酶活性及相关产物的影响.作物学报,2003,29(1):128-132.
    [29]常思敏,马新明.砷对烤烟氮代谢的影响.作物学报,2007,33(1):132-136.
    [30]孙金华,吴梦淦,宋鸿遇.谷氨酰胺合成酶参与Rhodopseudomonas capsulata固氮活性的氨瞬间调节.植物生理与分子生物学学报,1985,11:171-179.
    [31]Nouairi I, Ammar W B, Youssef N B, Daoud D B M, Ghorbal M H, Zarrouk M. Comparative study of cadmium effects on membrane lipid composition of brassica juncea and brassica napus leaves. Plant Science,2006,170(3):511-519.
    [1]杨明杰,海州香薷铜超富集和耐性机理.浙江大学博士论文,2001.
    [2]Jarvis M D, Leung D W M. Chelated lead transport in Chamaecytisus proliferus (L.f.) link ssp. Proliferus var palmensis (H.Chrisr):an ultrastrutural study. Plant Science,2001,161(3):433-441.
    [3]杨居荣,贺建群,张国祥,毛显强.农作物对镉毒害的耐性机理探讨.应用生态学报,1995,6(1):87-91.
    [4]于辉,杨中艺,杨知建,向佐湘.不同类型镉积累水稻细胞镉化学形态及亚细胞和分子分布.应用生态学报,2008,19(10):2221-2226.
    [5]王芳,丁杉,张春华,葛滢.不同镉耐性水稻非蛋白巯基及镉的亚细胞和分子分布.农业环境科学学报,2010,29(4):625-629.
    [6]Wu F B, Dong J, Qian Q Q, Zhang G P. Subcellular distribution and chemical form of Cd and Cd-Zn interaction in different barley genotypes. Chemosphere,2005,60(10):1437-1446.
    [7]He J Y, Zhu C, Ren Y F, Yan Y P, Cheng C, Jiang D A, Sun Z X. Uptake, Subcellulaur Distribution, and Chemical Forms of Cadmium in Wild-Type and Mutant Rice. Pedosphere,2008,18(3):371-377.
    [8]Hayens R J. Ion exchange properties of roots and ionic interactions within the root POPLsm:Their role in ion accumulation by plants. Botany Review,1980,46:75-99.
    [9]杨居荣,蒋婉茹.小麦耐受镉胁迫的生理生化机制探讨.农业环境保护,1996,15(8):97-101.
    [10]Nishizono H, Ichikawa H, Suzikp S, Ishii F. The role of the root cell wall in the heavy metal tolerance of Athyrium yokoscense. Plant Soil,1987,101(1):15-20.
    [11]Carrier P, Baryla A, Havaux M. Cadmium distribution and microlocalization in oilseed rape(Brassica napus) after long-term growth on cadmium-contaminated soil. Planta,2003,216(6):939-950.
    [12]Cobbet C S. Phytoehelatins and their roles in heavy metal detoxification. Plant Physiology,2000,123(3): 825-832.
    [13]Clemens S, Palmgren M G, Kramer K. Along way ahead:understanding and engineering plant metal accumulation. Trends Plant Science,2002,7(7):309-315.
    [14]Bhatia N P, Walsh K B, Baker A J. Detection and quantification of ligands involved in nickel detoxification in a herbaceous Ni hyPeraccumulator stackhousia tryonii bailey. Journal of Experimental Botany,2005,56(415):1343-1349.
    [15]许嘉琳,鲍子平,杨居荣,刘虹.农作物体内铅、镉、铜的化学形态研究.应用生态学报,1991,2(3):244-248.
    [16]江行玉,王长海,赵可夫.芦苇抗镉污染机理研究.生态学报,2003,23(5):856-862.
    [1]甄燕红,成颜君,潘根兴,李恋卿.中国部分市售大米中Cd、Zn、Se的含量及其食物安全评价.安全与环境学报,2008,8(1):119-122.
    [2]陈翠芳,钟继洪,李淑仪.施硅对抑制植物吸收重金属镉的效应研究进展.生态学杂志,2007,26(4):567-570.
