蚯蚓处理污水污泥工艺及蚯蚓粪土地利用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着城镇污水处理厂的大规模建设和投产,污泥产量大幅度增加。污泥处理处置的基本原则是减量化、无害化、稳定化和安全化,开发低碳环保的污泥处理处置技术是目前国内外污水处理行业的研究热点。本研究以污水污泥和秸秆(调理剂)为原料,采用好氧堆肥预处理+蚯蚓处理工艺对污泥进行稳定化和无害化处理,研究污泥性质变化规律及影响因素,并分析蚯蚓粪质量。然后开展蚯蚓粪土地利用中试研究,运用系统聚类和分类主成分分析法研究不同施用水平下土壤重金属总量、化学形态和迁移能力以及土壤酶活性的变化规律,综合评估重金属污染程度和潜在生态风险,得出合理的蚯蚓粪施用量。主要结论如下:
     ①好氧堆肥使污泥含水率和有机质含量分别由73.0%和44.6%降至52.1%和35.6%,污泥显著减容且病原体含量显著减少,为蚯蚓处理创造了良好条件。蚯蚓处理使污泥堆肥pH由7.4±0.2降至6.5±0.1,TOC由205.8±7.6g/kg降至154.7±13.1g/kg;EC(电导率)由1.16±0.10ms/cm升至1.40±0.12ms/cm,TN、TP和TK分别由13.1±0.7、12.5±0.3和2.7±0.2g/kg升至17.9±1.3、17.3±1.4和3.7±0.4g/kg,显著高于对照组。蚯蚓粪中碱解氮、速效磷和速效钾含量大幅度升高,C/N降至8.7±1.3,GI达到85%以上,无害化效果显著,其病原体和重金属含量符合我国园林绿化和土地改良的控制标准。ESEM分析显示,蚯蚓粪结构松散、孔隙率高、团粒结构丰富,说明蚯蚓处理显著提高了污泥的回收利用价值。
     ②蚯蚓放养密度、物料含水率及二者的交互作用对蚯蚓处理效果存在显著影响,其影响作用大小依次为:放养密度>含水率>交互作用,其中,放养密度和含水率的影响占主导作用。蚯蚓处理污水污泥的最优工况为:放养密度2.5kg/m~2、物料含水率60%。
     ③蚯蚓和微生物分解有机质的过程中存在质量损失,使重金属相对浓度升高,但重金属总量变化不大。蚯蚓粪中重金属的含量依次为:Zn>Cu>Pb>Cr>Ni>As>Cd>Hg,且大多以稳定性更高的可氧化态和残渣态形式存在,说明蚯蚓处理可促进重金属钝化/固化,降低其生物毒性。蚯蚓对Ni和Cd表现出较强的生物富集作用,平均富集系数分别为2.18和1.46,但蚯蚓对Zn和Cu的吸收能力更强,其平均吸收量分别达到472.37mg/kg和103.95mg/kg。
     ④施用20-60t/hm~2的蚯蚓粪使土壤pH降低,TOC、TN、TP和TK分别由25.7±0.6、1.5±0.01、0.5±0.01和14.3±0.4g/kg升至52.7±6.6、2.0±0.2、0.7±0.1和16.4±0.8g/kg,蚯蚓粪中大量腐殖酸、磷酸盐、铵盐、钾盐及其他无机离子进入土壤是提高土壤肥力主要因素。
     ⑤施用蚯蚓粪使土壤酶的整体活性水平显著升高,其中,过氧化氢酶和转化酶活性分别由9.5±0.1和1.6±0.1mL/g升至9.5±2.3和2.0±0.2mL/g,脲酶、碱性磷酸酶和芳基硫酸酯酶活性分别由100.0±7.7、16.2±2.2和18.5±2.4μg/(g.h)升至115.5±15.3、28.7±6.2和31.8±4.7μg/(g.h),土壤养分含量增加和微生物活性增强是提高土壤酶活性的主要因素。在20-60t/hm~2的施用范围内,土壤酶具有较高的聚合性,芳基硫酸酯酶活性变化可以表征土壤氧化还原酶和水解酶活性的变化规律;Cu对过氧化氢酶活性具有明显的抑制作用,Cd对碱性磷酸酶活性具有一定的抑制作用,Zn对芳基硫酸酯酶、多酚氧化酶和过氧化氢酶活性均表现为激活作用,且各种重金属对酶活性的影响程度随蚯蚓粪施用量的升高而增强。
     ⑥在20-60t/hm~2的蚯蚓粪施用范围内,土壤重金属含量有所升高,但仍远低于《土壤环境质量标准》(GB15618-1995)的二级标准,且弱酸提取态和可还原态重金属含量无明显变化。土壤重金属在植株内的迁移能力依次为:Zn>Pb>Cu>Ni>Cd>As>Cr>Hg,其中,毒性较高的Hg、Cd和As的迁移系数均在0.4以下,迁移能力很低。土壤重金属具有良好的聚合性,可以使用Zn和Cu含量变化来表征大部分重金属的变化规律。
     ⑦施用蚯蚓粪一年后,土壤重金属的潜在生态风险程度依次为:Cd>Hg>Cu>As>Pb>Ni>Zn>Cr,但总体处于较低水平,与对照组相比无明显变化;受供试土壤重金属背景值的影响,Cd是最主要的潜在生态风险贡献因子。当施用量≥50t/hm~2时,土壤受到轻度重金属污染。蚯蚓粪适用于碱性或弱碱性土壤,且不宜用于食物链植物,综合风险评价结果,提出合理的施用量为20-30t/hm~2。
The sludge production has increased obviously following with the large-scaleconstruction and commissioning of urban wastewater treatment plant. The basicprinciple of sludge treatment and disposal are reduction, harmlessness, stabilization andsafety. Development of low carbon and environmental sludge treatment and disposalprocess is a research focus in sewage treatment industry at home and abroad. Usingsewage sludge and straw (expansion agent) as raw