基于双尺度的软土流变固结理论与试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土体力学行为的研究通常有宏观尺度和微观尺度两条并行的研究主线。土体在宏观尺度上表现的力学行为归根结底是由其微观尺度的颗粒与结构的特性决定的。因此,宏观尺度与微观尺度相结合的研究,将微观的物理试验与力学分析用于解释土的宏观力学特性具有很强的理论价值与实际意义。现有的软粘土流变固结研究中较少涉及软土微观特性和形态对软土流变固结与变形的影响,然而软土的矿物组成和微观结构的性质对其流变固结有重要的影响。另外,当前关于流变固结过程中考虑土体自身应力历史的研究并不多见,理论分析中应当考虑流变固结过程中土压缩性与渗透性参数非线性变化的性质。本文正是遵循这一思路,针对软粘土的流变固结问题,分别在微观与宏观尺度上开展了试验与理论的研究,尝试为这一经典的土力学问题提出一些新的观点和思路。文中主要的工作如下:
     (1)对宁波滨海粘土开展GDS先进固结仪试验,分析研究该类型粘土的非线性压缩特性和再压缩特性,对常用的几种非线性压缩模型进行拟合分析,为非线性流变固结理论研究提供依据。对杭州粘土开展微观尺度试验,包括:①应用X射线能谱分析测定粘土的元素组成;②采用X射线衍射分析方法对粘土材料进行物相分析;③利用扫描电镜与压汞试验观测不同压力等级下经固结和流变后粘土的微观形貌特征,测定其孔隙分布规律及其变化,为微结构力学模型的建立提供依据。
     (2)在粘土微观形态和结构研究的基础上,提出能描述荷载作用下土体微观结构变形特性的物理模型。对模型进行力学分析,推导得到宏观力学参量与微观参数之间的关系,应用非线性突变理论建立软土的微结构力学模型和本构关系。模型中涉及土的孔隙分布、微结构变形特性、粘弹性应力应变关系等,并采用室内土工试验来验证其理论的正确性。
     (3)建立考虑软土应力历史的线性与非线性流变固结宏观唯象模型,在此基础上得到相应的流变固结控制方程,采用半解析方法对其进行求解。综合考量地基土体的应力历史、外部荷载、土的压缩性、流变性、渗透性、双层地基土体相对厚度等因素,对考虑应力历史条件下的单层和双层地基(带软弱下卧层)一维线性与非线性流变固结性状进行分析和研究。
     (4)基于Leonards和Bjerrum的研究,分析了土体的老化现象及其发生的机理。针对准先期固结应力和“消失”的先期固结应力两种典型的老化土体的力学现象,开展了对应的非线性流变固结问题理论研究工作。在四元件流变模型和实验数据拟合得到的参数模型的基础上给出了控制方程,利用半解析方法对其求解后分析土体老化对固结性状的影响。
Research on macro scale and micro scale are two main streams of the studies on soil mechanics. It is known that soil behavior on macro scale ultimately depend on the characteristics of the soil particle and micro structure. Therefore, micro scale tests and analysis have scientific merit in terms of a fundamental assessment of its mechanism and associated parameters as well as practical implications in terms of explaining soil behavior. Present researches merely involve micro scale testing and analyzing in studies of rheological consolidation, but the mineral composition and micro structure have significant influence on consolidation behavior. Furthermore, rheological consolidation theory which takes soil stress history into account can be seldom found in literature. Bearing all these in mind, the author carried out theoretical and experimental research both on micro and macro scale on rheological consolidation of the soft soils, in order to advance the state-of-the-art with respect to our understanding of the mechanisms and significance of such a classic topic in soil mechanics. Main works are as below:
     (1) GDS one dimensional advanced consolidation testing system is used in soil laboratory tests to study the non-linearity in compression and recompression of Ningbo clay. Curve fit of the test data provides soil parameters of the non-linear compression models, which laid foundation for the non-linear rheological consolidation theory. Micro scale tests include X-ray EDS, XRD, SEM and MIP tests. X-ray EDS unveils the basic elements and their content in Hangzhou clay, XRD test demonstrates the main minerals in soil, SEM and MIP tests show micro morphological characteristics and pore size distributions of clayey soils after which are consolidated under different stresses.