    [3]Nwugo, C C, Huerta, A J. Silicon-induced cadmium resistance in rice (Oryza sativa). Journal of Plant Nutrition and Soil Science,2008,171(6):841-848.
    [4]周建华,王永锐.硅营养缓解水稻幼苗Cd, Cr毒害的生理研究.应用与环境生物学报,1999,5(1):11-15.
    [5]赵颖,李军.硅对水稻吸收镉的影响.东北农业大学学报,2010,41(3):59-64.
    [6]史新慧,王贺,张福锁.硅提高水稻抗镉毒害机制的研究.农业环境科学学报,2006,25(5):1112-1116.
    [7]Shi X H, Zhang C H, Wang He, Zhang F S. Effect of Si on the distribution of Cd in rice seedlings. Plant and Soil,2005,272(1-2):53-60.
    [8]黄秋婵,黎晓峰,沈方科,阳继辉,李耀燕,张维珺.硅对水稻幼苗镉的解毒作用及其机制研究.农业环境科学学报,2007,26(4):1307-1311.
    [9]邵国胜,Muhammad JH,章秀福,张国平.镉胁迫对不同水稻基因型植株生长和抗氧化酶系统的影响.中国水稻科学,2004,18(3):239-244.
    [10]Tripathi D K, Singh V P, Kumar D, Chauhan D K. Rice seedlings under cadmium stress:effect of silicon on growth, cadmium uptake, oxidative stress, antioxidant capacity and root and leaf structures. Chemistry and Ecology,2012,28(3):281-291.
    [11]何俊瑜,任艳芳,王阳阳,李兆君.不同耐性水稻幼苗根系对镉胁迫的形态及生理响应.生态学报,2011,31(2):522-528.
    [12]Dinakar N, Nagajyothi P C, Suresh S, Udaykiran Y, Damodharam T. Phytotoxicity of cadmium on protein, proline and antioxidant enzyme activities in growing Arachis hypogaea L. seedlings. Journal of Environmental Sciences,2008,20 (2):199-206.
    [13]Qin G Q, Yan C L, W ei L L. Effect of cadmium stress on the contents of tannin, soluble sugar and praline in Kandelia candel (L.) Druce seedlings. Acta Ecologica Sinica,2006,26(10):3366-3371.
    [14]Rogalla H, Romheld V. Role of leaf apoplast in silicon-mediated manganese tolerance of Cucumis sativus L. Plant Cell and Environment,2002,25(4):549-555.
    [15]Wang L J, Wang Y H, Chen Q, Cao W D, Lia M, Zhang F S.Silicon induced cadmium tolerance of rice Oryza sativa L. seedlings. Plant Nutrition,2000,23(10):1397-1406.
    [16]许嘉琳,鲍子平,杨居荣,刘虹.农作物体内铅、镉、铜的化学形态研究.应用生态学报,1991,2(3):244-248.
    [17]杨居荣,贺建群,张国祥,毛显强.农作物对镉毒害的耐性机理探讨.应用生态学报,1995,6(1):87-91.
    [1]Ramadan M A E, Al-Ashkar E A. The effect of different fertilizers on the heavy metals in soil and tomato plant. Australian Journal of Basic and Applied Sciences,2007,1(3):300-306.
    [2]Eugenia G G, Vicente A, Rafael B. Heavy metals incidence in the application of inorganic fertilizers and pesticides to rice farming soil. Environmental Pollution,1996,92(1):19-25.
    [3]赵其国,周炳中,杨浩.江苏省环境质量与农业安全问题研究.土壤,2002,34(1):1-8.
    [4]Alfven T, Jarup L, Elinder C G. Cadmium and lead in blood in relation to low bone mineral density and tubular proteinuria. Environmental Health Perspectives,2002,110(7):699-702.
    [5]顾继光,林秋奇,胡韧,诸葛玉平,周启星.土壤—植物系统中重金属污染的治理途径及其研究展望.土壤通报,2005,36(1):128-133.
    [6]Zeng F R, Ali S, Zhang H T, Ouyang Y N, Qiu B Y, Wu F B, Zhang G P. The influence of pH and organic matter content in paddy soil on heavy metal availability and their uptake by rice plants. Environmental Pollution,2011,159(1):84-91.