materials, Vermicomposting wasapplied to stabilization and harmless treatment of sewage sludge by employing Eiseniafetida with aerobic composting as pretreatment process in this study. The change ofsludge property and its influencing factors were investigated and vermicompost qualitywas analyzed, too. Then the land application test for vermicompost was carried out witha pilot-scale. The variation of total content, chemical speciation and migration ability ofsoil heavy metals and soil enzyme activity in different vermicompost application ratewere studied through hierarchical cluster and categorical principal components analysis.A reasonable application rate for vermicompost was proposed based on thecomprehensive evaluation result of heavy metal pollution level and its potentialecological risk. The principal conclusions were obtained as follows.
     ①Aerobic composting could reduce sludge water content and organic mattercontent from73.0%and44.6%to52.1%and35.6%, respectively. The volume andpathogen content of sludge has decreased obviously. These changes have createdfavorable conditions for vermicomposting. Results showed that vermicomposting coulddecrease compost pH from7.4±0.2to6.5±0.1, TOC from205.8±7.6g/kg to154.7±13.1g/kg; and also increase Electric Conductivity(EC) from1.16±0.10ms/cm to1.40±0.12ms/cm, and TN, TP and TK from13.1±0.7、12.5±0.3and2.7±0.2g/kg to17.9±1.3、17.3±1.4and3.7±0.4g/kg, respectively. The growth rate of these nutrients issignificantly higher than that of control group. The content of available nitrogen,phosphorus and potassium in vermicompost increased substantially. In addition,Germination Index(GI) of vermicompost could reach more than85%. Thevermicompost, whose pathogens and heavy metal contents could meet the allowablelimit for landscaping land improvement, has a carbon-nitrogen ratio equal to8.7±1.3.Environmental Scanning Electron Microscope(ESEM) analysis showed thatvermicompost has loose structure, high porosity and abundant granular structure. It is seemed that vermicomposting of sewage sludge could obtain a good harmless effect andenhance its recycling value significantly.
     ②The significant effect of earthworm stocking density, material water contentand their interaction on vermicomposting was in the order of stocking densities> watercontent> interaction. The first two factors play a dominant role in process among them.The optimal processing conditions for vermicomposting of sewage sludge were:stocking density was2.5kg/m~2and moisture content was60%.