     (2) A micro structural catastrophic model for soft soils is presented adopting phenomenological methods, which can describe the rheological consolidation behavior of soft clays. The model is verified by a series of rheological consolidation experiments with different loading rates. Creep deformation, which is loading rate dependent, can be clearly observed in these tests. Model parameters are gained by curve fit from test data. With only two free parameters, good fits of the data are achieved. The characteristics of the parameter demonstrate the feature of the micro-mechanical behavior of the clay.
     (3) The Gibson-Lo rheological model is used to simulate the coupled processes of drainage and creep of soft soils that takes stress history into account. A hybrid combination of analytical and numerical methods is adopted to solve the governing equations of consolidation with the nonlinear rheological model. The methodology is applied to a saturated soft soil subjected to surface loading. The soil profile is separated into normally consolidated and overconsolidated layers by a boundary that is allowed to move. Comparisons of the model predictions and its simulations are used to evaluate the effects of stress history, model parameters, and loading pattern on consolidation behavior. In non-linear analysis, variations in compressibility and permeability are captured using bi-linear e-logp and e-logkv models with the break in behavior controlled by the yield stress. The relative magnitude of the applied stress to the yield stress of clays is found to influence the rate of consolidation as well as the ultimate settlement. In addition, the ratios of the model parameters Cc/Ck, Ce/Cc and Cke/Ck are shown to have different effects on the consolidation behavior of clays.
     (4) The final section is on the increased yield stress of clays due to time effects termed the quasi-preconsolidation pressure. A nonlinear rheological model for clays incorporated into the governing equation is used to numerically simulate the consolidation process of clay in laboratory tests to identify the basic mechanical parameters that contribute to the development of the quasi-preconsolidation phenomenon. A change in modulus in the recompression region due to ageing is shown to be the dominant cause of the development of the quasi-pc phenomenon. While the soil modulus variation controls the EOP curve of clays, observed time effects such as the "vanishing pc" phenomenon are controlled primarily by changes in soil viscosity. This has no bearing on the development of the quasi-pc phenomenon.
引文
[1]Abbott, M. B. (1960). One dimensional consolidation of multi-layered soils. Geotechnique.10(4):151-165.
    [2]Aboshi, H., Yostukum, H., Manryama, S. (1970). Constant loading rate of consolidation test. Soils and Foundations.10(1):43-56.
    [3]Athanasopoulos, G. A. (1993). Preconsolidation versus aging behavior of kaolinite clay. Journal of Geotechnical Engineering, ASCE,119,1060-1066.
    [4]Barden, L. (1965). Consolidation of clay with non-linear viscosity. Journal of Geotechnique.15(4):345-362.
    [5]Barden, L. (1969). Time dependent deformation of normally consolidated clays and peats. ASCE. 95(SM1):1-31.
    [6]Barden, L., Berry, P. L. (1965). Consolidat ion of normally consolidated clay. Journal of the Soil Mechanics and Foundation Division. ASCE.91 (SM5):15-35.
    [7]Bazant, Z. P., Ozaydin, K., Krizek, R. J. (1975). Microplane model for creep of anisotropic clay. Journal of Engineering Mechanics Division, ASCE.101(EM1):57-58.
    [8]Berry, P. L.& Wilkinson, W. B. (1969). The radial consolidation of clay soils. Geotechnique.19(2):253-284.
    [9]Bjerrum, L. (1967). Engineering geology of Norwegian normally consolidated marine clays as related to settlements of buildings (7th Rankine Lecture). Geotechnique,2, No.17,81-118.
    [10]Bolt, G. H. (1956). Physico-Chemical Analysis of the Compressibility of Pure Clays. Geotechnique,6(2): 86-93.
    [11]Bowles, J. E. (1984). Physical and geotechnical properties of soils. McGraw-Hill, Inc., Auckland.1984.
    [12]Buisman, A. S. K. (1935). De Werstand van Paalpunten in Zand. De lngeniuer.50:31-35.
    [13]Burland, J. B. (1990). On the compressibility and shear strength of natural clays. Geotechnigue.40 (3):327-378.
    [14]Casagrande, A. (1932). The structure of clays and its importance in foundation engineering. Journal of Boston Society of Civil Engineering, Contribution to Soil Mechanics (1925-1940),72-125.
