镉致大鼠肝BRL 3A细胞的毒性机理及NAC的保护作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镉(cadmium, Cd)是一种有毒的重金属元素,易在体内蓄积,镉能够诱导多种器官或组织损伤并导致相关功能丧失,包括肾脏、肝脏、肺脏、骨骼、心血管系统和免疫系统。体内外研究均证明,镉可引起细胞凋亡、氧化损伤及DNA损伤,且凋亡与氧化应激、线粒体损伤、促分裂原激活蛋白激酶(MAPK)、死亡受体、Caspase及非Caspase依赖性通路的激活密切相关。肝脏是镉损伤的主要靶器官之一,目前对镉致肝细胞损伤研究较多,但其作用机制还不完全清楚。本研究以大鼠肝细胞系BRL3A细胞为模型,采用细胞生物学和分子生物学方法研究镉对BRL3A细胞的毒性作用机制及NAC的保护作用。研究内容如下:
     1.镉致BRL3A细胞毒性损伤及NAC的保护作用
     为研究镉致BRL3A细胞的毒性损伤及NAC的保护作用,以0、10、20、40μmol/L醋酸镉分别作用BRL3A细胞12h(分别为a-d组),同时以2mmol/LNAC、2mmol/L NAC(预孵育30min)+20μmol/L醋酸镉分别作用BRL3A细胞12h(为e-f组)。倒置显微镜观察细胞形态的变化,采用MTT法测定细胞存活率,比色法测定培养上清中LDH活性。结果表明,随着镉浓度的增加,细胞皱缩、变圆、结构不完整,细胞存活率逐渐降低(p<0.01),LDH释放量显著增加(p<0.05); NAC单独处理组细胞形态、细胞存活率和LDH释放量与对照组差异不显著(p>0.05); NAC与镉联合处理组细胞形态皱缩,细胞存活率极显著升高(p<0.01),上清中LDH活性极显著降低(p<0.01)。表明NAC可有效保护镉致BRL3A细胞的毒性损伤。
     2.镉致BRL3A细胞凋亡及NAC的保护作用
     为研究镉对BRL3A细胞凋亡的影响及NAC的保护作用,以0、10、20、40μmol/L醋酸镉分别作用BRL3A细胞12h(分别为a-d组),同时以2mmol/L NAC、2mmol/L NAC(预孵育30min)+20μmol/L醋酸镉分别作用BRL3A细胞12h(为e-f组)。Hoechst33258荧光染色观察细胞核的形态变化,流式细胞仪测定细胞凋亡率。结果表明,随着镉浓度的增加,细胞染色质浓缩,有的呈新月形,甚至出现核碎裂;镉致BRL3A细胞凋亡率显著或极显著升高(p<0.01或p<0.05);NAC单独处理组细胞核状态和凋亡率均与对照组差异不显著(p>0.05),NAC与镉联合处理组细胞凋亡形态有所减少,凋亡率极显著降低(p<0.01)。表明NAC可有效降低镉致BRL3A细胞的凋亡。
     3.镉对BRL3A细胞I)NA损伤的研究
     为研究镉致BRL3A细胞的DNA损伤,以0、10、20、40μmol/L醋酸镉分别作用BRL3A细胞12h(分别为a-d组),通过单细胞凝胶电泳法测定细胞DNA损伤。结果表明,随着镉浓度的增加,受损细胞彗星率、拖尾长度、尾部DNA含量均显著或极显著升高(p<0.01或p<0.05)。表明镉可引起BRL3A细胞DNA损伤,并呈剂量—效应关系。
     4.镉致BRL3A细胞氧化损伤及NAC的保护作用
     为研究镉致BRL3A细胞的氧化损伤及NAC的保护作用,以0、10.20、40μmol/L醋酸镉分别作用BRL3A细胞12h(分别为a-d组),同时以2mmol/L NAC、2mmol/L NAC(预孵育30min)+20μmol/L醋酸镉分别作用BRL3A细胞12h(为e-f组)。流式细胞术检测细胞内ROS水平,比色法检测MDA含量及SOD、GSH-Px活性的变化。结果表明,随着镉浓度的增加,细胞ROS、MDA含量显著或极显著升高(p<0.01或p<0.05),SOD、GSH-Px活性显著或极显著降低(p<0.01或p<0.05);NAC单独处理组细胞ROS、MDA含量及SOD、 GSH-Px活性均与对照组差异不显著(p>0.05);NAC与镉联合处理组细胞ROS含量显著降低(p<0.05), SOD、GSH-Px活性显著或极显著增高(p<0.01或p<0.05)。表明镉致BRL3A细胞发生氧化损伤,NAC具有明显的效保作用。
     5.镉致BRL3A细胞线粒体损伤及NAC的保护作用
     为研究镉致BRL3A细胞线粒体损伤及NAC的保护作用,以0、10、20、40μmol/L醋酸镉分别作用BRL3A细胞1213(分别为a-d组),同时以2mmol/LNAC、2mmol/L NAC(预孵育30min)+20μmol/L醋酸镉分别作用BRL3A细胞12h(为e-f组)。透射电子显微镜观察细胞线粒体超微结构的变化,免疫荧光法检测AIF、EndoG蛋白表达,流式细胞术检测线粒体膜电位,比色法检测Caspase3、Caspse9活性的变化,同时用实时荧光定量PCR和免疫印迹法检测了Bax、Bcl-2的mRNA及蛋白,Caspse3、Caspase9及PARP的蛋白表达水平。结果表明,随着镉浓度的增加,线粒体数量减少、肿胀,嵴断裂,发生空泡化,线粒体膜电位均极显著降低(p<0.01),Caspase3、Caspase9活性显著或极显著升高(p<0.01或p<0.05), Bax蛋白及mRNA表达水平均显著增加,Bcl-2蛋白及mRNA表达水平均显著降低(p<0.01Caspase3、Caspase9、PARP的蛋白表达量均显著降低, Cleaved-Caspase3、Cleaved-Caspase9的蛋白表达量则显著增加;NAC单独处理组细胞线粒体结构正常,Bax、Bcl-2、Caspase3、Caspase9、PARP蛋白与对照组无显著差异;NAC的联合应用可有效抑制镉致相关蛋白的变化的趋势。镉可使AIF、EndoG蛋白于线粒体和细胞浆转移入细胞核。表明Caspase和非Caspase途径均参与了镉致BRL3A细胞的凋亡,NAC可有效保护镉致BRL3A细胞的线粒体损伤。
     6.镉对BRL3A细胞MAPK信号通路的影响及NAC的保护作用
     为研究镉对BRL3A细胞MAPK信号通路的影响及NAC的保护作用,以0、10、20、40μmol/L醋酸镉分别作用BRL3A细胞12h设为a-d组(分别为a-d组),同时以2mmol/L NAC、2mmol/LNAC(预孵育30min)+20μmol/L醋酸镉分别作用BRL3A细胞12h(为e-f组)。另外,分别用10μmol/Lp38抑制剂SB203580、JNK抑制剂SP600125、ERK抑制剂U0126预孵育0.5h后,加入醋酸镉,使其终浓度20μmol/L作用12h。应用流式细胞术检测细胞凋亡率,免疫印迹法检测MAPK蛋白表达。结果表明,10μmol/L SB203580、 SP600125、U0126处理组细胞凋亡率均极显著降低(p<0.01)。镉处理均能使P-JNK、P-p38的蛋白表达量显著增加,P-ERK在10-20μmol/L染镉组蛋白表达量显著降低,40μmol/L染镉组44kD P-ERK的蛋白磷酸化水平并未显著改变,42kD P-ERK的磷酸化水平则显著增高。表明MAPK途径参与了镉致BRL3A细胞的凋亡,NAC可有效抑制MAPK途径发挥一定的保护作用。
     7.镉对BRL3A细胞Fas/FasL信号通路的影响及NAC的保护作用
     为研究镉致BRL3A细胞Fas/FasL信号通路的影响及NAC的保护作用,以0、10、20、40μmol/L醋酸镉分别作用BRL3A细胞12h(分别为a-d组),同时以2mmol/L NAC、2mmol/LNAC(预孵育30min)+20μmol/L醋酸镉分别作用BRL3A细胞12h(为e-f组)。比色法测定Caspase8的活性,免疫印迹法检测Caspase8、FasL蛋白,实时荧光定量PCR检测Fas、FasL mRNA的表达水平。结果表明,随着镉浓度的增加,细胞Caspase8的活性及Cleaved-Caspase8、FasL的蛋白和Fas mRNA的表达水平极显著增加(p<0.01)。FasL mRNA的表达水平则先降低后升高。联合应用NAC可显著抑制镉对Cleaved-Caspase8、FasL蛋白的上调。表明Fas/FasL途径与镉致BRL3A细胞凋亡有关,NAC可有效抑制Fas/FasL途径而发挥一定的保护作用。
Cadmium (Cd) is a toxic heavy metal, easy to accumulate in the body. Cd causes a mumber of organs and tissues injury and induces dysfunction, including kidney, liver, lung, bone, cardiovascular system, immune system. Some experiments in vitro and in vivo have already proved that Cd induced cellular apoptosis, oxidatived damage and DNA damage, apoptosis was correlated with oxidative stress, mitochondrial damage, the activation of MAPK, death receptor, Caspase and Caspase independent pathway. Studies revealed that liver is the main target organ of Cd injury. Recently, lots of researches had worked on it, but the mechanism is still not clear. Therefore, we choose the BRL3A immortalized rat hepatocytes to study the mechanism of Cd induced cytotocity and the protection of NAC with cytobiological and molecular biological methods. A series of tests were carried out:
     1. The cytotoxicity induced by Cd and the protection of NAC in BRL3A cell
     To explore the cytotoxicity induced by Cd and the protection of NAC, BRL3A cells were treated with0,10,20, and40μmol/L CdAc2for12h (a-d groups). In the other two experiments, the cells were pre-incubated with2mmol/L NAC for30min and then incubated with20μmol/L CdAc2for12h (e-f groups). The morphology damage was observed by a reverse microscope. Cell viability was evaluated by MTT assay and the leakage of lactate dehydrogenase (LDH) was measured with colorimetric method. The results showed with the increasing dosage of Cd, significant morphological changes showing cell shrinkage, rounding, and loss of cell integrity. Cell viability was decreased significantly (p<0.01), the leakage of LDH increased significantly (p<0.01). NAC alone did not affect the cell morphology, cell viability and the leakage of LDH. Cotreatment with NAC and Cd attenuated morphological changes, increased cell viability and decreased the leakage of LDH significantly (p<0.01). NAC can effectively attenuate the damage induced by Cd in BRL3A cells.
     2. The effect of apoptotic ratio induced by Cd and the protection of NAC in BRL3A cell
     To investigate the effect of apoptosis induced by Cd and the protection of NAC, BRL3A cells were treated with0,10,20, and40μmol/L CdAc2for12h (a-d groups). In the other two experiments, the cells were pre-incubated with2mmol/L NAC for30min and then incubated with20μmol/L CdAc2for12h (e-f groups). BRL3A cells were treated with Cd and NAC for12h, nuclear morphology was analyzed by Hoechst33258staining, cell apoptosis was measured by flow cytometry. The results showed with the increasing dosage of Cd, cell chromatin condensation, cell shrinkage and nuclear fragmentation were observed. The apoptotic ratio increased significantly (p<0.01or p<0.05). NAC alone did not affect the cell nuclear morphology and cell apoptosis. Cotreatment with NAC and Cd attenuated nuclear morphological changes, decreased cell apoptotic ratio significantly (p<0.01). NAC can effectively prohibit the apoptosis induced by Cd in BRL3A cells.