     ③Relative contents of heavy metals in vermicompost were higher than initialmixtures due to mass loss with decomposition and mineralization of organic matter byEisenia fetida and microorganism but its total content had no significant change. Theheavy metals content level was in the order of Zn>Cu>Pb>Cr>Ni>As>Cd>Hg. Mostheavy metals were found exist in more stable forms, including oxidizable speciation andresidual speciation. Therefore, vermicomposting could effectively reduce bio-toxicity ofheavy metals through passivation or curing. Eisenia fetida showed a strong enrichmenton Ni and Cd and its average corresponding enrichment coefficient were2.18and1.46.While Eisenia fetida exhibits a stronger absorptive capacity on Zn and Cu and itsaverage absorbing capacity reached to472.37and103.95mg/kg, respectively.
     ④An application rate of20-60t/hm~2of vermicompost would decrease soil pH,but increase TOC、TN、TP and TK from25.7±0.6,1.5±0.01,0.5±0.01and14.3±0.4g/kg to2.7±6.6、2.0±0.2、0.7±0.1and16.4±0.8g/kg, respectively. The humic acid,phosphate, ammonium salt, sylvite and other inorganic ions contained in vermicompostwere main factors which improve soil fertility.
     ⑤Application of vermicompost could significantly enhance whole activity levelof soil enzyme. Including catalase and invertase activity, which rise from9.5±0.1and1.6±0.1mL/g to9.5±2.3and2.0±0.2mL/g; and urease, alkaline phosphatase andaryl sulfatase activity, which rise from100.0±7.7,16.2±2.2and18.5±2.4μg/(g.h) to115.5±15.3,28.7±6.2and31.8±4.7μg/(g.h). The soil nutrient increase and microbialactivity enhanced were main factors which improved soil enzyme activity. It has beendemonstrated that soil enzymes have a higher aggregation and changes in aryl sulfataseactivity could characterize variation of most oxidoreductase and hydrolase activity withan application rate of20-60t/hm~2. The catalase activity was obviously inhibited by Cuand alkaline phosphatase activity suffered certain degree of inhibition originated fromCd, while Zn showed activation on aryl sulfatase, polyphenol oxidase and catalaseactivity. These influences would become more and more evident with the increase of vermicompost application rate.
     ⑥An application rate of20-60t/hm~2of vermicompost would increase content ofsoil heavy metals while they were still within the allowable limit of secondary standardof Soil Environmental Quality Standard. The content of weak acid extraction andreducible speciation had no significant change. Migration ability of heavy metals inplant was in the order of Zn>Pb>Cu>Ni>Cd>As>Cr>Hg; while these elements withhighly biological toxicity, such as Hg、Cd and As have a weak migration ability andtheir migration coefficients were lower than0.4. Soil heavy metals have strongaggregation and changes in Zn and Cu content could characterize variation of mostheavy metals.
     ⑦Potential ecological risk degree of soil heavy metals was in the order ofCd>Hg>Cu>As>Pb>Ni>Zn>Cr after application vermicompost a year, but overall riskcould still maintained a lower level and this was similar to that of control group. It hasbeen confirmed that Cd was the major contribution factor on potential ecological riskdue to its higher background value. The tested soil may suffer slight heavy metalpollution when application rate of vermicompost exceed50t/hm~2. It is suggested thatvermicompost is suitable for alkalinity or alkalescence soil but should not be used forplants in food chain. Finally, an application rate equal to20-30t/hm~2was proposed asreasonable dosage based on comprehensive risk assessment.
引文
[1]刘洪涛,陈同斌,杭世珺,等.不同污泥处理与处置工艺的碳排放分析[J].中国给水排水,2010,26(17):106-108.
    [2]张韵.我国污泥处理处置的规划研究[J].给水排水动态,2010(4):13-15.
    [3]孔祥娟.《城镇污水处理厂污泥处理处置技术指南》编制情况介绍[J].水工业市场,2011(4):15-17.