    [15]Casagrande, A. (1936). The determination of the preconsolidation load and its practical significance. Proc. 1st ICSMFE,3,60-64.
    [16]Cetin. H., Fener. M., Soylemez M., et al. (2007). Soil structure changes during compaction of a cohesive soil. Engineering Geology.92,38-48.
    [17]Cetin. H., (2004). Soil-particle and pore orientations during consolidation of cohesive soils. Engineering Geology.73,1-11.
    [18]Chai, J. C., Miura,N., Zhu, H. H., Yudhbir (2004). Compression and consolidation characteristics of sinxturad natural clay. Canadian Geotechnical Journal.41(6):1250-1258.
    [19]Crawford, C. (1964). Interpretation of the consolidation of Mexico City clay. Ph. D. Thesis. Purdue University.
    [20]Davis, E. H., Raymond, G. P. (1965). A non-linear theory of consolidation. Geotechnique 15(2):161-173.
    [21]Delage, P., Lefebvre, G. (1984). Study of the structure of a sensitive Champlain clay and its evolution during consolidation. Canadian Geotechnical Journal.21:21-35.
    [22]Dubin, B., Moulin, G. (1986). Influence of a critical gradient on the consolidation of clays. Consolidation of soils:testing and evaluation (STP 892). West Conshochen(PA):ASTM.354-377.
    [23]Duncan. J. M. (1993). Limitation of conventional analysis of consolidation settlement. Journal of the Soil Mechanics and Foundation Division, ASCE.119(9):1333-1359.
    [24]Duncan, J. M., Rajot, J. P., Perrone. V. J. (1996). Coupled analysis of consolidation and secondary compression. Proc. of the 2nd Int. Conf. on Soft Engineering,1, Nanjing. China.3-27.
    [25]Edil, T. B., Dhowian, A. W. (1979). Analysis of long-term compression of peats. Geotech. Engrg.10:159-178.
    [26]Garlanger, J. E. (1972). The consolidation of soils exhibiting creep under constant effective stress. Journal of Geotechnique.22(1):71-78.
    [27]Geuze, E. C. W. A., Tan, Tjong Kie. (1953). The Mechanical behavior of clays. Proc. of the 2nd international Congress on Rheology, Oxford. Geotechnique 2.
    [28]Gibson. R. E., Lo, K. Y. (1961). A theory of consolidation for soils exhibiting secondary compression. Acta Polytechnica Scandinavica.296:Chapter 10.
    [29]Gillott, J. E. (1969). Study of the fabric of fine-grained sediments with the scanning electron microscope. Journal of Sedimentary Petrology.1:90-105.
    [30]Gobara, W. (2003). Effect of the overconsolidation on the consolidation of clays. Proceedings of 12th Asian Regional Conference on Soil Mechanics and Geotechnical Engineering.95-98.
    [31]Goldschmidt, V. M., Barth, T.. Lunde. G., et al. (1926). Geochemical distribution law of the elements. Skrifer Norskc-Videnskaps. Akademi.
    [32]Goldstein, M.N. (1979). Engineering properties of soil. Stroiizdat, Moscow.3:1971.1973,1979.(in Russian)
    [33]Gray, H. (1945). Simultaneous consolidation of contiguous layers of unlike compressible soils. Trans. ASCE.110:1327-1356.
    [34]Hansbo, S. (1997). Aspects of vertical drain design: Darcian or non-Darcian flow. Geotechnique.47(5): 983-992.
    [35]Hansbo, S. (2001), Consolidation equation valid for both Darcian and non-Darcian flow. Geotechnique. 51(1):51-54.
    [36]Hansbo, S. (2003). Deviation from Darcy's law observed in one-dimensional consolidation. Geotechnique. 53(6):601-605.
    [37]Hansen. B. (1969). A mathematical model for creep phenomena in clay. Proc.7'h Int. Conf. Soil Mech. Mexico City, Speciality session 12.
    [38]Holtz, R. D., Kovacs, W. D. (1981). An Introduction to Geotechnical Engineering. Eaglewood Cliffs, NJ: Prentice-Hall.
    [39]Imai, G. (1989). A unified theory of one-dimensional consolidation with creep. Proc. of 11th Int. Conf. on Soil Mechanics and Foundation Engineering, San Francisco.1:57-60.