     3. The DNA damage induced by Cd in BRL3A cell
     To observe the DNA damage induced by Cd, BRL3A cells were treated with0,10,20, and40μmol/L CdAc2for12h (a-d groups). DNA damage was measured with single cell gel electrophoresis assay. The results showed with the increasing dosage of Cd, cell commet ratio, tail length and tail DNA percentage increased significantly (p<0.01orp<0.05). Cd induced DNA damage in BRL3A cells.
     4. The oxidative damage induced by Cd and the protection of NAC in BRL3A cell
     To measure the oxidative damage induced by Cd and the protection of NAC, BRL3A cells were treated with0,10,20, and40umol/L CdAc2for12h (a-d groups). In the other two experiments, the cells were pre-incubated with2mmol/L NAC for30min and then incubated with20μmol/L CdAc2for12h (e-f groups). Reactive oxygen species(ROS) was detected by flow cytometry, MDA content and SOD、GSH-Px activity were measured with colorimetric method. The results showed with the increasing dosage of Cd, ROS and MDA content increased significantly (p<0.01orp<0.05), SOD and GSH-Px activity decreased significantly (p<0.01or p<0.05). NAC alone did not affect ROS、MDA content and SOD、GSH-Px activity. Cotreatment with NAC and Cd ROS content decreased significantly (p<0.05), SOD and GSH-Px activity increased significantly (p<0.01orp<0.05). NAC can relieve oxidative damage induced by Cd in BRL3A cell.
     5. The mitochondrial damage by Cd and the protection of NAC in BRL3A cell
     To observe the mitochondrial damage induced by Cd and the protection of NAC, BRL3A cells were treated with0,10,20, and40μmol/L CdAc2for12h (a-d groups). In the other two experiments, the cells were pre-incubated with2mmol/L NAC for30min and then incubated with20μmol/L CdAc2for12h (e-f groups). Mitochondrial ultramicrostructure changes were detected by transmission electron-micriscope and the immunofluorescence of AIF, EndoG were observed, the mitochondrial membrane potential (△Ψm) was detected by flow cytimetry, the activity of Caspase3、Caspse9was detected by colorimetric method, the mRNA and protein level of Bax、Bcl-2, the protein level of Caspse3、Caspase9、PARP were detected by real time fluorescent quantitative PCR and immunoblot. The results showed with the increasing dosage of Cd, mitochondrial swelling and degeneration, mitochondrial cristae blurred, deformed or final collapse, the△Ψm decreased significantly (p<0.01), the activity of Caspase3、Caspse9increased significantly (p<0.01or p<0.05), the mRNA and protein level of Bax increasedand Bcl-2decreased significantly (p<0.01), the protein level of Caspase3、Caspase9、PARP decreased and Cleaved-Caspase3、Cleaved-Caspase9increased. NAC alone did not affect the mitochondrial ultramicrostructure and protein level of Bax、Bcl-2、Caspase3、Caspase9、PARP. Cotreatment with NAC and Cd can inhibit the tendency of the protein level of Bax、Bcl-2、Caspase3、Caspase9、PARP. Cd induced translocation of AIF and EndoG from mitochondria to nucelus. Caspase and Caspase independent pathway toke part in apoptosis induced by Cd in BRL3A cells, NAC can protect the mitochondrial damage induced by Cd in BRL3A cell.
     6. The effect of Cd on MAPK pathway and the protection of NAC in BRL3A cell
     To investigate the effect of MAPK pathway induced by Cd and the protection of NAC, in the first group, BRL3A cells were treated with0,10,20, and40μmol/L CdAc2for12h (a-d groups). In the other two experiments, the cells were pre-incubated with2mmol/L NAC for30min and then incubated with20μmol/L CdAc2for12h (e-f groups). In the second group, BRL3A cells were treated with0,20μmol/L Cd and were pre-incubated with10μmol/L that p38inhibitor (SB203580), JNK inhibitor (SP600125)、ERK inhibitor(U0126) for30min, followed by incubation with20μmol/L Cd for12h, cell apoptotic ratio was detected by flow cytometry and the protein level of MAPK were measured by immunoblot. The results showed the inhibitor of SB203580, SP600125, and U0126decreased cell apoptotic ratio significantly (p<0.01), with the increasing dosage of Cd, the protein level of P-JNK、P-p38increased,10-20μmol/L Cd decreased P-ERK protein level,40μmol/L Cd increased42kD P-ERK protein level,44kD P-ERK protein level didn't change. MAPK pathway took part in Cd induced BRL3A cell apoptosis and NAC inhibited MAPK pathway.
     7. The effect of Cd on Fas/FasL pathway and the protection of NAC in BRL3A cell
     To investigate the effect of Fas/FasL pathway induced by Cd and the protection of NAC, BRL3A cells were treated with0,10,20, and40μmol/L CdAc2for12h (a-d groups). In the other two experiments, the cells were pre-incubated with2mmol/L NAC for30min and then incubated with20μmol/L CdAc2for12h (e-f groups). The activity of Caspase8was detected by by colorimetric method, the protein level of Caspase8and FasL, the mRNA of Fas、FasL were measured by real time fluorescent quantitative PCR and immunoblot. The results showed with the increasing dosage of Cd, Caspase3activity, the level of Cleaved-Caspase8、FasL protein and Fas mRNA increased significantly (p<0.01), the mRNA level of FasL increased first and then decreased. Fas/FasL pathway is releated with BRL3A cell apoptosis and NAC inhibited Fas/FasL pathway.
引文
[1]Angenard G, Muczynski V, Coffigny H, et al. Cadmium increases human fetal germ cell apoptosis[J]. Environ Health Perspect,2010,118(3):331-337.
    [2]Bendell L I. Cadmium in shellfish:the British Columbia, Canada experience--a mini-review[J]. Toxicol Lett,2010,198(1):7-12.
    [3]Fowler B A. Monitoring of human populations for early markers of cadmium toxicity:a review[J]. Toxicol Appl Pharmacol,2009,238(3):294-300.
    [4]Mochizuki M, Mori M, Hondo R, et al. A new index for evaluation of cadmium pollution in birds and mammals[J]. Environ Monit Assess,2008,137(1-3):35-49.
    [5]Huang M, Choi S J, Kim D W et al. Evaluation of factors associated with cadmium exposure and kidney function in the general population[J]. Environ toxicol,2011. doi:10.1002/tox.20750.
    [6]Bertin G, Averbeck D. Cadmium:cellular effects, modifications of biomolecules, modulation of DNA repair and genotoxic consequences (a review)[J]. Biochimie,2006,88(11):1549-1559.
    [7]Jarup L, Berglund M, Elinder C G, et al. Health effects of cadmium exposure--a review of the literature and a risk estimate[J]. Scand J Work Environ Health,1998,24 Suppl 1:1-51.
    [8]杨克敌.环境卫生学实习指导[M].北京:人民卫生出版社,2007.
    [9]Martelli A, Rousselet E, Dycke C, et al. Cadmium toxicity in animal cells by interference with essential metals[J]. Biochimie,2006,88(11):1807-1814.
    [10]Boonprasert K, Ruengweerayut R, Satarug S, et al. Study on the association between environmental cadmium exposure, cytochrome P450-mediated 20-HETE, heme-oxygenase-1 polymorphism and hypertension in Thai population residing in a malaria endemic areas with cadmium pollution[J]. Environ Toxicol Pharmacol,2011,31(3):416-426.
    [11]Li Y, Li C, Zheng Y, et al. Cadmium pollution enhanced ozone damage to winter wheat:biochemical and physiological evidences[J]. J Environ Sci,2011,23(2):255-265.
    [12]Li Y, Huo X, Liu J, et al. Assessment of cadmium exposure for neonates in Guiyu, an electronic waste pollution site of China[J]. Environ Monit Assess,2011,177(1-4):343-351.
    [13]Usuda K, Kono K, Ohnishi K, et al. Toxicological aspects of cadmium and occupational health activities to prevent workplace exposure in Japan:A narrative review[J]. Toxicol Ind Health,2011, 27(3):225-233.
    [14]Faupel M, Ristau K, Traunspurger W. The functional response of a freshwater benthic community to cadmium pollution[J]. Environ Pollut,2012,162:104-109.
    [15]Yeh C M, Hsiao L J, Huang H J. Cadmium activates a mitogen-activated protein kinase gene and MBP kinases in rice[J]. Plant Cell Physiol,2004,45(9):1306-1312.
    [16]Guo B, Liang Y, Zhu Y. Does salicylic acid regulate antioxidant defense system, cell death, cadmium uptake and partitioning to acquire cadmium tolerance in rice?[J]. J Plant Physiol,2009,166(1):20-31.
    [17]Xiong J, An L, Lu H, et al. Exogenous nitric oxide enhances cadmium tolerance of rice by increasing pectin and hemicellulose contents in root cell wall[J]. Planta,2009,230(4):755-765.
    [18]Franz E, Romkens P, van Raamsdonk L, et al. A chain modeling approach to estimate the impact of soil cadmium pollution on human dietary exposure[J]. J Food Prot,2008,71(12):2504-2513.
    [19]Ok Y S, Usman A R, Lee S S, et al. Effects of rapeseed residue on lead and cadmium availability and uptake by rice plants in heavy metal contaminated paddy soil[J]. Chemosphere,2011,85(4):677-682.
    [20]Satarug S, Ujjin P, Vanavanitkun Y, et al. Effects of cigarette smoking and exposure to cadmium and lead on phenotypic variability of hepatic CYP2A6 and renal function biomarkers in men[J]. Toxicology,2004,204(2-3):161-173.
    [21]Satarug S, Moore M R. Adverse health effects of chronic exposure to low-level cadmium in foodstuffs and cigarette smoke[J]. Environ Health Perspect,2004,112(10):1099-1103.
    [22]Satarug S, Ujjin P, Vanavanitkun Y, et al. Influence of body iron store status and cigarette smoking on cadmium body burden of healthy Thai women and men[J]. Toxicol Lett,2004,148(3):177-185.
    [23]Jarup L. Hazards of heavy metal contamination[J]. Br Med Bull,2003,68(167-182.
    [24]Marcano L B, Carruyo I M, Montiel X M, et al. Effect of cadmium on cellular viability in two species of microalgae (Scenedesmus sp. and Dunaliella viridis)[J]. Biol Trace Elem Res,2009,130(1):86-93.
    [25]王凌,郝桂琴,何玲,等.河北省主要农作物产区土壤重金属污染现状及防治对策[J].安徽农业科学,2013,41(2):564-566.
    [26]Tsutsumi R, Hiroi H, Momoeda M, et al. Induction of early decidualization by cadmium, a major contaminant of cigarette smoke[J]. Fertil Steril,2009,91(4 Suppl):1614-1617.
    [27]Bohlandt A, Schierl R, Diemer J, et al. High concentrations of cadmium, cerium and lanthanum in indoor air due to environmental tobacco smoke[J], Sci Total Environ,2012,414:738-741.
    [28]da Costa A C, de Franca F P. Cadmium interaction with microalgal cells, cyanobacterial cells, and seaweeds; toxicology and biotechnological potential for wastewater treatment[J]. Mar Biotechnol (NY),2003,5(2):149-156.
    [29]戴世明,吕锡武.镉污染的水处理技术研究进展[J].安全与环境工程,2006,13(3):63-65,71.
    [30]Silva K T, Pathiratne A. In vitro and in vivo effects of cadmium on cholinesterases in Nile tilapia fingerlings:implications for biomonitoring aquatic pollution[J]. Ecotoxicology,2008,17(8):725-731.