    [7]Vega F A, Covelo E F, Andrade M L. Effects of sewage sludge and barley straw treatment on the sorption and retention of Cu, Cd and Pb by coppermine Anthropic Regosols. Journal of Hazardous Materials, 2009,169(1-3):36-45.
    [8]Tanjia K K, Gaoa S, Scardacib S C, Chow A T. Characterizing redox status of paddy soils with incorporated rice straw. Geoderma,2003,114(3-4):333-353.
    [9]Fabiola B, Lamia B, Bernard N, Lionel R. Impact of wheat straw decomposition on successional patterns of soil microbial community structure. Soil Biology and Biochemistry,2009,41(2):262-275.
    [10]Liu E K, Yan C R, Mei X R, He W Q, Bing S H, Ding L P, Liu Q, Liu S A, Fan T L. Long-term effect of chemical fertilizer, straw, and manure on soil chemical and biological properties in northwest China. Geoderma,2010,158(3-4):173-180.
    [11]张福锁.我国肥料产业与科学施肥战略研究报告.北京:中国农业大学出版社,2008:61-71.
    [12]Yong S O, Usman A R A, Lee S S, Abd El-Azeem S A M, Choi B, Hashimoto Y, Yang J E. Effects of rapeseed residue on lead and cadmium availability and uptake by rice plants in heavy metal contaminated paddy soil. Chemosphere,2011,85(4):677-682.
    [13]陕红,李书田,刘荣乐.秸秆和猪粪的施用对土壤镉有效性的影响和机理研究.核农学报,2009,23(1):139-144.
    [14]单玉华,李昌贵,陈晨,王小治,封克.施用秸秆对淹水土壤镉、铜溶出的影响.生态学杂志,2008, 27(8):1362-1366.
    [15]杨京蓉.徽波消解ICP-AES法测定粮食中的常量及徽量元素.光谱实验室,1997,14(3):22-25.
    [16]陈丰,刘芳.微波消解/ICP-AES法测定土壤中的环境有效态金属元素.上海环境科学,2003,22(12):967-970.
    [17]贺建群,许嘉琳,杨居荣,刘如.土壤中有效态Cd、Cu、Zn、Pb提取剂的选择.农业环境保护,1994,13(6):246-251.
    [18]贾乐,朱俊艳,苏德纯.秸秆还田对镉污染农田土壤中镉生物有效性的影响.农业环境科学学报,2010,29(10):1992-1998.
    [19]王艮梅,周立祥.陆地生态系统中水溶性有机物动态及其环境学意义.应用生态学报,2003,14(11):2019-2025.
    [20]王艮梅,周立祥,黄焕忠.水溶性有机物在土壤中的吸附及对Cu沉淀的抑制作用.环境科学,2006,27(4):754-759.
    [21]余贵芬,蒋新,孙磊.有机物质对土壤镉有效性的影响研究综述.生态学报,2002,22(5):770-776.
    [22]卢萍,单玉华,杨林章,韩勇.秸秆还田对稻田土壤溶液中溶解性有机质的影响.土壤学报,2006,43(5):734-741.
    [23]陈同斌,陈志军.土壤中溶解性有机质及其对污染物吸附和解吸行为的影响.植物营养与肥料学报,1998,4(3):201-210.
    [24]潘逸,周立祥.施用有机物料对土壤中Cu、Cd形态及小麦吸收的影响:田间微区试验.南京农业大学学报,2007,30(2):142-146.
    [25]陈怀满.土壤中化学物质的行为与环境质量.北京:科学出版社,2002.
    [26]Alvarenga P, Goncalves A P, Fernandes R M, Varennes A, Vallini G, Duarte E, Cunha-Queda A C. Organic residues as immobilizing agents in aided phytostabilization:(I) Effects on soil chemical characteristics. Chemosphere,2009,74(10):1292-1300.
    [1]Liu J G, Liang J S, Li K Q, Zhang Z J, Yu B Y, Lu X L, Yang J C, Zhu Q S. Correlations between cadmium and mineral nutrients in absorption and accumulation in various genotypes of rice under cadmium stress. Chemosphere,2000,52(9):1467-1473.