    [40]Imai, G., Tang, Y. (1992). A constitutive equation on one-dimensional consolidation derived from inter-connected tests. Soils and foundations.32(2):89-96.
    [41]Jamiolkowski, M., Ladd, C. C., Germaine, J. T., Lancellotta. R. (1985). New developments in field and laboratory testing of soils. Proc. of 11th Int. Conf. on Soil Mechanics and Foundation Engineering, San Francisco.1:150-153.
    [42]Koppejan, A. W. (1948). A formula combining the Terzaghi load compression relationship and the Buisman secular time effect. Proc. of the 2nd ICSMFE,3. Rotterdam.
    [43]Ladd, C. C. (1971). Settlement analysis of cohesive soils. Soil Publication 272, MIT, Department of Civil Engineering, Cambridge, Mass.92.
    [44]Ladd, C. C., Foott, R.. Ishihara. K., Schlosser, F., Poulus, H. G. (1977). Stress-deformation and strength characteristics. Proc. of the 9th Int. Conf. on Soil Mechanics and Foundation Engineering, Tokyo.2:421-494.
    [45]Lambe, T. W. (1953). The structure of inorganic soil:Proc. Amer. Soc. Civil Eng.79, separate no.315,49.
    [46]Lambe, T. W. (1958). The structure of compacted clay:J. Soil Mech. Found. Div., Proc. Amer. Soc. Civil Eng.84:1-3.
    [47]Lee, P. K. K., Xie, K. H., Cheung. Y. K. (1992). A study on one-dimensional consolidation of layered systems. International Journal for Numerical and Analytical Methods in Geomechanics.16:815-831.
    [48]Leonards, G. A. (1968). Predicting settlement of building on clay soils. Proc., Lecture Series, Soil Mech. Found. Engnrng, Illinois Section ASCE (Jan-May).
    [49]Leonards, G. A. (1972). Discussion on shallow foundations. Proc. ASCE Conf performance of earth and earth supported structures, Prudue University.3,169.
    [50]Leonards, G. A. (1977). Panel discussion in main session 2-behavior of foundations. Proceesings.9th ICSMFE (Tokyo),3,384-386.
    [51]Leonards, G. A., Altschaeffl. A. (1964). The compressibility of clay. Jour. Soil Mech. Found. Div., ASCE, SM5,No.90,133-155.
    [52]Leonards, G. A., Deschamps, R. J. (1995). Origin and significance of the quasi-preconsolidation pressure in clay soils. Proc. international symposium on compression and consolidation of clayey soils-IS-Hiroshima. A. A. Balkema, Rotterdam.1.341-347.
    [53]Leonards, G. A., Ramiah, B. (1959). Time effects in the consolidation of clay. ASTM, STP 254,116-130.
    [54]Leroueil, S., Lerat, P., Hight, D. W., Powell, J. J. M. (1992). Hydraulic conductivity of a recent estuarine silty clay at Bothkennar. Geotechnique,2, No.42,275-288.
    [55]Leroueil, S., Kabbaj, M., Tavenas, F.,& Bouchard, R. (1985). Stress-strain-strain rate relation for the compressibility of sensitive natural clays. J. of Goetechnique.35(2):159-180.
    [56]Leroueil, S., Kabbaj, M., Tavenas, F.,& Bouchard, R. (1986). Reply to discussion on stress-strain-strain rate relation for the compressibility of sensitive natural clays. J. ofGoetechnique.35(2):288-290.
    [57]Leroueil, S., Kabbaj, M. (1987). Discussion on settlement analysis of embankments on soft clays. ASCE. 113(GT9):1067-1070.
    [58]Leroueil, S., Marques, M. E. (1996). Importance of Strain Rate and Temperature Effects in Geotechnical Engineering. Measuring and Modeling Time Dependent Soil Behavior, Edited by T. C. Sheahan and V. N. Kaliakin:New York.
    [59]Mesri,G. (1973). Coefficient of secondary compression.ASCE.99(SM1):123-137.
    [60]Mesri, G. (1990). Viscous-elastic-plastic modeling of 1-D time dependent behavior of clays:Discussion. Canadian Geotechnical Journal.27:259-261.
    [61]Mesri, G. Choi, Y. K. (1979). Strain rate behavior of Saint-Jeant-Vianney clay:Discussion. Canadian Geotechnical Journal.16:831-834.