    [31]张兴梅,杨清伟,李扬,等.士壤镉污染现状及修复研究进展[J].河北农业科学,2010,14(3):79-81.
    [32]高志岭,刘建玲,廖文华,等.磷肥施用与镉污染的研究现状及防治对策[J].河北农业大学学报,2001,24(3):90-94.
    [33]Zhai L, Liao X, Chen T, et al. Regional assessment of cadmium pollution in agricultural lands and the potential health risk related to intensive mining activities:a case study in Chenzhou City, China[J]. J Environ Sci,2008,20(6):696-703.
    [34]Tembo B D, Sichilongo K, Cernak J. Distribution of copper, lead, cadmium and zinc concentrations in soils around Kabwe town in Zambia[J]. Chemosphere,2006,63(3):497-501.
    [35]Kuester R K, Waalkes M P, Goering P L, et al. Differential hepatotoxicity induced by cadmium in Fischer 344 and Sprague-Dawley rats[J]. Toxicol Sci,2002,65(1):151-159.
    [36]Blanco A, Moyano M R, Molina A M, et al. Quantitative study of Leydig cell populations in mice exposed to low doses of cadmium[J]. Bul-Environ Contam Toxicol,2009,82(6):756-760.
    [37]Ji Y L, Wang Z, Wang H, et al. Ascorbic acid protects against cadmium-induced endoplasmic reticulum stress and germ cell apoptosis in testes[J]. Reprod Toxicol,2012,34(3):357-363.
    [38]Marcano L, Faria Cde R, Carruyo I, et al. [Cadmium citotoxicity in mice hepatocytes and implications on tropical environments][J]. Rev Biol Trop,2006,54(2):257-263.
    [39]Messner B, Bernhard D. Cadmium and cardiovascular diseases:cell biology, pathophysiology, and epidemiological relevance[J]. Biometals,2010,23(5):811-822.
    [40]Smith S S, Reyes J R, Arbon K S, et al. Cadmium-induced decrease in RUNX2 mRNA expression and recovery by the antioxidant N-acetylcysteine (NAC) in the human osteoblast-like cell line, Saos-2[J]. Toxicol in vitro,2009,23(1):60-66.
    [41]Aramphongphan A, Laovitthayanggoon S, Himakoun L. Snakehead-fish cell line, SSN-1 (Ophicephalus striatus) as a model for cadmium genotoxicity testing[J]. Toxicol in vitro,2009,23(5): 963-968.
    [42]Achanzar W E, Diwan B A, Liu J, et al. Cadmium-induced malignant transformation of human prostate epithelial cells[J]. Cancer Res,2001,61(2):455-458.
    [43]Alvarez S M, Gomez N N, Scardapane L, et al. Effects of chronic exposure to cadmium on prostate lipids and morphology [J]. Biometals,2007,20(5):727-741.
    [44]Waalkes M P. Cadmium carcinogenesis[J]. Mutat Res,2003,533(1-2):107-120.
    [45]Waalkes M P. Cadmium carcinogenesis in review[J]. J Inorg Biochem,2000,79(1-4):241-244.
    [46]Emmerson B T. "Ouch-ouch" disease:the osteomalacia of cadmium nephropathy[J]. Ann Intern Med, 1970,73(5):854-855.
    [47]Nordberg G F. Historical perspectives on cadmium toxicology[J]. Toxicol Appl Pharmacol,2009, 238(3):192-200.
    [48]景亚武,易静,高飞,等.活性氧:从毒性分子到信号分子[J].细胞生物学杂志,2003,25(4):197-202.
    [49]海春旭,雷建军,梁欣.活性氧对细胞增殖,凋亡及损伤作用的剂量-效应关系研究[J].癌变·畸变·突变,2001,13(4):275.
    [50]Zhang X, Li C, Nan Z. Effects of cadmium stress on growth and anti-oxidative systems in Achnatherum inebrians symbiotic with Neotyphodium gansuense[J]. J Hazard Mater,2010,175(1-3): 703-709.
    [51]Cardin G B, Mantha M, Jumarie C. Resistance to cadmium as a function of Caco-2 cell differentiation: role of reactive oxygen species in cadmium-but not zinc-induced adaptation mechanisms [J]. Biometals,2009,22(5):753-769.
    [52]Bharavi K, Reddy A G, Rao G S, et al. Reversal of Cadmium-induced Oxidative Stress in Chicken by Herbal Adaptogens Withania Somnifera and Ocimum Sanctum[J]. Toxicol Int,2010,17(2):59-63.
    [53]Brzoska M M, Rogalska J, Kupraszewicz E. The involvement of oxidative stress in the mechanisms of damaging cadmium action in bone tissue:a study in a rat model of moderate and relatively high human exposure[J]. Toxicol Appl Pharmacol,2011,250(3):327-335.
    [54]Pretto A, Loro V L, Baldisserotto B, et al. Effects of water cadmium concentrations on bioaccumulation and various oxidative stress parameters in Rhamdia quelen[J]. Arch Environ Contam Toxicol,2011,60(2):309-318.
    [55]Muthukumar K, Nachiappan V. Cadmium-induced oxidative stress in Saccharomyces cerevisiae[J]. Indian J Biochem Biophys,2010,47(6):383-387.
    [56]Swapna G, Reddy A G, Reddy A R. Cadmium-induced Oxidative Stress and Evaluation of Embilica Officinalis and Stressroak in Broilers[J]. Toxicol Int,2010,17(2):49-51.
    [57]Liu J, Qu W, Kadiiska M B. Role of oxidative stress in cadmium toxicity and carcinogenesis[J]. Toxicol Appl Pharmacol,2009,238(3):209-214.
    [58]Dorta D J, Leite S, DeMarco K C, et al. A proposed sequence of events for cadmium-induced mitochondrial impairment[J]. J Inorg Biochem,2003,97(3):251-257.
    [59]Chen L, Xu B, Liu L, et al. Cadmium induction of reactive oxygen species activates the mTOR pathway, leading to neuronal cell death[J]. Free Radic Biol Med,2011,50(5):624-632.
    [60]Iannone M F, Rosales E P, Groppa M D, et al. Reactive oxygen species formation and cell death in catalase-deficient tobacco leaf disks exposed to cadmium[J]. Protoplasma,2010,245(1-4):15-27.
    [61]Nemmiche S, Chabane-Sari D, Kadri M, et al. Cadmium chloride-induced oxidative stress and DNA damage in the human Jurkat T cell line is not linked to intracellular trace elements depletion[J]. Toxicol in vitro,2011,25(1):191-198.
    [62]Jurczuk M, Brzoska M M, Moniuszko-Jakoniuk J, et al. Antioxidant enzymes activity and lipid peroxidation in liver and kidney of rats exposed to cadmium and ethanol[J]. Food Chem Toxicol,2004, 42(3):429-438.
    [63]Yalin S, Comelekoglu U, Bagis S, et al. Acute effect of single-dose cadmium treatment on lipid peroxidation and antioxidant enzymes in ovariectomized rats[J]. Ecotoxicol Environ Saf,2006,65(1): 140-144.
    [64]Thijssen S, Cuypers A, Maringwa J, et al. Low cadmium exposure triggers a biphasic oxidative stress response in mice kidneys[J]. Toxicology,2007,236(1-2):29-41.
    [65]Casalino E, Calzaretti G, Sblano C, et al. Molecular inhibitory mechanisms of antioxidant enzymes in rat liver and kidney by cadmium[J]. Toxicology,2002,179(1-2):37-50.
    [66]Gong P, Chen F X, Ma G F, et al. Endomorphin 1 effectively protects cadmium chloride-induced hepatic damage in mice[J]. Toxicology,2008,251(1-3):35-44.
    [67]Tandon S K, Singh S, Prasad S, et al. Reversal of cadmium induced oxidative stress by chelating agent, antioxidant or their combination in rat[J]. Toxicol Lett,2003,145(3):211-217.
    [68]Lopez E, Arce C, Oset-Gasque M J, et al. Cadmium induces reactive oxygen species generation and lipid peroxidation in cortical neurons in culture[J]. Free Radic Biol Med,2006,40(6):940-951.
    [69]Ognjanovic B I, Pavlovic S Z, Maletic S D, et al. Protective influence of vitamin E on antioxidant defense system in the blood of rats treated with cadmium[J]. Physiol Res,2003,52(5):563-570.
    [70]Renugadevi J, Prabu S M. Naringenin protects against cadmium-induced oxidative renal dysfunction in rats[J]. Toxicology,2009,256(1-2):128-134.
    [71]Fleury C, Mignotte B, Vayssiere J L. Mitochondrial reactive oxygen species in cell death signaling[J]. Biochimie,2002,84(2-3):131-141.
    [72]Ruff A L, Dillman J F,3rd. Sulfur mustard induced cytokine production and cell death:investigating the potential roles of the p38, p53, and NF-kappaB signaling pathways with RNA interference[J]. J Biochem Mol Toxicol,2010,24(3):155-164.
    [73]Fatur T, Tusek M, Falnoga I, et al. DNA damage and metallothionein synthesis in human hepatoma cells (HepG2) exposed to cadmium[J]. Food Chem Toxicol,2002,40(8):1069-1076.
    [74]Mouron S A, Golijow C D, Dulout F N. DNA damage by cadmium and arsenic salts assessed by the single cell gel electrophoresis assay[J]. Mutat Res,2001,498(1-2):47-55.
    [75]Liu W, Sun L, Zhong M, et al. Cadmium-induced DNA damage and mutations in Arabidopsis plantlet shoots identified by DNA fingerprinting[J]. Chemosphere,2012,89(9):1048-1055.
    [76]Osipov A N, Riabchenko N I, Ivannik B P, et al. [DNA damage in thymocytes of mice under combined acute whole body exposure to cadmium ions and gamma-radiation][J]. Radiats Biol Radioecol,2011, 51(3):315-320.
    [77]Hossain M B, Vahter M, Concha G, et al. Low-level environmental cadmium exposure is associated with DNA hypomethylation in Argentinean women[J]. Environ Health Perspect,2012,120(6): 879-884.
    [78]Jia X, Zhang H, Liu X. Low levels of cadmium exposure induce DNA damage and oxidative stress in the liver of Oujiang colored common carp Cyprinus carpio var. color[J]. Fish Physiol Biochem,2011, 37(1):97-103.
    [79]Mouron S A, Grillo C A, Dulout F N, et al. A comparative investigation of DNA strand breaks, sister chromatid exchanges and K-ras gene mutations induced by cadmium salts in cultured human cells[J]. Mutat Res,2004,568(2):221-231.
    [80]Amara S, Douki T, Garrel C, et al. Effects of static magnetic field and cadmium on oxidative stress and DNA damage in rat cortex brain and hippocampus[J]. Toxicol Ind Health,2011,27(2):99-106.
    [81]余日安.镉与DNA损伤,癌基因表达,细胞调亡[J].国外医学:卫生学分册,2000,27(6):359-363.
    [82]Galazyn-Sidorczuk M, Brzoska M M, Jurczuk M, et al. Oxidative damage to proteins and DNA in rats exposed to cadmium and/or ethanol[J]. Chem Biol Interact,2009,180(1):31-38.
    [83]Badisa V L, Latinwo L M, Odewumi C O, et al. Mechanism of DNA damage by cadmium and interplay of antioxidant enzymes and agents[J]. Environ Toxicol,2007,22(2):144-151.
    [84]Wu X, Yalowich J C, Hasinoff B B. Cadmium is a catalytic inhibitor of DNA topoisomerase Ⅱ[J]. J Inorg Biochem,2011,105(6):833-838.