    [2]Arao T, Ae N. Genotypic variation in cadmium levels of rice grain. Soil Science and Plant Nutrition, 2003,49(4):473-479.
    [3]刘维涛,周启星.重金属污染预防品种的筛选与培育.生态环境学报,2010,19(6):1452-1458.
    [4]Yu H, Wang J L, Fang W, Yuan J G, Yang Z Y. Cadmium accumulation in different rice cultivars and screening for pollution-safe cultivars of rice. Science of the Total Environment,2006,370(2-3):302-309.
    [5]宋阿琳,娄运生,梁永超.不同水稻品种对铜镉的吸收与耐性研究.中国农学通报,2006,22(9):401-411.
    [6]刘侯俊,梁吉哲,韩晓日,李军,芦俊俊,张素静,冯璐,马晓明.东北地区不同水稻品种对Cd的累积特性研究.农业环境科学学报,2011,30(2):220-227.
    [7]郭晓方,卫泽斌,丘锦荣,吴启堂周建利.玉米对重金属累积与转运的品种间差异.生态与农村环境学报,2010,26(4):367-371.
    [8]程旺大,张国平,姚海根,吴伟,汤美玲,朱祝军,徐民.晚粳稻籽粒中As、Cd、Cr、Ni、Pb等重金属含量的基因型与环境效应及其稳定性.作物学报,2006,32(4):573-579.
    [9]Moral R, Gilkes R J, Moreno-caselles J. A comparison of extractants for heavy metals in contaminated soils from Spain. Communications in Soil Science and Plant Analysis,2002,33(15-18):2781-2791.
    [10]杨春刚,廖西元,章秀福,朱智伟,陈铭学,王丹英,牟仁祥,陈温福,周淑清.不同基因型水稻籽粒对镉积累的差异.中国水稻科学,2006,20(6):660-662.
    [11]吴启堂,陈卢,王广寿.水稻不同品种对镉吸收累积的差异和机理研究.生态学报,1999,19(1):104-107.
    [12]Costa G, Morel J L. Cadmium uptake by Lupinus albus(L):Cadmium excretion, a possible mechanism of cadmium tolerance. Journal of Plant Nutrition,1993,16(10):1921-1929.
    [13]Zhao F J, Hamon R E, Lombi E, McLaughlin M J, McGrath S P. Characteristics of cadmium uptake in two contrastion ecotypes of the hyperaccumulator Thlaspi caerulescens. Journal of Experiment Botany, 2002,53(368):535-543.
    [14]Pearson J N, Rengel Z. Uptake and distribution of 65Zn and 54M n in wheat grown at sufficient and deficient levels of Zn and Mn during grain development. Journal of Experimental Botany,1995,46(288): 841-845.
    [15]程旺大,张国平,姚海根,Peter Dominy,王润屹.晚粳稻籽粒中砷、镉、铬、镍、铅等重金属含量的品种和粒位效应.中国水稻科学,2005,19(3):273-279.
    [1]Sun Y H, Li Z J, Guo B, Chu G X, Wei C Z, Liang Y C. Arsenic mitigates cadmium toxicity in rice seedlings. Environmental and Experimental Botany,2008,64(3):264-270.
    [2]刘莉.镉胁迫对水稻幼苗干物质积累和活性氧代谢的影响.浙江农业学报,2005,17(3):147-150.
    [3]Hu Y L, Ge Y, Zhang C H, Ju T, Cheng W D. Cadmium toxicity and translocation in rice seedlings are reduced by hydrogen peroxide pretreatment. Plant Growth Regulation,2009,59(1):51-61.
    [4]黄冬芬,奚岭林,杨立年,王志琴,杨建昌.不同耐镉基因型水稻农艺和生理性状的比较研究.作物学报,2008,34(5):809-817.
    [5]Aina R, Labra M, Fumagalli P, Vannini C, Marsoni M, Cucchi U, Bracale M, Sgorbati S, Citterio S. Thiol-peptide level and proteomic changes in response to cadmium toxicity in Oryza sativa L. roots. Environment Experiment Botany,2007,59(3):381-392.
    [6]Lin A J, Zhang X H, Chen M, Cao Q. Oxidative stress and DNA damages induced by cadmium accumulation. Journal of Environment Science,2007,19(5):596-602.