    [62]Mesri, G. Choi, Y. K. (1984). Time effects on the stress-strain behavior of natural soft clays:Discussion. J. of Geotechnique.34,3:439-442.
    [63]Mesri. G. Choi, Y. K. (1985a). Settlement analysis of embankments on soft clays. ASCE,111(GT4):441-464.
    [64]Mesri, G. Choi, Y. K. (1985b). The uniqueness of the end-of-primary(eop) void ratio-effective stress relationship. Proc. of the 11th ICSMFE.2:587-593.
    [65]Mesri, G., Febres-Cordero, E., Shields, D. R., Castro, A. (1981). Shear stress-strain-time behaviour of clays. Geotechnique.31(4):537-552.
    [66]Mesri, G., Godlewski, P. M. (1977). Time and stress-compressibility interrelationship. J. of Geotechnical Engineering Division (ASCE).105(1):106-113.
    [67]Mesri, G., Rokhsar. A. (1974). Theory of consolidation for clays. Journal of geotechnical engineering. ASCE,8, No.100.889-904.
    [68]Mitchell. J. K. (1993). Fundamentals of Soil Behavior. New York: Wiley.
    [69]Morgenstern, N. R., Tchalenko, J. S. (1967). Microscopic structure in kaolin subjected to direct shear. Geotechnique.1.7(4):309-328.
    [70]Osipov, V. I. (1979). The nature of strength and deformation properties of soils. Moscow state university, Moscow.(in Russian)
    [71]Osipov, J. B., Sokolov, B. K. (1973). On the texture of clay soils of different genesis investigated by magnetic anisotropy method. Proc. Int. Symp. Soil Structure. Gothenburg, Sweden,21-29.
    [72]Pascal, F., Pascal, H., Murray, D. W. (1981). Consolidation with threshold gradients. International Journal for Numerical and Analytical Methods in Geomechanics.5(3):247-261.
    [73]Poskitt, T. J. (1969). The consolidation of saturated clay with variable permeability and compressibility. Geotechnique.19(2):234-252.
    [74]Poskitt, T. J., Birdsall, R. O. (1971). A theoretical and experimental investigation of mildly non-linear consolidation behavior in Saturated soil. Canadian Geotechnical Journal.8(2):182-216.
    [75]Push. R. (1979). Creep of soils. Ruhr University. Bochum.
    [76]Pyrah, I. C. (1996). One-dimensional consolidation of layered soils. Geotechnique.46(3):555-560.
    [77]Raju, A. A. (1956). The preconsolidation pressure in clay soils. Thesis submitted to Purdue University in partial fulfillment of the requirements for the MSCE degree.
    [78]Rosenqvist, I. T. (1959). The physical-chemical properties of soils:soil-water systems. J. Soil Mech. Found. Div., Proc. ASCE. SM2,85.
    [79]Schiffman, R. L. (1958). Consolidation of soil under time-dependent loading and varying permeability. Highway Research Board Proceedings.37:584-617.
    [80]Schiffman, R. L., Stein, J. R. (1970). One-dimensional consolidation of layered systems. Journal of Soil Mechanics and Foundations, ASCE.96(4):1499-1504.
    [81]Schiffman, R. L., Gibson, R. E. (1964). Consolidation of nonhomogeneous clay layers. Journal of the Soil Mechanics and Foundations Division, ASCE.90(5):1-30.
    [82]Schmertmann, J. H. (1991). The mechanical aging of soils. J. Geotech. Engrg.,ASCE,9, No.117,1288-1330.
    [83]Schmertmann, J. H. (1993). Update on the mechanical aging of soils. Symposium "Sobre Envejecimiento de Suelos", The Mexican Society of Soil Mechanics, Mexico City.
    [84]Sekiguchi, H. Toriihara, M. (1976). Theory of one-dimensional consolidation of clays with consideration of their rheological properties. Soils and Foundations.16(1):27-44.
    [85]Tan T. K. (1957). Secondary time effects and consolidation of clays. Chinese Journal of civil Engineering. 5(1):1-9.
    [86]Taylor, D.W. (1942). Research on consolidation of clays, Serial 82. Massachusetts:Massachusetts Institute of Technology, Department of Civil and Sanitary Engineering.