    [85]Bork U, Lee W K, Kuchler A, et al. Cadmium-induced DNA damage triggers G(2)/M arrest via chk1/2 and cdc2 in p53-deficient kidney proximal tubule cells[J]. Am J Physiol Renal Physiol,2010, 298(2):F255-265.
    [86]Singh K P, Kumari R, Pevey C, et al. Long duration exposure to cadmium leads to increased cell survival, decreased DNA repair capacity, and genomic instability in mouse testicular Leydig cells[J]. Cancer Lett,2009,279(1):84-92.
    [87]Pan Y, Yuan D, Zhang J, et al. Cadmium-induced adaptive response in cells of Chinese hamster ovary cell lines with varying DNA repair capacity[J]. Radiat Res,2009,171(4):446-453.
    [88]Zhou Z H, Lei Y X, Wang C X. Analysis of aberrant methylation in DNA repair genes during malignant transformation of human bronchial epithelial cells induced by cadmium[J]. Toxicol Sci, 2012,125(2):412-417.
    [89]Jin Y H, Clark A B, Slebos R J, et al. Cadmium is a mutagen that acts by inhibiting mismatch repair[J]. Nat Genet,2003,34(3):326-329.
    [90]Clark A B, Kunkel T A. Cadmium inhibits the functions of eukaryotic MutS complexes[J]. J Biol Chem,2004,279(52):53903-53906.
    [91]Lutzen A, Liberti S E, Rasmussen L J. Cadmium inhibits human DNA mismatch repair in vivo[J]. Biochem Biophys Res Commun,2004,321(1):21-25.
    [92]Banerjee S, Flores-Rozas H. Cadmium inhibits mismatch repair by blocking the ATPase activity of the MSH2-MSH6 complex[J]. Nucleic Acids Res,2005,33(4):1410-1419.
    [93]Wieland M, Levin M K, Hingorani K S, et al. Mechanism of cadmium-mediated inhibition of Msh2-Msh6 function in DNA mismatch repair[J]. Biochemistry (Mosc),2009,48(40):9492-9502.
    [94]Chatterjee S, Kundu S, Bhattacharyya A. Mechanism of cadmium induced apoptosis in the immunocyte[J]. Toxicol Lett,2008,177(2):83-89.
    [95]Desagher S, Martinou J C. Mitochondria as the central control point of apoptosis[J]. Trends Cell Biol, 2000,10(9):369-377.
    [96]Martinou J C, Desagher S, Antonsson B. Cytochrome c release from mitochondria:all or nothing[J]. Nat Cell Biol,2000,2(3):E41-43.
    [97]Wolter K G, Hsu Y T, Smith C L, et al. Movement of Bax from the cytosol to mitochondria during apoptosis[J]. J Cell Biol,1997,139(5):1281-1292.
    [98]Kelekar A, Thompson C B. Bcl-2-family proteins:the role of the BH3 domain in apoptosis[J]. Trends Cell Biol,1998,8(8):324-330.
    [99]Hsu Y T, Wolter K G, Youle R J. Cytosol-to-membrane redistribution of Bax and Bcl-X(L) during apoptosis[J]. Proc Natl Acad Sci USA,1997,94(8):3668-3672.
    [100]Reed J C, Jurgensmeier J M, Matsuyama S. Bcl-2 family proteins and mitochondria[J]. Biochim Biophys Acta,1998,1366(1-2):127-137.
    [101]Hossain S, Liu H N, Nguyen M, et al. Cadmium exposure induces mitochondria-dependent apoptosis in oligodendrocytes[J]. Neurotoxicology,2009,30(4):544-554.
    [102]Zhou Y J, Zhang S P, Liu C W, et al. The protection of selenium on ROS mediated-apoptosis by mitochondria dysfunction in cadmium-induced LLC-PK(1) cells[J]. Toxicol in vitro,2009,23(2): 288-294.
    [103]Suzuki I, Fink P J. The dual functions of fas ligand in the regulation of peripheral CD8+and CD4+ T cells[J]. Proc Natl Acad Sci USA,2000,97(4):1707-1712.
    [104]de Oliveira G L, Malmegrim K C, Ferreira A F, et al. Up-regulation of fas and fasL pro-apoptotic genes expression in type 1 diabetes patients after autologous haematopoietic stem cell transplantation[J]. Clin Exp Immunol,2012,168(3):291-302.
    [105]Villa-Morales M, Fernandez-Piqueras J. Targeting the Fas/FasL signaling pathway in cancer therapy[J]. Expert Opin Ther Targets,2012,16(1):85-101.
    [106]Mohammadzadeh A, Pourfathollah A A, Sahraian M A, et al. Evaluation of apoptosis-related genes: Fas (CD94), FasL (CD178) and TRAIL polymorphisms in Iranian multiple sclerosis patients[J]. J Neurol Sci,2012,312(1-2):166-169.
    [107]Tu Y, Xue H, Xia Z, et al. Effect of different concentrations of dexamethasone on apoptosis and expression of Fas/FasL in human osteoarthritis chondrocytes[J]. Zhongguo xiu fu chong jian wai ke za zhi= Zhongguo xiufu chongjian waike zazhi= Chinese journal of reparative and reconstructive surgery,2012,26(5):536-541.
    [108]Mohammadzadeh A, Pourfathollah A A, Tahoori M T, et al. Evaluation of apoptosis-related gene Fas (CD95) and FasL (CD178) polymorphisms in Iranian rheumatoid arthritis patients[J]. Rheumatol Int, 2012,32(9):2833-2836.
    [109]Liang C Z, Zhang J K, Shi Z, et al. Matrine induces caspase-dependent apoptosis in human osteosarcoma cells in vitro and in vivo through the upregulation of Bax and Fas/FasL and downregulation of Bcl-2[J]. Cancer Chemother Pharmacol,2012,69(2):317-331.
    [110]Yang C, Liu H Z, Fu Z X. PEG-liposomal oxaliplatin induces apoptosis in human colorectal cancer cells via Fas/FasL and caspase-8[J]. Cell Biol Int,2012,36(3):289-296.
    [111]Bauer M K, Vogt M, Los M, et al. Role of reactive oxygen intermediates in activation-induced CD95 (APO-1/Fas) ligand expression[J]. J Biol Chem,1998,273(14):8048-8055.
    [112]何宝霞,傅业全,李金龙,等.镉对鸡垂体Fas和caspase-3 mRNA表达的影响[J].环境科学学报,2008,28(007):1419-1424.
    [113]Eichler T, Ma Q, Kelly C, et al. Single and combination toxic metal exposures induce apoptosis in cultured murine podocytes exclusively via the extrinsic caspase 8 pathway[J]. Toxicol Sci,2006,90(2): 392-399.
    [114]Haase H, Ober-Blobaum J L, Engelhardt G, et al. Cadmium ions induce monocytic production of tumor necrosis factor-alpha by inhibiting mitogen activated protein kinase dephosphorylation[J]. Toxicol Lett,2010,198(2):152-158.
    [115]Nishida E, Gotoh Y. The MAP kinase cascade is essential for diverse signal transduction pathways[J]. Trends Biochem Sci,1993,18(4):128-131.
    [116]Zhou X, Ma Y, Sugiura R, et al. MAP kinase kinase kinase (MAPKKK)-dependent and -independent activation of Styl stress MAPK in fission yeast[J]. J Biol Chem,2010,285(43):32818-32823.
    [117]丁利平,徐新云,罗振国,等p38MAPK和ERK1/2对镉诱导NRK肾细胞c-myc与c-fos基因mRNA表达的影响[J].职业与健康,2009,25(9):897-900.
    [118]Templeton D M, Wang Z, Miralem T. Cadmium and calcium-dependent c-fos expression in mesangial cells[J]. Toxicol Lett,1998,95(1):1-8.
    [119]Wang Z, Templeton D M. Induction of c-fos proto-oncogene in mesangial cells by cadmium[J]. J Biol Chem,1998,273(1):73-79.
    [120]Iwatsuki M, Inageda K, Matsuoka M. Cadmium induces phosphorylation and stabilization of c-Fos in HK-2 renal proximal tubular cells[J]. Toxicol Appl Pharmacol,2011,251(3):209-216.
    [121]Misra U K, Gawdi G, Akabani G, et al. Cadmium-induced DNA synthesis and cell proliferation in macrophages:the role of intracellular calcium and signal transduction mechanisms[J]. Cell Signal, 2002,14(4):327-340.
    [122]Yu R A, He L F, Chen X M. Effects of cadmium on hepatocellular DNA damage, proto-oncogene expression and apoptosis in rats[J]. Biomed Environ Sci,2007,20(2):146-153.
    [123]Achanzar W E, Achanzar K B, Lewis J G, et al. Cadmium induces c-myc, p53, and c-jun expression in normal human prostate epithelial cells as a prelude to apoptosis[J]. Toxicol Appl Pharmacol,2000, 164(3):291-300.
    [124]Ma T, Han L, Gao Y, et al. The endoplasmic reticulum stress-mediated apoptosis signal pathway is involved in sepsis-induced abnormal lymphocyte apoptosis[J]. Eur Surg Res,2008,41(2):219-225.
    [125]Xu C, Bailly-Maitre B, Reed J C. Endoplasmic reticulum stress:cell life and death decisionsfJ], J Clin Invest,2005,115(10):2656-2664.
    [126]Zou C G, Cao X Z, Zhao Y S, et al. The molecular mechanism of endoplasmic reticulum stress-induced apoptosis in PC-12 neuronal cells:the protective effect of insulin-like growth factor I[J]. Endocrinology,2009,150(1):277-285.
    [127]Li Z, Zhang T, Dai H, et al. Endoplasmic reticulum stress is involved in myocardial apoptosis of streptozocin-induced diabetic rats[J]. J Endocrinol,2008,196(3):565-572.
    [128]Liang C S, Mao W, Liu J. Pro-apoptotic effects of anti-betal-adrenergic receptor antibodies in cultured rat cardiomyocytes:actions on endoplasmic reticulum and the prosurvival P13K-Akt pathway[J]. Autoimmunity,2008,41 (6):434-441.
    [129]Liu G, Sun Y, Li Z, et al. Apoptosis induced by endoplasmic reticulum stress involved in diabetic kidney disease[J]. Biochem Biophys Res Commun,2008,370(4):651-656.
    [130]Hetz C, Russelakis-Carneiro M, Maundrell K, et al. Caspase-12 and endoplasmic reticulum stress mediate neurotoxicity of pathological prion protein[J]. EMBO J,2003,22(20):5435-5445.
    [131]Nakagawa T, Zhu H, Morishima N, et al. Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta[J]. Nature,2000,403(6765):98-103.
    [132]Foyouzi-Youssefi R, Arnaudeau S, Borner C, et al. Bcl-2 decreases the free Ca2+ concentration within the endoplasmic reticulum[J]. Proc Natl Acad Sci USA,2000,97(11):5723-5728.
    [133]Horke S, Witte 1, Wilgenbus P, et al. Protective effect of paraoxonase-2 against endoplasmic reticulum stress-induced apoptosis is lost upon disturbance of calcium homoeostasis[J]. Biochem J,2008,416(3): 395-405.
    [134]Kuang E, Wan Q, Li X, et al. ER Ca2+ depletion triggers apoptotic signals for endoplasmic reticulum (ER) overload response induced by overexpressed reticulon 3 (RTN3/HAP)[J]. J Cell Physiol,2005, 204(2):549-559.
    [135]Yang L, Carlson S G, McBurney D, et al. Multiple signals induce endoplasmic reticulum stress in both primary and immortalized chondrocytes resulting in loss of differentiation, impaired cell growth, and apoptosis[J]. J Biol Chem,2005,280(35):31156-31165.