    [4] Cui Y, Sun T, Zhao L, et al. Performance of wastewater sludge ecological stabilization[J].Journal of Environmental Sciences,2008,20(4):385-389.
    [5] Peruzzi E, Macci C, Doni S, et al. Phragmites australis for sewage sludge stabilization[J].Desalination,2009,246(1-3):110-119.
    [6]张贺飞,徐燕,曾正中,等.国外城市污泥处理处置方式研究及对我国的启示[J].环境工程,2010,28(S1):434-438.
    [7]郝晓地,张璐平,兰荔.剩余污泥处理/处置方法的全球概览[J].中国给水排水,2007,23(20):1-5.
    [8]王洪臣.污泥处理处置设施的规划建设与管理[J].中国给水排水,2010,26(14):1-6.
    [9]王岚.我国污泥处理处置发展概述[J].给水排水动态,2010(4):11-12.
    [10]唐建国,林洁梅.对城镇污水处理厂污泥处理处置技术路线选择的思考[J].给水排水,2011,37(9):54-57.
    [11]陈同斌,郑国砥,高定,等.城市污泥堆肥处理及其产业化发展中的几个关键问题[J].中国给水排水,2009,25(9):104-108.
    [12]陈同斌,郑国砥,高定.污水处理厂污泥生物堆肥技术[J].建设科技,2009(7):56-57.
    [13]赵庆良,胡凯.城市污水处理厂污泥处理的能耗分析[J].给水排水动态,2009(2):15-20.
    [14]徐文英.加拿大污泥资源化利用和工程实践对中国的借鉴[J].环境科学与管理,2011,36(7):15-20.
    [15]郭瑞,陈同斌,张悦,等.不同污泥处理与处置工艺的碳排放[J].环境科学学报,2011,31(4):673-679.
    [16]李欢,金宜英,李洋洋.污水污泥处理的碳排放及其低碳化策略[J].土木建筑与环境工程,2011,33(2):117-121,131.
    [17]徐轶群,周璟,董秀华,等.蚯蚓活动对城市生活污泥重金属的影响[J].农业环境科学学报,2010,29(12):2431-2435.
    [18] Zhao L, Wang Y, Yang J, et al. Earthworm-microorganism interactions: A strategy tostabilize domestic wastewater sludge[J]. Water Research,2010,44(8):2572-2582.
    [19] Singh R P, Singh P, Araujo A S F, et al. Management of urban solid waste: Vermicompostinga sustainable option[J]. Resources, Conservation and Recycling,2011,55(7):719-729.
    [20] Yadav K D, Tare V, Ahammed M M. Vermicomposting of source-separated human faeces byEisenia fetida: Effect of stocking density on feed consumption rate, growth characteristics andvermicompost production[J]. Waste Management,2011,31(6):1162-1168.
    [21]高红莉,周文宗,张硌,等.城市污泥的蚯蚓分解处理技术研究进展[J].中国生态农业学报,2008,16(3):788-793.
    [22]盛倩,吴星五.蚯蚓堆肥在污泥处理中的应用[J].安徽农业科学,2011,39(4):2149-2151.
    [23] Domene X, Solà L, Ramírez W, et al. Soil bioassays as tools for sludge compost qualityassessment[J]. Waste Management,2011,31(3):512-522.
    [24] Xing M, Li X, Yang J, et al. Changes in the chemical characteristics of water-extractedorganic matter from vermicomposting of sewage sludge and cow dung[J]. Journal ofHazardous Materials,2012,205–206(0):24-31.
    [25] Hait S, Tare V. Transformation and availability of nutrients and heavy metals duringintegrated composting–vermicomposting of sewage sludges[J]. Ecotoxicology andEnvironmental Safety,2012(0).
    [26] Hait S, Tare V. Optimizing vermistabilization of waste activated sludge using vermicompostas bulking material[J]. Waste Management,2011,31(3):502-511.
    [27] Khwairakpam M, Bhargava R. Vermitechnology for sewage sludge recycling[J]. Journal ofHazardous Materials,2009,161(2-3):948-954.