    [87]Taylor, D. W., Merchant, W. (1940). A theory of clay consolidation accounting for secondary compression. J. of Mathematics and Physics.19(3):167-185.
    [88]The, C. I., Nie, X. Y. (2002). Coupled consolidation theory with non-Darcian flow. Computers and Geotechnics.29(3):169-209.
    [89]Terzaghi, K. (1943). Theoretical Soil Mechanics. John Wiley & Sons, Inc.:New York.
    [90]Tsytovich, N. (1976). Soil mechanics. Mir. Moscow.
    [91]Vyalov, S. S., Sapunov, O. K. (1986). Rheological fundamentals of soil mechanics, Elsevier, Amsterdam.
    [92]Wahls, H. E. (1962). Analysis of primary and secondary consolidation. ASCE 88(SM6):207-231.
    [93]Wang, Y. H., Xu, D. (2007). Dual porosity and secondary consolidation. Journal of Geotechnical and Geoenvironmental Engineering.7:793-801.
    [94]Wu, T. H., Resendiz, D., Neukirchner, R. J. (1966). The analysis of consolidation by rate process theory. ASCE,92(SM6),229-248.
    [95]Xie, K. H., Guo, S., Li, B. H., Zeng, G. X. (1997). A theory of consolidation for soils exhibiting rheological characteristics under cyclic loading. Proc. of the 9th Int. Conf on Computer Methods and Advances in Geomechanics, Wuhan. China.2:1053-1058.
    [96]Xie, K. H., Liu, X. W. (1995). A study on one dimensional consolidation of soils exhibiting rheological characteristics. Compression and Consolidation of Clayey Soils, Yoshikuni & Kusakabe (eds). Rotterdam: Balkema.
    [97]Xie. K. H., Wang, K., Wang. Y. L., Li, C. X. (2010). Analytical solution for one-dimensional consolidation of clayey soils with a threshold gradient. Computers and Geotechnics,37(4):487-493.
    [98]Xie, K. H., Wang, K. H., Zeng, G. X. (1996). A study on 1-D consolidation of soils exhibiting rheological characteristics with impeded boundary. Proc.2nd ICSSE, Nanjing.1:357-362.
    [99]Xie, K. H., Xie, X. Y., Jiang, W. (2002). A study on one dimensional nonlinear consolidation of double-layered soil. Computers and Geotechnics.29(2):151-168.
    [100]Xie, K. H., Xie, X. Y., Li, X. B. (2008). Analytical theory for one-dimensional consolidation of clayey soils exhibiting rheological characteristics under time-dependent loading. International J. for Numerical and Analytical Methods in Geomechanics.32:1833-1855.
    [101]Yin, J. H.& Graham, J. (1989). Visco-elastic-plastic modeling of 1-D time-dependent behavior of clays. Canadian Geotechnical Journal.26(2):199-209.
    [102]Yin, J. H.& Graham, J. (1990). Visco-elastic-plastic modeling of 1-D time-dependent behavior of clays: Reply. Canadian Geotechnical Journal.27(2):262-265.
    [103]Yin, J. H.& Graham, J. (1994). Equivalent times and 1-D elastic visco-plastic modeling of time- dependent stress-strain behavior of clays. Canadian Geotechnical Journal.31(1):42-52.
    [104]Yin, J. H., Graham, J., Clark, J.1., Gao, L. (1994). Modeling unanticipated pore water pressures in soft clays. Canadian Geotechnical Journal.31(5):773-778.
    [105]Yin, J. H.& Graham, J. (1999). Elastic visco-plastic modeling of the time-dependent stress-strain behavior of soils. Canadian Geotechnical Journal.36(4):736-745.
    [106]Yin Z-Y, Chang CS, Karstunen M, Hicher PY. An anisotropic elastic viscoplastic model for soft soils. International Journal of Solids and Structures,2010,47(5):665-677.
    [107]Yin Z-Y, Karstunen M, Hicher PY. Evaluation of the influence of elasto-viscoplastic scaling functions on modelling time-dependent behaviour of natural clays. Soils and Foundations,2010,50(2):203-214.
    [108]Hu W, Yin Z-Y, Dano C, Hicher PY. A constitutive model for granular materials considering grain breakage. Science in China Series E,2011, in press.