    [136]Wang S H, Shih Y L, Lee C C, et al. The role of endoplasmic reticulum in cadmium-induced mesangial cell apoptosis[J]. Chem Biol Interact,2009,181(1):45-51.
    [137]Oakes S A, Opferman J T, Pozzan T, et al. Regulation of endoplasmic reticulum Ca2+ dynamics by proapoptotic BCL-2 family members[J]. Biochem Pharmacol,2003,66(8):1335-1340.
    [138]Oakes S A. Scorrano L, Opferman J T, et al. Proapoptotic BAX and BAK regulate the type 1 inositol trisphosphate receptor and calcium leak from the endoplasmic reticulum[J]. Proc Natl Acad Sci USA, 2005,102(1):105-110.
    [139]Scorrano L, Oakes S A, Opferman J T, et al. BAX and BAK regulation of endoplasmic reticulum Ca2+:a control point for apoptosis[J]. Science,2003,300(5616):135-139.
    [140]Huang H M, Chen H L, Xu H, et al. Modification of endoplasmic reticulum Ca2+ stores by select oxidants produces changes reminiscent of those in cells from patients with Alzheimer disease[J]. Free Radic Biol Med,2005,39(8):979-989.
    [141]Hitomi J, Katayama T, Taniguchi M, et al. Apoptosis induced by endoplasmic reticulum stress depends on activation of caspase-3 via caspase-12[J]. Neurosci Lett,2004,357(2):127-130.
    [142]Jiang S, Xie Q, Zhou H, et al. Ribozyme-mediated inhibition of caspase-12 activity reduces apoptosis induced by endoplasmic reticulum stress in primary mouse hepatocytes[J]. Int J Mol Med,2008,22(6): 717-724.
    [143]Biagioli M, Pifferi S, Ragghianti M, et al. Endoplasmic reticulum stress and alteration in calcium homeostasis are involved in cadmium-induced apoptosis[J]. Cell Calcium,2008,43(2):184-195.
    [144]Niida H, Nakanishi M. DNA damage checkpoints in mammals[J]. Mutagenesis,2006,21(1):3-9.
    [145]Chatterjee S, Kundu S, Sengupta S, et al. Divergence to apoptosis from ROS induced cell cycle arrest: effect of cadmium[J]. Mutat Res,2009,663(1-2):22-31.
    [146]Choi Y J, Yin H Q, Suh H R, et al. Involvement of E2F1 transcriptional activity in cadmium-induced cell-cycle arrest at Gl in human lung fibroblasts[J]. Environ Mol Mutagen,2011,52(2):145-152.
    [147]Kim J, Kim S H, Johnson V J, et al. Extracellular signal-regulated kinase-signaling-dependent G2/M arrest and cell death in murine macrophages by cadmium[J]. Environ Toxicol Chem/SETAC,2005, 24(12):3069-3077.
    [148]Xie J, Shaikh Z A. Cadmium induces cell cycle arrest in rat kidney epithelial cells in G2/M phase[J]. Toxicology,2006,224(1-2):56-65.
    [149]Yang P M, Chiu S J, Lin K A, et al. Effect of cadmium on cell cycle progression in Chinese hamster ovary cells[J]. Chem Biol Interact,2004,149(2-3):125-136.
    [150]Waisberg M, Joseph P, Hale B, et al. Molecular and cellular mechanisms of cadmium carcinogenesis[J]. Toxicology,2003,192(2-3):95-117.
    [151]De Flora S, Izzotti A, D'Agostini F, et al. Mechanisms of N-acetylcysteine in the prevention of DNA damage and cancer, with special reference to smoking-related end-points[J]. Carcinogenesis,2001, 22(7):999-1013.
    [152]肖昕,刘秀香,周晓光,等.氧化应激在高氧肺损伤发生中的作用及N乙酰半胱氨酸的干预效果[J].中华围产医学杂志,2006,9(3):177-180.
    [153]徐凌,蔡柏蔷.N-乙酰半胱氨酸在肺部疾病中的应用进展[J].国外医学:呼吸系统分册,2004,24(006):413-416.
    [154]Rowbotham D S, Wendon J A, Harrison P M. N-acetylcysteine infusion in viral myocarditis:a case report[J]. Int J Cardiol,1997,60(3):315-316.
    [155]Chen G, Shi J, Hu Z, et al. Inhibitory effect on cerebral inflammatory response following traumatic brain injury in rats:a potential neuroprotective mechanism of N-acetylcysteine[J]. Mediators Inflamm, 2008,2008(716458.
    [156]Trizna Z, Schantz S P, Lee J J, et al. In vitro protective effects of chemopreventive agents against bleomycin-induced genotoxicity in lymphoblastoid cell lines and peripheral blood lymphocytes of head and neck cancer patients[J]. Cancer Detect Prev,1993,17(6):575-583.
    [157]Trizna Z, Schantz S P, Hsu T C. Effects of N-acetyl-L-cysteine and ascorbic acid on mutagen-induced chromosomal sensitivity in patients with head and neck cancers[J]. Am J Surg,1991,162(4):294-298.
    [158]Rosler S, Behr J, Richter E. N-acetylcysteine treatment lowers 4-aminobiphenyl haemoglobin adduct levels in non-smokers[J]. Eur J Cancer Prev,1999,8(5):469-472.
    [159]Nagasaki H, Nakano H, Boudjema K, et al. Efficacy of preconditioning with N-acetylcysteine against reperfusion injury after prolonged cold ischaemia in rats liver in which glutathione had been reduced by buthionine sulphoximine[J]. Eur J Surg,1998,164(2):139-146.
    [160]Buhimschi I A, Buhimschi C S, Weiner C P. Protective effect of N-acetylcysteine against fetal death and preterm labor induced by maternal inflammation[J]. Am J Obstet Gynecol,2003,188(1):203-208.
    [161]Wang L, Chen D, Cao J, et al. Protective effect of N-acetylcysteine on experimental chronic cadmium nephrotoxicity in immature female rats[J]. Hum Exp Toxicol,2009,28(4):221-229.
    [162]Gillissen A, Scharling B, Jaworska M, et al. Oxidant scavenger function of ambroxol in vitro:a comparison with N-acetylcysteine[J]. Res Exp Med (Berl),1997,196(6):389-398.
    [163]Martensson J, Jain A, Frayer W, et al. Glutathione metabolism in the lung:inhibition of its synthesis leads to lamellar body and mitochondrial defects[J]. Proc Natl Acad Sci U S A,1989,86(14): 5296-5300.
    [164]Noctor G, Foyer C H. ASCORBATE AND GLUTATHIONE:Keeping Active Oxygen Under Control[J]. Annu Rev Plant Physiol Plant Mol Biol,1998,49(249-279.
    [165]Hsiao C J, Stapleton S R. Early sensing and gene expression profiling under a low dose of cadmium exposure[J]. Biochimie,2009,91(3):329-343.
    [166]Wu J P, Chen H C, Li M H. Bioaccumulation and toxicodynamics of cadmium to freshwater planarian and the protective effect of N-acetylcysteine[J]. Arch Environ Contam Toxicol,2012,63(2):220-229.
    [167]Karaytug S, Sevgiler Y, Karayakar F. Comparison of the protective effects of antioxidant compounds in the liver and kidney of Cd-and Cr-exposed common carp[J]. Environmental toxicology,2011.
    [168]Labib R, Abdel-Rahman M S, Turkall R. N-acetylcysteine pretreatment decreases cocaine and endotoxin-induced hepatotoxicity[J]. Journal of toxicology and environmental health Part A,2003, 66(3):223-239.
    [169]Laurent T, Markert M, Feihl F, et al. Oxidant-antioxidant balance in granulocytes during ARDS. Effect of N-acetylcysteine[J]. Chest,1996,109(1):163-166.
    [170]Pathak N, Khandelwal S. Oxidative stress and apoptotic changes in murine splenocytes exposed to cadmium[J]. Toxicology,2006,220(1):26-36.
    [171]Deng X, Xia Y, Hu W, et al. Cadmium-induced oxidative damage and protective effects of N-acetyl-L-cysteine against cadmium toxicity in Solanum nigrum L[J], J Hazard Mater,2010, 180(1-3):722-729.
    [172]Rafeiro E, Barr S G, Harrison J J, et al. Effects of N-acetylcysteine and dithiothreitol on glutathione and protein thiol replenishment during acetaminophen-induced toxicity in isolated mouse hepatocytes[J]. Toxicology,1994,93(2-3):209-224.
    [173]Han S G, Castranova V, Vallyathan V. Comparative cytotoxicity of cadmium and mercury in a human bronchial epithelial cell line (BEAS-2B) and its role in oxidative stress and induction of heat shock protein 70[J]. J Toxicol Environ Health A,2007,70(10):852-860.
    [174]Kaplan M, Atakan I H, Aydogdu N, et al. Influence of N-acetylcysteine on renal toxicity of cadmium in rats[J]. Pediatr Nephrol,2008,23(2):233-241.
    [175]De Flora S, Bennicelli C, Zanacchi P, et al. In vitro effects of N-acetylcysteine on the mutagenicity of direct-acting compounds and procarcinogens[J]. Carcinogenesis,1984,5(4):505-510.
    [176]Pillai S P, Mitscher L A, Menon S R, et al. Antimutagenic/antioxidant activity of green tea components and related compounds[J]. J Environ Pathol Toxicol Oncol,1999,18(3):147-158.
    [177]Izzotti A, Orlando M, Gasparini L, et al. In vitro inhibition by N-acetylcysteine of oxidative DNA modifications detected by 32P postlabeling[J]. Free Radic Res,1998,28(2):165-178.
    [178]Hsu T, Huang K M, Tsai H T, et al. Cadmium(Cd)-induced oxidative stress down-regulates the gene expression of DNA mismatch recognition proteins MutS homolog 2 (MSH2) and MSH6 in zebrafish (Danio rerio) embryos[J]. Aquat Toxicol,2012,126C(9-16.
    [179]Pal S, Polyak S J, Bano N, et al. Hepatitis C virus induces oxidative stress, DNA damage and modulates the DNA repair enzyme NEIL1[J]. J Gastroenterol Hepatol,2010,25(3):627-634.
    [180]Liu M, Wikonkal N M, Brash D E. Induction of cyclin-dependent kinase inhibitors and G(1) prolongation by the chemopreventive agent N-acetylcysteine[J]. Carcinogenesis,1999,20(9): 1869-1872.
    [181]Liu M, Pelling J C, Ju J, et al. Antioxidant action via p53-mediated apoptosis[J]. Cancer Res,1998, 58(8):1723-1729.
    [182]Janssen Y M, Heintz N H, Mossman B T. Induction of c-fos and c-jun proto-oncogene expression by asbestos is ameliorated by N-acetyl-L-cysteine in mesothelial cells[J]. Cancer Res,1995,55(10): 2085-2089.
    [183]Lee G H, Lee M H, Yoon Y D, et al. Protein kinase C stimulates human B cell activating factor gene expression through reactive oxygen species-dependent c-Fos in THP-1 pro-monocytic cells[J]. Cytokine,2012,59(1):115-123.
    [184]Han S S, Kim K, Hahm E R, et al. Arsenic trioxide represses constitutive activation of NF-kappaB and COX-2 expression in human acute myeloid leukemia, HL-60[J]. J Cell Biochem,2005,94(4): 695-707.
    [185]Lemarie A, Morzadec C, Merino D, et al. Arsenic trioxide induces apoptosis of human monocytes during macrophagic differentiation through nuclear factor-kappaB-related survival pathway down-regulation[J]. J Pharmacol Exp Ther,2006,316(1):304-314.