    [28] Li X, Xing M, Yang J, et al. Compositional and functional features of humic acid-likefractions from vermicomposting of sewage sludge and cow dung[J]. Journal of HazardousMaterials,2011,185(2-3):740-748.
    [29] Hait S, Tare V. Vermistabilization of primary sewage sludge[J]. Bioresource Technology,2011,102(3):2812-2820.
    [30] Suthar S. Pilot-scale vermireactors for sewage sludge stabilization and metal remediationprocess: Comparison with small-scale vermireactors[J]. Ecological Engineering,2010,36(5):703-712.
    [31] Gupta R, Garg V K. Stabilization of primary sewage sludge during vermicomposting[J].Journal of Hazardous Materials,2008,153(3):1023-1030.
    [32] John Paul J A, Karmegam N, Daniel T. Municipal solid waste (MSW) vermicomposting withan epigeic earthworm, Perionyx ceylanensis Mich.[J]. Bioresource Technology,2011,102(12):6769-6773.
    [33] Nair J, Okamitsu K. Microbial inoculants for small scale composting of putrescible kitchenwastes[J]. Waste Management,2010,30(6):977-982.
    [34] Suthar S. Recycling of agro-industrial sludge through vermitechnology[J]. EcologicalEngineering,2010,36(8):1028-1036.
    [35] Kaur A, Singh J, Vig A P, et al. Cocomposting with and without Eisenia fetida for conversionof toxic paper mill sludge to a soil conditioner[J]. Bioresource Technology,2010,101(21):8192-8198.
    [36] Vig A P, Singh J, Wani S H, et al. Vermicomposting of tannery sludge mixed with cattle dunginto valuable manure using earthworm Eisenia fetida (Savigny)[J]. Bioresource Technology,2011,102(17):7941-7945.
    [37] Garg V K, Suthar S, Yadav A. Management of food industry waste employingvermicomposting technology[J]. Bioresource Technology,2011(0).
    [38] Singh D, Suthar S. Vermicomposting of herbal pharmaceutical industry solid wastes[J].Ecological Engineering,2012,39(0):1-6.
    [39] Singh R P, Embrandiri A, Ibrahim M H, et al. Management of biomass residues generatedfrom palm oil mill: Vermicomposting a sustainable option[J]. Resources, Conservation andRecycling,2011,55(4):423-434.
    [40] Subramanian S, Sivarajan M, Saravanapriya S. Chemical changes during vermicomposting ofsago industry solid wastes[J]. Journal of Hazardous Materials,2010,179(1-3):318-322.
    [41] Kumar R, Verma D, Singh B L, et al. Composting of sugar-cane waste by-products throughtreatment with microorganisms and subsequent vermicomposting[J]. Bioresource Technology,2010,101(17):6707-6711.
    [42] Deka H, Deka S, Baruah C K, et al. Vermicomposting of distillation waste of citronella plant(Cymbopogon winterianus Jowitt.) employing Eudrilus eugeniae[J]. Bioresource Technology,2011,102(13):6944-6950.
    [43] Deka H, Deka S, Baruah C K, et al. Vermicomposting potentiality of Perionyx excavatus forrecycling of waste biomass of java citronella-An aromatic oil yielding plant[J]. BioresourceTechnology,2011,102(24):11212-11217.
    [44] Garg V K, Gupta R. Optimization of cow dung spiked pre-consumer processing vegetablewaste for vermicomposting using Eisenia fetida[J]. Ecotoxicology and Environmental Safety,2011,74(1):19-24.
    [45] P. P. Changes in microbial properties and nutrient dynamics in bagasse and coir duringvermicomposting: Quantification of fungal biomass through ergosterol estimation invermicompost[J]. Waste Management,2010,30(5):787-791.
    [46] Kumar R, Shweta. Enhancement of wood waste decomposition by microbial inoculation priorto vermicomposting[J]. Bioresource Technology,2011,102(2):1475-1480.
    [47] Fernández-Gómez M J, Nogales R, Insam H, et al. Continuous-feeding vermicomposting as arecycling management method to revalue tomato-fruit wastes from greenhouse crops[J].Waste Management,2010,30(12):2461-2468.