    [7]Wang C X, Mo Z, Wang H, Wang Z, Cat Z H. The transportation time-dependent distribution of heavy metals in paddy crops. Chemosphere,2003,50(6):717-723.
    [8]葛才林,骆剑峰,刘冲,殷朝珍,王泽港,马飞,罗时石.重金属对水稻光合作用和同化物输配的影响.核农学报,2005,19(3):214-218.
    [9]徐红霞,翁晓燕,毛伟华,杨勇.镉胁迫对水稻光合、叶绿素荧光特性和能量分配的影响.中国水稻科学,2005,19(4):338-342.
    [10]Schutzendubel A, Polle A. Plant responses to abiotic stresses:heavy metal-induced oxidative stress and protection by mycorrhization. Journal of Experiment Botany.2002,53(372):1351-1365.
    [11]Ali M B, Chun H S, Kim B K, Lee C B. Cadmium-induced changes in antioxidant enzyme activities in rice. Journal of Plant Biology,2002,45(3):134-140.
    [12]Brant W. Touchette, JoAnn Burkholder. Nitrate reductase activity in a submersed marine angiosperm: Controlling influences of environmental and physiological factors. Plant Physiology Biochemcal,2001, 39(7-8):583-593.
    [13]Abd El-Samad Hamdia M, Shaddad M A K. Doaa M M. Mechanisms of salt tolerance and interactive effects of azospirillum brasilense inoculation on maize cultivars grown under salt stress conditions. Plant Growth Regulation,2004,44(2):165-174.
    [14]常思敏,马新明.砷对烤烟氮代谢的影响.作物学报,2007,33(1):132-136.
    [15]沈同,王镜岩.生物化学(下).北京:高等教育出版社,1991:222-226.
    [16]Boussama N, Ouariti O, Suzuki A, Ghorbal M H. Cd-stress on nitrogen assimilation. Journal of Plant Physiology,1999,155(3):310-317.
    [17]Devriesea M, Tsakaloudib V, Garbayoc I, Leonc R, Vilchezc C, Vigara J. Effect of heavy metals on nitrate assimilation in the eukaryotic microalga Chlamydomonas reinhardtii. Plant Physiology and Biochemistry,2001,39(5):443-448.
    [18]陈晓亚,汤章城.植物生理与分子生物学(第三版).北京:高等教育出版社,2007:456-459.
    [19]Nishizono H, Ichikawah H, Suzikis S. The role of the root cell wall in the heavy metal tolerance of Athyr iumyokoscense.Plant and Soil,1987,101(1):15-20.
    [20]Kupper H, Zhao F J, Mcgath S P. Cellular compartmentation of zinc in leaves o f the hyperaccumulator Thlasp icaerulescens. Plant Physiology,1999,119(1):305-311.
    [21]Yong S O, Usman A R A, Lee S S, Abd El-Azeem S A M, Choi B, Hashimoto Y, Yang J E. Effects of rapeseed residue on lead and cadmium availability and uptake by rice plants in heavy metal contaminated paddy soil. Chemosphere,2011,85(4):677-682.
    [22]陕红,李书田,刘荣乐.秸秆和猪粪的施用对土壤镉有效性的影响和机理研究.核农学报,2009,23(1):139-144.
    [23]赵颖,李军.硅对水稻吸收镉的影响.东北农业大学学报,2010,41(3):59-64.
    [24]史新慧,王贺,张福锁.硅提高水稻抗镉毒害机制的研究.农业环境科学学报,2006,25(5):1112-1116.
    [25]任华丽,崔保山,白军红,董世魁,胡波,赵慧.哈尼梯田湿地核心区水稻土重金属分布与潜在的生 态风险.生态学报,2008,28(4):1625-1634.
    [26]中国环境监测总站.中国土壤元素背景值.北京:中国环境科学出版社,1990.
    [27]GB 15618-1995土壤环境质量标准.北京:中国标准出版社,1997.
    [28]Uraguchi S and Fujiwara T. Cadmium transport and tolerance in rice:perspectives for reducing grain cadmium accumulation. Rice,2011,5:5.