    [186]Franchi N, Schiavon F, Betti M, et al. Insight on signal transduction pathways involved in phagocytosis in the colonial ascidian Botryllus schlosseri[J]. J Invertebr Pathol,2013,112(3): 260-266.
    [187]Koo T Y, Kim Y J, Yang W S, et al. Mycophenolic acid regulates spleen tyrosine kinase to repress tumour necrosis factor-alpha-induced monocyte chemotatic protein-1 production in cultured human aortic endothelial cells[J]. Cell Biol Int,2013,37(1):19-28.
    [188]Pires K M, Lanzetti M, Rueff-Barroso C R, et al. Oxidative damage in alveolar macrophages exposed to cigarette smoke extract and participation of nitric oxide in redox balance[J]. Toxicol in vitro,2012, 26(6):791-798.
    [189]Simard B, Ratel D, Dupre I, et al. Shark cartilage extract induces cytokines expression and release in endothelial cells and induces E-selectin, plasminogen and t-PA genes expression through an antioxidant-sensitive mechanism[J]. Cytokine,2013,61(1):104-111.
    [190]Yang K, Nie L, Huang Y, et al. Amelioration of uremic toxin indoxyl sulfate-induced endothelial cell dysfunction by Klotho protein[J]. Toxicol Lett,2012,215(2):77-83.
    [191]Oka S, Kamata H, Kamata K, et al. N-acetylcysteine suppresses TNF-induced NF-kappaB activation through inhibition of IkappaB kinases[J]. FEBS Lett,2000,472(2-3):196-202.
    [192]Kretzmann N A, Chiela E, Matte U, et al. N-acetylcysteine improves antitumoural response of Interferon alpha by NF-kB downregulation in liver cancer cells[J]. Comp Hepatol,2012,11(1):4.
    [193]Chang E Y, Zhang J, Sullivan S, et al. N-acetylcysteine prevents preterm birth by attenuating the LPS-induced expression of contractile associated proteins in an animal model[J]. The journal of maternal-fetal & neonatal medicine:the official journal of the European Association of Perinatal Medicine, the Federation of Asia and Oceania Perinatal Societies, the International Society of Perinatal Obstet,2012,25(11):2395-2400.
    [194]Choi J S, Lee H S, Seo K. H, et al. The effect of post-treatment N-acetylcysteine in LPS-induced acute lung injury of rats[J]. Tuberculosis and respiratory diseases,2012,73(1):22-31.
    [195]Shimojo Y, Akimoto M, Hisanaga T, et al. Attenuation of reactive oxygen species by antioxidants suppresses hypoxia-induced epithelial-mesenchymal transition and metastasis of pancreatic cancer cells[J]. Clin Exp Metastasis,2013,30(2):143-154.
    [196]Wang R, Liang S, Yue H, et al. Using a novel in vivo model to study the function of nuclear factor kappa B in cerebral ischemic injury[J]. Med Sci Monit,2012,18(11):BR461-467.
    [197]Kang C H, Jayasooriya R G, Choi Y H, et al. beta-Ionone attenuates LPS-induced pro-inflammatory mediators such as NO, PGE2 and TNF-alpha in BV2 microglial cells via suppression of the NF-kappaB and MAPK pathway[J]. Toxicol in vitro,2013,27(2):782-787.
    [198]Chen L C, Hsu C, Chiueh C C, et al. Ferrous citrate up-regulates the NOS2 through nuclear translocation of NFkappaB induced by free radicals generation in mouse cerebral endothelial cells[J]. PloS one,2012,7(9):e46239.
    [199]Chen X, Qiao H, Liu T, et al. Inhibition of herpes simplex virus infection by oligomeric stilbenoids through ROS generation[J]. Antiviral Res,2012,95(1):30-36.
    [200]Parmentier M, Hirani N, Rahman I, et al. Regulation of lipopolysaccharide-mediated interleukin-1beta release by N-acetylcysteine in THP-1 cells[J]. Eur Respir J,2000,16(5):933-939.
    [201]Kalariya N M, Wills N K, Ramana K V, et al. Cadmium-induced apoptotic death of human retinal pigment epithelial cells is mediated by MAPK pathway[J]. Exp Eye Res,2009,89(4):494-502.
    [202]Kim J, Sharma R P. Cadmium-induced apoptosis in murine macrophages is antagonized by antioxidants and caspase inhibitors[J]. J Toxicol Environ health A,2006,69(12):1181-1201.
    [203]Wang H W, Yang W, Lu J Y, et al. N-acetylcysteine Administration is Associated with Reduced Activation of NF-kB and Preserves Lung Dendritic Cells Function in a Zymosan-Induced Generalized Inflammation Model[J]. J Clin Immunol,2013,33(3):649-660.
    [204]D'Agostini F, Balansky R M, Izzotti A, et al. Modulation of apoptosis by cigarette smoke and cancer chemopreventive agents in the respiratory tract of rats[J]. Carcinogenesis,2001,22(3):375-380.
    [205]Balansky R M, De Flora S. Chemoprevention by N-acetylcysteine of urethane-induced clastogenicity and lung tumors in mice[J]. Int J Cancer,1998,77(2):302-305.
    [206]Hou Y, Wang L, Yi D, et al. N-acetylcysteine reduces inflammation in the small intestine by regulating redox, EGF and TLR4 signaling[J]. Amino Acids,2012.
    [207]Lee J H, Jo Y H, Kim K, et al. Effect of N-acetylcysteine (NAC) on acute lung injury and acute kidney injury in hemorrhagic shock[J]. Resuscitation,2013,84(1):121-127.
    [208]Petersen A C, McKenna M J, Medved I, et al. Infusion with the antioxidant N-acetylcysteine attenuates early adaptive responses to exercise in human skeletal muscle[J]. Acta physiologica,2012, 204(3):382-392.
    [209]Kasielski M, Nowak D. Long-term administration of N-acetylcysteine decreases hydrogen peroxide exhalation in subjects with chronic obstructive pulmonary disease[J]. Respir Med,2001,95(6): 448-456.
    [210]Szkudlarek U, Zdziechowski A, Witkowski K et al. Effect of inhaled N-acetylcysteine on hydrogen peroxide exhalation in healthy subjects[J]. Pulm Pharmacol Ther,2004,17(3):155-162.
    [211]Mitsopoulos P, Omri A, Alipour M, et al. Effectiveness of liposomal-N-acetylcysteine against LPS-induced lung injuries in rodents[J]. Int J Pharm,2008,363(1-2):106-111.
    [212]Ji L, Liu R, Zhang X D, et al. N-acetylcysteine attenuates phosgene-induced acute lung injury via up-regulation of Nrf2 expression[J]. Inhal Toxicol,2010,22(7):535-542.
    [213]Dickey D T, Wu Y J, Muldoon L L, et al. Protection against cisplatin-induced toxicities by N-acetylcysteine and sodium thiosulfate as assessed at the molecular, cellular, and in vivo levels[J]. J Pharmacol Exp Ther,2005,314(3):1052-1058.
    [214]Luo J, Tsuji T, Yasuda H, et al. The molecular mechanisms of the attenuation of cisplatin-induced acute renal failure by N-acetylcysteine in rats[J]. Nephrol Dial Transplant,2008,23(7):2198-2205.
    [215]Nagata K, Iwasaki Y, Yamada T, et al. Overexpression of manganese superoxide dismutase by N-acetylcysteine in hyperoxic lung injury[J]. Respir Med,2007,101(4):800-807.
    [216]Dobrzynska I, Skrzydlewska E, Figaszewski Z. Influence of trolox derivative and N-acetylcysteine on surface charge density of erythrocytes in methanol intoxicated rats[J]. Environ Toxicol Pharmacol, 1999,8(1):15-21.
    [217]Nakano H, Nagasaki H, Yoshida K, et al. N-acetylcysteine and anti-ICAM-1 monoclonal antibody reduce ischemia-reperfusion injury of the steatotic rat liver[J]. Transplant Proc,1998,30(7):3763.
    [218]Kigawa G, Nakano H, Kumada K, et al. Improvement of portal flow and hepatic microcirculatory tissue flow with N-acetylcysteine in dogs with obstructive jaundice produced by bile duct ligation[J]. Eur J Surg,2000,166(1):77-84.
    [219]Nakano H, Nagasaki H, Barama A, et al. The effects of N-acetylcysteine and anti-intercellular adhesion molecule-1 monoclonal antibody against ischemia-reperfusion injury of the rat steatotic liver produced by a choline-methionine-deficient diet[J]. Hepatology,1997,26(3):670-678.
    [220]Nakano H, Boudjema K, Jaeck D, et al. Amelioration of hepatocellular integrity and inhibition of sinusoidal oxidative stress by N-acetylcysteine pretreatment in cold ischemia-reperfusion injury of rat liver[J]. Eur Surg Res,1996,28(4):245-255.
    [221]Dobrzynska I, Skrzydlewska E, Kasacka I, et al. Protective effect of N-acetylcysteine on rat liver cell membrane during methanol intoxication[J]. J Pharm Pharmacol,2000,52(5):547-552.
    [222]Liu Y, Zhang H, Zhang L, et al. Antioxidant N-acetylcysteine attenuates the acute liver injury caused by X-ray in mice[J]. Eur J Pharmacol,2007,575(1-3):142-148.
    [223]Harrison P M, Farzaneh F. Regulation of HGF/SF gene expression in MRC-5 cells by N-acetylcysteine[J]. Biochem Biophys Res Commun,2000,279(1):108-115.
    [224]Kundu S, Sengupta S, Chatterjee S, et al. Cadmium induces lung inflammation independent of lung cell proliferation:a molecular approach[J]. J Inflamm (Lond),2009,6(19.
    [225]Zhu H, Li K, Liang J, et al. Changes in the levels of DNA methylation in testis and liver of SD rats neonatally exposed to 5-aza-2'-deoxycytidine and cadmium[J]. J Appl Toxicol,2011,31(5):484-495.
    [226]Nogue S, Sanz-Gallen P, Torras A,et al. Chronic overexposure to cadmium fumes associated with IgA mesangial glomerulonephritis[J]. Occup Med (Lond),2004,54(4):265-267.
    [227]Santos F W, Oro T, Zeni G, et al. Cadmium induced testicular damage and its response to administration of succimer and diphenyl diselenide in mice[J]. Toxicol Lett,2004,152(3):255-263.
    [228]Folmer V, Santos F W, Savegnago L, et al. High sucrose consumption potentiates the sub-acute cadmium effect on Na+/K+-ATPase but not on delta-aminolevulinate dehydratase in mice[J]. Toxicol Lett,2004,153(3):333-341.
    [229]DelRaso N J, Foy B D, Gearhart J M, et al. Cadmium uptake kinetics in rat hepatocytes:correction for albumin binding[J]. Toxicol Sci,2003,72(1):19-30.
    [230]Hussain S M, Hess K L, Gearhart J M, et al. In vitro toxicity of nanoparticles in BRL 3A rat liver cells[J]. Toxicol in vitro 2005,19(7):975-983.
    [231]Goncalves J F, Fiorenza A M, Spanevello R M, et al. N-acetylcysteine prevents memory deficits, the decrease in acetylcholinesterase activity and oxidative stress in rats exposed to cadmium[J]. Chem Biol Interact,2010,186(1):53-60.
    [232]Haouem S, Hmad N, Najjar M F, et al. Accumulation of cadmium and its effects on liver and kidney functions in rats given diet containing cadmium-polluted radish bulb[J]. Exp Toxicol Pathol,2007, 59(1):77-80.