    [109]Zhu, G., Yin, J. H. (1999). Consolidation of double soil layers under depth-dependent ramp load. Canadian Geotechnical Journal.49(3):415-421.
    [110]陈宗基.固结及次时间效应的单向问题[J].土木工程学报,1958,5(1),1-9.
    [111]陈宗基.粘土层沉陷(由于固结和次时间效应)的二维问题[J].力学学报,1958,2(1):1-10.
    [112]邓岳保,谢康和.互补算法在一维非线性固结求解中的应用[J].岩土力学,2011,32(9):2656-2662.
    [113]鄂建,陈刚,孙爱荣.考虑低速非Darcy渗流的饱和黏性一维固结分析[J].岩土工程学报,2009,31(7):1115-1119.
    [114]高国瑞.黄土湿陷变形的结构理论[J].岩土工程学报,1990,12.
    [115]龚晓南.高等土力学[M].杭州:浙江大学出版社,1996.
    [116]胡虹宇.考虑应力历史影响的一维固结理论研究[D].杭州:浙江大学,2004.
    [117]胡瑞林等.粘性土微结构定性模型及其工程地质特征研究[M].北京:地质出版社.1995.
    [118]江雯,谢康和,夏建中.压缩模量随深度变化的软粘土地基一维固结解析解[J].科技通报.2003,19(6):452-460.
    [119]蓝柳和.谢康和.成层软黏土地基黏弹性一维固结半解析解[J].土木工程学报,2003,36(4):105-1]0.
    [120]蓝柳和.成层软粘土地基非线性流变固结性状研究[D].杭州:浙江大学,2002.
    [121]李冰河,谢康和,应宏伟,曾国熙.变荷载下软粘土非线性一维固结半解析解[J].岩土工程学报,1999,21(3),288-293.
    [122]李冰河,谢康和,应宏伟,曾国熙.初始有效应力沿深度变化的非线性一维固结半解析解[J].土木工程学报,1999,32(6):47-52.
    [123]谢新宇,李金柱,王文军,刘开富,朱向荣.宁波软土流变试验及其经验模型研究[J].浙江大学学报(工学版),2012,46(1):64-71.
    [124]李生林,秦素娟,薄遵昭,施斌.中国膨胀土工程地质研究[M].南京:江苏科技出版社,1992.
    [125]李又云,李哲,谢永利.一维固结理论中固结系数的试验分析[J].建筑科学与工程学报,2008,25(3):102-107.
    [126]李西斌.软土流变固结理论与试验研究[D].杭州:浙江大学,2005.
    [127]李作勤.粘土固结变形的时间性[J].岩土工程学报,1992,14(6),60-67.
    [128]刘保健,张军丽.土工压缩试验成果分析方法与应用[J].中国公路学报,1999,12(1):37-41.
    [129]刘保健,谢永利,李又云.公路软基在变荷载条件下的沉降计算[J].中国公路学报,2000,13(4):21-25.
    [130]刘忠玉,刘忠广,马崇武.考虑起始水力梯度时饱和黏土的一维固结[J].郑州大学学报(工学版),2006,27(3):2]-24.
    [131]刘忠玉,杨荣根.考虑起始水力梯度时双层地基一维固结[J].合肥工业大学学报(自然科学版),2006,29(5):568-572.
    [132]刘忠玉,孙丽云,乐金朝,马崇武.基于非Darcy渗流的饱和黏土一维固结理论[J].岩石力学与工程学报,2009,28(5):973-979.
    [133]刘忠玉,纠永志,乐金朝.孙丽云.基于非Darcy渗流的饱和粘土一维非线性固结分析[J].岩石力学与工程学报,2010,29(11):2348-2355.
    [134]栾茂田,钱令希.层状饱和土体一维固结分析[J].岩土力学,1992,13(4):45-56.
    [135]门福录.半无限粘滞弹性介质中的应力分布[J].力学学报.1962,5(2):117-126.
    [136]门福录.粘土固结与次时间效应单维问题的近似解[J].水利学报,1963,(1):44-51.
    [137]苗天德,刘忠玉,任九生.湿陷性黄土的变形机理与本构关系[J].岩土工程学报,1999,21(4):383-387.
    [138]齐添.软土一维非线性固结理论与试验对比研究[D].杭州:浙江大学,2008.