    [48] Lazcano C, Gómez-Brandón M, Domínguez J. Comparison of the effectiveness of compostingand vermicomposting for the biological stabilization of cattle manure[J]. Chemosphere,2008,72(7):1013-1019.
    [49] Fernández-Gómez M J, Romero E, Nogales R. Impact of imidacloprid residues on thedevelopment of Eisenia fetida during vermicomposting of greenhouse plant waste[J]. Journalof Hazardous Materials,2011,192(3):1886-1889.
    [50]杨军,郭广慧,陈同斌,等.中国城市污泥的重金属含量及其变化趋势[J].中国给水排水,2009,25(13):122-124.
    [51]孙西宁,李艳霞,张增强,等.城市污泥好氧堆肥过程中重金属的形态变化[J].环境科学学报,2009,29(9):1836-1841.
    [52] Suthar S. Vermistabilization of municipal sewage sludge amended with sugarcane trash usingepigeic Eisenia fetida (Oligochaeta)[J]. Journal of Hazardous Materials,2009,163(1):199-206.
    [53] Li L, Xu Z, Wu J, et al. Bioaccumulation of heavy metals in the earthworm Eisenia fetida inrelation to bioavailable metal concentrations in pig manure[J]. Bioresource Technology,2010,101(10):3430-3436.
    [54] Suthar S, Singh S. Feasibility of vermicomposting in biostabilization of sludge from adistillery industry[J]. Science of The Total Environment,2008,394(2-3):237-243.
    [55] Kang J, Zhang Z, Wang J J. Influence of humic substances on bioavailability of Cu and Znduring sewage sludge composting[J]. Bioresource Technology,2011,102(17):8022-8026.
    [56] Yadav K D, Tare V, Ahammed M M. Vermicomposting of source-separated human faeces fornutrient recycling[J]. Waste Management,2010,30(1):50-56.
    [57] Yasir M, Aslam Z, Kim S W, et al. Bacterial community composition and chitinase genediversity of vermicompost with antifungal activity[J]. Bioresource Technology,2009,100(19):4396-4403.
    [58] Aira M, Domínguez J. Substrate-induced respiration as a measure of microbial biomass invermicomposting studies[J]. Bioresource Technology,2010,101(18):7173-7176.
    [59] Gómez-Brandón M, Aira M, Lores M, et al. Changes in microbial community structure andfunction during vermicomposting of pig slurry[J]. Bioresource Technology,2011,102(5):4171-4178.
    [60] Rodríguez-Canché L G, Cardoso Vigueros L, Maldonado-Montiel T, et al. Pathogen reductionin septic tank sludge through vermicomposting using Eisenia fetida[J]. BioresourceTechnology,2010,101(10):3548-3553.
    [61]龚春明,王晓丹,顾卫兵,等.堆肥中大肠菌群等粪便污染指标菌的残留状况调查[J].农业环境科学学报,2010,29(8):1595-1600.
    [62] Ngo P T, Rumpel C, Dignac M, et al. Transformation of buffalo manure by composting orvermicomposting to rehabilitate degraded tropical soils[J]. Ecological Engineering,2011,37(2):269-276.
    [63]李扬,乔玉辉,莫晓辉,等.蚯蚓粪作为土壤重金属污染修复剂的潜力分析[J].农业环境科学学报,2010,29(S1):250-255.
    [64]周东兴,魏丹,а. касатиков в.城市污泥及其堆肥对土壤重金属积累的影响[J].土壤通报,2010,41(4):976-980.
    [65]马莉,殷秀琴.污泥蚯蚓粪对万寿菊生长发育的影响[J].应用生态学报,2010,21(5):1346-1350.
    [66] Valdez-Pérez M A, Fernández-Luque o F, Franco-Hernandez O, et al. Cultivation of beans(Phaseolus vulgaris L.) in limed or unlimed wastewater sludge, vermicompost or inorganicamended soil[J]. Scientia Horticulturae,2011,128(4):380-387.
    [67]王艮梅,杨丽.污泥施用对林地土壤基本性质及酶活性的影响[J].生态环境学报,2010,19(8):1988-1993.