    [233]Nzengue Y, Steiman R, Garrel C, et al. Oxidative stress and DNA damage induced by cadmium in the human keratinocyte HaCaT cell line:role of glutathione in the resistance to cadmium[J]. Toxicology, 2008,243(1-2):193-206.
    [234]汪纪仓.镉致大鼠肝细胞毒性机理研究[D].扬州:扬州大学,2010.
    [235]陈大伟.镉对人肝癌细胞SMMC7721的毒性机理研究[D].扬州:扬州大学,2011.
    [236]Chen L, Liu L, Huang S. Cadmium activates the mitogen-activated protein kinase (MAPK) pathway via induction of reactive oxygen species and inhibition of protein phosphatases 2A and 5[J]. Free Radic Biol Med,2008,45(7):1035-1044.
    [237]Pham T N, Marion M, Denizeau F, et al. Cadmium-induced apoptosis in rat hepatocytes does not necessarily involve caspase-dependent pathways[J]. Toxicology in vitro:an international journal published in association with BIBRA,2006,20(8):1331-1342.
    [238]Abdel-Aziem S H, El-Nekeety A A, Barakat I A, et al. Aquilegia vulgaris extract protects against the oxidative stress and the mutagenic effects of cadmium in Balb/c mice[J]. Exp Toxicol Pathol,2011, 63(4):337-344.
    [239]Poliandri A H, Cabilla J P, Velardez M O, et al. Cadmium induces apoptosis in anterior pituitary cells that can be reversed by treatment with antioxidants[J]. Toxicol Appl Pharmacol,2003,190(1):17-24.
    [240]汪纪仓,裔传卉,邹辉,等.镉致大鼠肝细胞凋亡及N-乙酰半胱氨酸的保护作用[J].中国兽医学报,2010,30(5):665-668.
    [241]夏世均,吴中亮.分子毒理学基础[M].武汉:湖北科学技术出版社,2001:87-90.
    [242]Borges L P, Brandao R, Godoi B, et al. Oral administration of diphenyl diselenide protects against cadmium-induced liver damage in rats[J]. Chem Biol Interact,2008,171(1):15-25.
    [243]王捍东,邢华,卞建春,等.镉对原代培养大鼠肝细胞的损伤作用[J].中国兽医学报,2000,20(6):580-583.
    [244]Li Y, Lim S C. Cadmium-induced apoptosis of hepatocytes is not associated with death receptor-related caspase-dependent pathways in the rat[J]. Environ Toxicol Pharmacol,2007,24(3): 231-238.
    [245]Hamada T, Tanimoto A, lwai S, et al. Cytopathological changes induced by cadmium-exposure in canine proximal tubular cells:a cytochemical and ultrastructural study[J]. Nephron,1994,68(1): 104-111.
    [246]el Azzouzi B, Tsangaris G T, Pellegrini O, et al. Cadmium induces apoptosis in a human T cell line[J]. Toxicology,1994,88(1-3):127-139.
    [247]Dong S, Shen H M, Ong C N. Cadmium-induced apoptosis and phenotypic changes in mouse thymocytes[J]. Mol Cell Biochem,2001,222(1-2):11-20.
    [248]Savitskiy V P, Shman T V, Potapnev M P. Comparative measurement of spontaneous apoptosis in pediatric acute leukemia by different techniques[J]. Cytometry Part B, Clinical cytometry,2003,56(1): 16-22.
    [249]Pathak N, Khandelwal S. Modulation of cadmium induced alterations in murine thymocytes by piperine:oxidative stress, apoptosis, phenotyping and blastogenesis[J]. Biochem Pharmacol,2006, 72(4):486-497.
    [250]Chen L, Liu L, Luo Y, et al. MAPK and mTOR pathways are involved in cadmium-induced neuronal apoptosis[J]. J Neurochem,2008,105(1):251-261.
    [251]谢成英,蔡育军,丁健.DNA损伤与肿瘤发生的研究进展[J].中国癌症杂志,2006,16(4):313-317.
    [252]Misra R R, Smith G T, Waalkes M P. Evaluation of the direct genotoxic potential of cadmium in four different rodent cell lines[J]. Toxicology,1998,126(2):103-114.
    [253]Dally H, Hartwig A. Induction and repair inhibition of oxidative DNA damage by nickel(II) and cadmium(Ⅱ) in mammalian cells[J]. Carcinogenesis,1997,18(5):1021-1026.
    [254]肖雪峰,唐仁军.镉对小鼠卵巢颗粒细胞DNA损伤及MDASOD影响的初步研究[J].济宁医学院学报,2010,33(002):89-91.
    [255]刘晓梅,石龙,金明华,等.铅和镉对雄性小鼠生殖细胞DNA损伤的研究[J].中国公共卫生,2004,20(3):311-312.
    [256]徐新云,丁利平,李学余,等.氯化镉对NRK肾细胞DNA损伤及细胞凋亡作用[J].中国公共卫生,2009,25(10):1240-1241.
    [257]陈建伟,张晓霞,崔云.双尾彗星实验检测精子DNA完整性的方法学建立[J].检验医学,2012,27(1):21-25.
    [258]李志芳,宁宗,周燕.薯蓣皂苷对K562细胞的细胞毒作用及对DNA影响的研究[J].广西医学,2012,34(3):272-274.
    [259]刘永琦,窦娟娟,达瑞,等CdCl2诱导大鼠BMSCs凋亡和DNA损伤的研究[J].免疫学杂志,2012,28(004):305-308.
    [260]Thompson J, Bannigan J. Cadmium:toxic effects on the reproductive system and the embryo[J]. Reprod Toxicol,2008,25(3):304-315.
    [261]Keyhani E, Abdi-Oskouei F, Attar F, et al. DNA strand breaks by metal-induced oxygen radicals in purified Salmonella typhimurium DNA[J]. Ann N Y Acad Sci,2006,1091(52-64.
    [262]Ahmed F N, Naqvi F N, Shafiq F. Lipid peroxidation and serum antioxidant enzymes in patients with type 2 diabetes mellitus[J]. Ann N Y Acad Sci,2006,1084(481-489.
    [263]Wang X F, Xing M L, Shen Y, et al. Oral administration of Cr(VI) induced oxidative stress, DNA damage and apoptotic cell death in mice[J]. Toxicology,2006,228(1):16-23.
    [264]Djordjevic V B. Free radicals in cell biology[J]. Int Rev Cytol,2004,237(57-89.
    [265]Closa D, Folch-Puy E. Oxygen free radicals and the systemic inflammatory response[J]. IUBMB life, 2004,56(4):185-191.
    [266]Pulido M D, Parrish A R. Metal-induced apoptosis:mechanisms[J]. Mutat Res,2003,533(1-2): 227-241.
    [267]Melendez J A, Davies K J. Manganese superoxide dismutase modulates interleukin-1 alpha levels in HT-1080 fibrosarcoma cells[J]. J Biol Chem,1996,271(31):18898-18903.
    [268]Kowaltowski A J, Netto L E, Vercesi A E. The thiol-specific antioxidant enzyme prevents mitochondria! permeability transition. Evidence for the participation of reactive oxygen species in this mechanism[J]. J Biol Chem,1998,273(21):12766-12769.
    [269]Shih C M, Ko W C, Wu J S, et al. Mediating of caspase-independent apoptosis by cadmium through the mitochondria-ROS pathway in MRC-5 fibroblasts[J]. J Cell Biochem,2004,91(2):384-397.
    [270]Aruoma O I, Halliwell B, Hoey B M, et al. The antioxidant action of N-acetylcysteine:its reaction with hydrogen peroxide, hydroxyl radical, superoxide, and hypochlorous acid[J]. Free Radic Biol Med, 1989,6(6):593-597.
    [271]Blanusa M, Varnai V M, Piasek M, et al. Chelators as antidotes of metal toxicity:therapeutic and experimental aspects[J]. Curr Med Chem,2005,12(23):2771-2794.
    [272]De Vries N, De Flora S. N-acetyl-l-cysteine[J]. J Cell Biochem Suppl,1993,17F(270-277.
    [273]Briehl M M, Baker A F. Modulation of the antioxidant defence as a factor in apoptosis[J]. Cell Death Differ,1996,3(1):63-70.
    [274]Yang C F, Shen H M, Shen Y, et al. Cadmium-induced oxidative cellular damage in human fetal lung fibroblasts (MRC-5 cells)[J]. Environ Health Perspect,1997,105(7):712-716.
    [275]Funakoshi T, Ueda K, Shimada H, et al. Effects of dithiocarbamates on toxicity of cadmium in rat primary hepatocyte cultures[J]. Toxicology,1997,116(1-3):99-107.
    [276]Ikediobi C O, Badisa V L, Ayuk-Takem L T, et al. Response of antioxidant enzymes and redox metabolites to cadmium-induced oxidative stress in CRL-1439 normal rat liver cells[J]. Int J Mol Med, 2004,14(1):87-92.
    [277]Shagirtha K, Muthumani M, Prabu S M. Melatonin abrogates cadmium induced oxidative stress related neurotoxicity in rats[J]. Eur Rev Med Pharmacol Sci,2011,15(9):1039-1050.
    [278]卞建春,王富民,李慧敏,等.铅、镉染毒对SD大鼠的氧化损伤及乙酰半胱氨酸的保护作用[J].中国兽医学报,2008,28(7):828-831.
    [279]Messaoudi I, Hammouda F, El Heni J, et al. Reversal of cadmium-induced oxidative stress in rat erythrocytes by selenium, zinc or their combination[J]. Exp Toxicol Pathol,2010,62(3):281-288.
    [280]Renugadevi J, Prabu S M. Quercetin protects against oxidative stress-related renal dysfunction by cadmium in rats[J]. Exp Toxicol Pathol,2010,62(5):471-481.
    [281]Milton Prabu S, Shagirtha K, Renugadevi J. Quercetin in combination with vitamins (C and E) improves oxidative stress and renal injury in cadmium intoxicated rats[J]. Eur Rev Med Pharmacol Sci,2010,14(11):903-914.
    [282]Pari L, Shagirtha K. Hesperetin protects against oxidative stress related hepatic dysfunction by cadmium in rats[J]. Exp Toxicol Pathol,2010.
    [283]Eybl V, Kotyzova D. Protective effect of manganese in cadmium-induced hepatic oxidative damage, changes in cadmium distribution and trace elements level in mice[J]. Interdiscip Toxicol,2010,3(2): 68-72.
    [284]Belyaeva E A, Korotkov S M, Saris N E. In vitro modulation of heavy metal-induced rat liver mitochondria dysfunction:a comparison of copper and mercury with cadmium[J]. J Trace Elem Med Biol,2011,25 Suppl 1(S63-73.
    [285]Pucci B, Adams C S, Fertala J, et al. Development of the terminally differentiated state sensitizes epiphyseal chondrocytes to apoptosis through caspase-3 activation[J]. J Cell Physiol,2007,210(3): 609-615.
    [286]Bolduc J S, Denizeau F, Jumarie C. Cadmium-induced mitochondrial membrane-potential dissipation does not necessarily require cytosolic oxidative stress:studies using rhodamine-123 fluorescence unquenching[J]. Toxicol Sci,2004,77(2):299-306.
    [287]Shih C M, Wu J S, Ko W C, et al. Mitochondria-mediated caspase-independent apoptosis induced by cadmium in normal human lung cells[J]. J Cell Biochem,2003,89(2):335-347.
    [288]Li M, Xia T, Jiang C S, et al. Cadmium directly induced the opening of membrane permeability pore of mitochondria which possibly involved in cadmium-triggered apoptosis[J]. Toxicology,2003, 194(1-2):19-33.