    [139]齐添,谢康和,胡安峰,张智卿.萧山黏土非达西渗流性状的试验研究[J].浙江大学学报(工学版),2007,41(6):1023-1028.
    [140]沈珠江.结构性粘土的堆砌体模型[J].岩土力学,2000,21(1):1-4.
    [141]沈珠江.结构性粘土的弹塑性损伤模型[J].岩土工程学报,1993,15(3):1-6.
    [142]沈珠江.结构性粘土的非线性损伤力学模型[J].水利水运科学研究,1993,(3):247-255.
    [143]沈珠江,张为民.损伤力学在土力学中的应用[C].第三届全国岩土力学数值分析与解析方法讨论会,1988.
    [144]施斌.粘性土微观结构研究回顾与展望[J].工程地质学报,1996,4(1):39-44.
    [145]施斌,李生林.击实膨胀土微结构与工程特性的关系[J].岩土工程学报,1988,10(6):80-87.
    [146]王坤.考虑起始比降的软土地基一维固结理论研究[D].杭州:浙江大学,2011.
    [147]王奎华,谢康和,曾国熙.双面半透水边界的一维粘弹性固结理论[J].岩土工程学报,1998,20(2):34-36.
    [148]王盛源.变荷载下的粘弹性体一维固结问题[J].水利水运科学研究,1981(2):10-17.
    [149]魏汝龙.整理压缩试脸资料的一种新方法[J].水利水运科学研究,1980(3):90-93.
    [150]魏汝龙.软粘土的强度和变形[M].北京:中国建筑工业出版社,1987.
    [151]魏汝龙.从实测沉降过程推算固结系数[J].岩土工程学报,1993,15(2):12-19.
    [152]温介邦.考虑应力历史影响的成层地基一维固结理论研究[D].杭州:浙江大学,2007.
    [153]夏建中,江雯,谢康和.成层非均质地基一维固结方程半解析求解[J].中国公路学报,2006,19(3): 8-11.
    [154]谢康和.双层地基一维固结理论与应用[J].岩土工程学报,1994,16(5):24-35.
    [155]谢康和,潘秋元.变荷载下任意层地基一维固结理论[J].岩土工程学报,1995,17(5),80-85.
    [156]谢康和,郑辉,李冰河,刘兴旺.变荷载下成层地基一维非线性固结分析[J].浙江大学学报(工学版),2003,37(4):426-431.
    [157]谢康和,郑辉,李冰河,刘兴旺.变荷载下成层地基一维非线性固结分析[J].浙江大学学报(工学版),2003,37(4):426-431.
    [158]谢康和,郑辉,Leo C J变荷载下饱和软黏土一维大应变固结解析理论[J].水利学报,2003,34(10):6-13.
    [159]谢康和,庄迎春,李西斌.萧山饱和软粘土的渗透性试验研究[J].岩土工程学报,2005,27(5):591-594.
    [160]谢宁,孙钧,上海地区饱和软粘土流变特性[J].同济大学学报,1996,24(3):235-237.
    [161]谢宁,孙钧,土体非线性流变的有限元解析及其工程应用[J].岩土工程学报,1995,17(4):95-99.
    [162]谢宁,软土非线性流变理论、试验和应用研究[D].上海:同济大学,1993.
    [163]谢新宇,朱向荣,谢康和,潘秋元.饱和土体一维大变形固结理论新进展[J].岩土工程学报,1997,19(4):30-37.
    [164]谢新宇,张继发,曾国熙.半无限体地基一维非线性大变形固结解析分析方法研究[J].水利学报,2002,33(7):16-22.
    [165]谢新宇,朱向荣,潘秋元,曾国熙.舟山机场场道软基超载预压加固效果分析[J].土木工程学报,2000,33(3):60-65.
    [166]殷宗泽,张海波,朱俊高,李国维.软土的次固结[J].岩土工程学报,2003,25(5):521-526.
    [167]张超杰.结构性软土一维弹粘塑性固结性状研究[D].杭州:浙江大学,2003.
    [168]赵维炳.广义Voigt模型模拟的饱和土体一维固结理论及其应用[J].岩土工程学报,1989,11(5),78-85.
    [169]朱向荣.软土预压流变特性研究[D].杭州:浙江大学,1993.