    [68]李永涛,蔺中,李晓敏,等.蚯蚓和堆肥固定化添加模式对漆酶降解土壤五氯酚的影响[J].生态环境学报,2011,20(11):1739-1744.
    [69] Park J H, Lamb D, Paneerselvam P, et al. Role of organic amendments on enhancedbioremediation of heavy metal(loid) contaminated soils[J]. Journal of Hazardous Materials,2011,185(2-3):549-574.
    [70]于芳芳,常智慧,韩烈保.城市污泥和污泥堆肥在草坪的利用研究进展[J].草业学报,2011,20(5):259-265.
    [71]刘洪涛,郑国砥,陈同斌,等.污泥堆肥对草坪基质综合质量的影响[J].中国给水排水,2010,26(19):106-108.
    [72]宋桂龙,辜再元,郭宇,等.垃圾和污泥堆肥用作无土草皮基质的研究进展[J].草业科学,2010,27(6):58-63.
    [73] Odlare M, Arthurson V, Pell M, et al. Land application of organic waste-Effects on the soilecosystem[J]. Applied Energy,2011,88(6):2210-2218.
    [74] Santos J A, Nunes L A P L, Melo W J, et al. Tannery sludge compost amendment rates on soilmicrobial biomass of two different soils[J]. European Journal of Soil Biology,2011,47(2):146-151.
    [75] Wu F, Lin D, Su D. The Effect of Planting Oilseed Rape and Compost Application on HeavyMetal Forms in Soil and Cd and Pb Uptake in Rice[J]. Agricultural Sciences in China,2011,10(2):267-274.
    [76]陈曦,杨丽标,王甲辰,等.施用污泥堆肥对土壤和小麦重金属累积的影响[J].中国农学通报,2010,26(8):278-283.
    [77]黄雅曦,李季,李国学,等.施用污泥堆肥对玉米产量及土壤性质的影响[J].东北农业大学学报,2010,41(9):43-49.
    [78]刘强,陈玲,邱家洲,等.污泥堆肥对园林植物生长及重金属积累的影响[J].同济大学学报(自然科学版),2010,38(6):870-875.
    [79] Jouquet P, Plumere T, Thu T D, et al. The rehabilitation of tropical soils using compost andvermicompost is affected by the presence of endogeic earthworms[J]. Applied Soil Ecology,2010,46(1):125-133.
    [80] Ros M, Rodríguez I, García C, et al. Microbial communities involved in the bioremediation ofan aged recalcitrant hydrocarbon polluted soil by using organic amendments[J]. BioresourceTechnology,2010,101(18):6916-6923.
    [81] He X, Yao L, Liang Z, et al. Paper sludge as a feasible soil amendment for the immobilizationof Pb2+[J]. Journal of Environmental Sciences,2010,22(3):413-420.
    [82] Ingelmo F, Molina M J, Soriano M D, et al. Influence of organic matter transformations onthe bioavailability of heavy metals in a sludge based compost[J]. Journal of EnvironmentalManagement,2012,95, Supplement: S104-S109.
    [83]林云琴,周少奇.城市污泥好氧堆肥过程中重金属的形态转化[J].生态环境,2008,17(3):940-943.
    [84]余杰,陈同斌,高定,等.中国城市污泥土地利用关注的典型有机污染物[J].生态学杂志,2011,30(10):2365-2369.
    [85] Mohapatra D P, Brar S K, Tyagi R D, et al. Physico-chemical pre-treatment andbiotransformation of wastewater and wastewater Sludge-Fate of bisphenol A[J].Chemosphere,2010,78(8):923-941.
    [86]余杰,田宁宁.浅谈城镇污水处理厂污泥中有机污染物研究状况[J].中国建设信息(水工业市场),2010(7):19-21.
    [87]余杰,田宁宁,陈同斌,等.污泥农用在我国污泥处置中的应用前景分析[J].给水排水,2010,36(z1):113-115.
    [88]王海燕,姚金玲,武雪芳,等.国内外城市污水处理厂污泥标准对比研究与建议[J].给水排水,2010,36(10):27-33.