    [289]Li M, Kondo T, Zhao Q L, et al. Apoptosis induced by cadmium in human lymphoma U937 cells through Ca2+-calpain and caspase-mitochondria-dependent pathways[J]. J Biol Chem,2000,275(50): 39702-39709.
    [290]Green D R, Reed J C. Mitochondria and apoptosis[J]. Science,1998,281(5381):1309-1312.
    [291]陈月桥,王丽,武建华.细胞凋亡信号传导途径研究进展[J].中国实用医药,2007,2(33):186-187.
    [292]毛伟平赵洁明,石晓娟,等.镉诱发HEK293细胞凋亡的线粒体途径[J].中国药理学与毒理学杂志,2005,19(4):305-307.
    [293]Mao W P, Zhang N N, Zhou F Y, et al. Cadmium directly induced mitochondrial dysfunction of human embryonic kidney cells[J]. Hum Exp Toxicol,2011,30(8):920-929.
    [294]Kluck R M, Bossy-Wetzel E, Green D R, et al. The release of cytochrome c from mitochondria:a primary site for Bcl-2 regulation of apoptosis[J]. Science,1997,275(5303):1132-1136.
    [295]赵云罡,徐建兴.线粒体,活性氧和细胞凋亡[J].生物化学与生物物理进展,2001,28(2):168-171.
    [296]Yan Y, Bian J C, Zhong L X, et al. Oxidative stress and apoptotic changes of rat cerebral cortical neurons exposed to cadmium in vitro[J]. Biomed Environ Sci,2012,25(2):172-181.
    [297]张英.镉对大脑皮质神经细胞的毒性损伤及NAC保护效应的研究[D].扬州:扬州大学,2009.
    [298]路浩.铅镉联合对新生大鼠中枢神经系统的毒性损伤及NAC保护效应的研究[D].扬州:扬州大学;2008.
    [299]Lorenzo H K, Susin S A. Mitochondrial effectors in caspase-independent cell death[J]. FEBS Lett, 2004,557(1-3):14-20.
    [300]Su Y T, Chang H L, Shyue S K, et al. Emodin induces apoptosis in human lung adenocarcinoma cells through a reactive oxygen species-dependent mitochondrial signaling pathway[J]. Biochem Pharmacol, 2005,70(2):229-241.
    [301]Cande C, Cecconi F, Dessen P, et al. Apoptosis-inducing factor (AIF):key to the conserved caspase-independent pathways of cell death?[J]. J Cell Sci,2002,115(Pt 24):4727-4734.
    [302]Li L Y, Luo X, Wang X. Endonuclease G is an apoptotic DNase when released from mitochondria[J], Nature,2001,412(6842):95-99.
    [303]Lemarie A, Lagadic-Gossmann D, Morzadec C, et al. Cadmium induces caspase-independent apoptosis in liver Hep3B cells:role for calcium in signaling oxidative stress-related impairment of mitochondria and relocation of endonuclease G and apoptosis-inducing factor[J]. Free Radic Biol Med, 2004,36(12):1517-1531.
    [304]Garcia Soriano F, Virag L, Jagtap P, et al. Diabetic endothelial dysfunction:the role of poly(ADP-ribose) polymerase activation[J]. Nat Med,2001,7(1):108-113.
    [305]Cookson M R, Ince P G, Usher P A, et al. Poly(ADP-ribose) polymerase is found in both the nucleus and cytoplasm of human CNS neurons[J]. Brain Res,1999,834(1-2):182-185.
    [306]Pacher P, Liaudet L, Soriano F G, et al. The role of poly(ADP-ribose) polymerase activation in the development of myocardial and endothelial dysfunction in diabetes[J]. Diabetes,2002,51(2): 514-521.
    [307]Guegan C, Sola B. Early and sequential recruitment of apoptotic effectors after focal permanent ischemia in mice[J]. Brain Res,2000,856(1-2):93-100.
    [308]Benchoua A, Couriaud C, Guegan C, et al. Active caspase-8 translocates into the nucleus of apoptotic cells to inactivate poly(ADP-ribose) polymerase-2[J]. J Biol Chem,2002,277(37):34217-34222.
    [309]Pacher P, Liaudet L, Bai P, et al. Activation of poly(ADP-ribose) polymerase contributes to development of doxorubicin-induced heart failure[J]. J Pharmacol Exp Ther,2002,300(3):862-867.
    [310]Pacher P, Cziraki A, Mabley J G, et al. Role of poly(ADP-ribose) polymerase activation in endotoxin-induced cardiac collapse in rodents[J]. Biochem Pharmacol,2002,64(12):1785-1791.
    [311]古晓娜战景明,王进军,等.氯化镉对大鼠肾纤维细胞Bcl-2、Bax基因表达影响实验研究[J].中国职业医学,2009,36(1):18-21.
    [312]Jia Y, Lin J, Mi Y, et al. Quercetin attenuates cadmium-induced oxidative damage and apoptosis in granulosa cells from chicken ovarian follicles[J]. Reprod Toxicol,2011,31(4):477-485.
    [313]王志梅,贾广乐,张映.镉致细胞凋亡的分子机制研究进展[J].中国畜牧兽医,2009,36(11):48-50.
    [314]Chan P K, Cheng S H. Cadmium-induced ectopic apoptosis in zebrafish embryos[J]. Arch Toxicol, 2003,77(2):69-79.
    [315]Mao W P, Ye J L, Guan Z B, et al. Cadmium induces apoptosis in human embryonic kidney (HEK) 293 cells by caspase-dependent and -independent pathways acting on mitochondria[J]. Toxicol in vitro, 2007,21(3):343-354.
    [316]Tibbles L A, Woodgett J R. The stress-activated protein kinase pathways[J]. Cell Mol Life Sci,1999, 55(10):1230-1254.
    [317]Zheng S T, Huo Q, Tuerxun A, et al. The expression and activation of ERK/MAPK pathway in human esophageal cancer cell line EC9706[J]. Mol Biol Rep,2011,38(2):865-872.
    [318]Zheng Y H, Tian C, Meng Y, et al. Osteopontin stimulates autophagy via integrin/CD44 and p38 MAPK signaling pathways in vascular smooth muscle cells[J]. J Cell Physiol,2011.
    [319]Wada T, Penninger J M. Mitogen-activated protein kinases in apoptosis regulation[J]. Oncogene,2004, 23(16):2838-2849.
    [320]Rockwell P, Martinez J, Papa L, et al. Redox regulates COX-2 upregulation and cell death in the neuronal response to cadmium[J]. Cell Signal,2004,16(3):343-353.
    [321]Cao X J, Chen R, Li A P, et al. JWA gene is involved in cadmium-induced growth inhibition and apoptosis in HEK-293T cells[J]. Journal of toxicology and environmental health Part A,2007,70(11): 931-937.
    [322]Chuang S M, Wang I C, Yang J L. Roles of JNK, p38 and ERK mitogen-activated protein kinases in the growth inhibition and apoptosis induced by cadmium[J]. Carcinogenesis,2000,21(7):1423-1432.
    [323]Lag M, Refsnes M, Lilleaas E M, et al. Role of mitogen activated protein kinases and protein kinase C in cadmium-induced apoptosis of primary epithelial lung cells[J]. Toxicology,2005,211(3):253-264.
    [324]Watjen W, Haase H, Biagioli M, et al. Induction of apoptosis in mammalian cells by cadmium and zinc[J]. Environ Health Perspect,2002,110 Suppl 5(865-867.
    [325]Wang S, Tang M, Pei B, et al. Cadmium-induced germline apoptosis in Caenorhabditis elegans:the roles of HUS1, p53, and MAPK signaling pathways[J]. Toxicol Sci,2008,102(2):345-351.
    [326]Kim S D, Moon C K, Eun S Y, et al. Identification of ASK1, MKK4, JNK, c-Jun, and caspase-3 as a signaling cascade involved in cadmium-induced neuronal cell apoptosis[J]. Biochem Biophys Res Commun,2005,328(1):326-334.
    [327]Rigon A P, Cordova F M, Oliveira C S, et al. Neurotoxicity of cadmium on immature hippocampus and a neuroprotective role for p38 MAPK[J]. Neurotoxicology,2008,29(4):727-734.
    [328]周志琦,刘强.真核生物的MAPK级联信号传递途径[J].生物化学与生物物理进展,1998,25(6):496-503.
    [329]Kim S M, Park J G, Baek W K, et al. Cadmium specifically induces MKP-1 expression via the glutathione depletion-mediated p38 MAPK activation in C6 glioma cells[J]. Neurosci Lett,2008, 440(3):289-293.
    [330]Galan A, Garcia-Bermejo M L, Troyano A, et al. Stimulation of p38 mitogen-activated protein kinase is an early regulatory event for the cadmium-induced apoptosis in human promonocytic cells[J]. J Biol Chem,2000,275(15):11418-11424.
    [331]Iryo Y, Matsuoka M, Wispriyono B, et al. Involvement of the extracellular signal-regulated protein kinase (ERK) pathway in the induction of apoptosis by cadmium chloride in CCRF-CEM cells[J]. Biochem Pharmacol,2000,60(12):1875-1882.
    [332]Subramaniam S, Unsicker K. Extracellular signal-regulated kinase as an inducer of non-apoptotic neuronal death[J]. Neuroscience,2006,138(4):1055-1065.
    [333]Sakata K, Sakata A, Kong L, et al. Role of Fas/FasL interaction in physiology and pathology:the good and the bad[J]. Clin Immunol Immunopathol,1998,87(1):1-7.
    [334]Tucek-Szabo C L, Andjelic S, Lacy E, et al. Surface T cell Fas receptor/CD95 regulation, in vivo activation, and apoptosis. Activation-induced death can occur without Fas receptor[J]. J Immunol, 1996,156(1):192-200.
    [335]Waring P, Mullbacher A. Cell death induced by the Fas/Fas ligand pathway and its role in pathology[J]. Immunol Cell Biol,1999,77(4):312-317.
    [336]Gehring S, Rottmann S, Menkel A R, et al. Inhibition of proliferation and apoptosis by the transcriptional repressor Madl. Repression of Fas-induced caspase-8 activation[J]. J Biol Chem,2000, 275(14):10413-10420.
    [337]Orlinick J R, Vaishnaw A K, Elkon K B. Structure and function of Fas/Fas ligand[J]. Int Rev Immunol, 1999,18(4):293-308.
    [338]Shimonishi T, Isse K, Shibata F, et al. Up-regulation of fas ligand at early stages and down-regulation of Fas at progressed stages of intrahepatic cholangiocarcinoma reflect evasion from immune surveillance[J]. Hepatology,2000,32(4 Pt 1):761-769.
    [339]张弛,张晓.Fas和FasL在神经发育中的作用[J].武汉体育学院学报,2004,38(1):41-46.
    [340]Scholz M, Cinatl J. Fas/FasL interaction:a novel immune therapy approach with immobilized biologicals[J]. Med Res Rev,2005,25(3):331-342.
    [341]Martin T R, Hagimoto N, Nakamura M, et al. Apoptosis and epithelial injury in the lungs[J]. Proc Am Thorac Soc,2005,2(3):214-220.
    [342]翟声平,柴文戍,任美华Fas/FasL与氧自由基在肺纤维化大鼠细胞凋亡中的作用研究[J].中国全科医学,2007,10(9):711-713.
    [343]Wang W, Zheng Z, Yu W, et al. Polymorphisms of the FAS and FASL genes and risk of breast cancer[J]. Oncol Lett,2012,3(3):625-628.