    [89]郑国砥,陈同斌,高定,等.《城镇污水处理厂污泥处置林地用泥质》的编制原则[J].中国给水排水,2011,27(15):103-105.
    [90]姜文超,张智,曲振晓,等.污水厂污泥一体化竖式强化渗滤浓缩自然干化与消化研究[J].环境工程学报,2008,2(8):1127-1131.
    [91]张智,袁绍春,胡坚,等.覆膜人工滤层干化床处理城市污泥的试验研究[J].中国给水排水,2009,25(3):28-31,36.
    [92]鲍士旦.土壤农化分析[M].第三版.北京:中国农业出版社,2005:14-110.
    [93]林先贵.土壤微生物研究原理与方法[M].北京:高等教育出版社,2010:243-265.
    [94]周礼恺.土壤酶学[M].北京:科学出版社,1987:263-281.
    [95]关松荫.土壤酶及其研究法[M].北京:农业出版社,1986:260-330.
    [96]郭星亮,谷洁,高华,等.重金属Cu对堆肥过程中微生物群落代谢和水解酶活性的影响[J].农业环境科学学报,2011,30(2):375-382.
    [97]熊雄,李艳霞,韩杰,等.堆肥腐殖质的形成和变化及其对重金属有效性的影响[J].农业环境科学学报,2008,27(6):2137-2142.
    [98]张卫娟,谷洁,高华,等.重金属锌对猪粪堆肥过程中氧化还原类酶活性的影响[J].农业环境科学学报,2011,30(2):383-388.
    [99]陈玲,赵建夫,李宇庆,等.城市污水厂污泥快速好氧堆肥技术研究[J].环境科学,2005,26(5):192-195.
    [100]高孟春,王子超,胡波,等.低温环境下消化污泥和玉米秸秆强制通风堆肥过程中物理化学和生物学指标的研究[J].中国海洋大学学报(自然科学版),2011,41(11):13-17.
    [101]王玉军,窦森,李业东,等.鸡粪堆肥处理对重金属形态的影响[J].环境科学,2009,30(3):913-917.
    [102] Hachicha S, Cegarra J, Sellami F, et al. Elimination of polyphenols toxicity from olive millwastewater sludge by its co-composting with sesame bark[J]. Journal of Hazardous Materials,2009,161(2-3):1131-1139.
    [103]张玉兰,孙彩霞,段争虎,等.堆肥原位保氮技术研究进展[J].土壤通报,2010,41(4):1000-1004.
    [104]杨延梅,刘鸿亮,杨志峰,等.控制堆肥过程中氮素损失的途径和方法综述[J].北京师范大学学报(自然科学版),2005,41(2):213-216.
    [105]熊建军,刘淑英,邹国元,等.秸秆不同用量对污泥堆肥保氮效果研究[J].土壤通报,2010,41(1):175-178.
    [106] Komilis D P, Tziouvaras I S. A statistical analysis to assess the maturity and stability of sixcomposts[J]. Waste Management,2009,29(5):1504-1513.
    [107] Komilis D, Kontou I, Ntougias S. A modified static respiration assay and its relationship withan enzymatic test to assess compost stability and maturity[J]. Bioresource Technology,2011,In Press, Corrected Proof.
    [108] Kaushik P, Garg V K. Vermicomposting of mixed solid textile mill sludge and cow dung withthe epigeic earthworm Eisenia foetida[J]. Bioresource Technology,2003,90(3):311-316.
    [109] Smith S R. A critical review of the bioavailability and impacts of heavy metals in municipalsolid waste composts compared to sewage sludge[J]. Environment International,2009,35(1):142-156.
    [110] Yadav A, Garg V K. Vermicomposting-An effective tool for the management of invasiveweed Parthenium hysterophorus[J]. Bioresource Technology,2011,102(10):5891-5895.
    [111] Garg P, Gupta A, Satya S. Vermicomposting of different types of waste using Eisenia foetida:A comparative study[J]. Bioresource Technology,2006,97(3):391-395.
    [112]李丹,王德汉,曾婷,等.接种蚯蚓堆制处理造纸污泥的试验研究[J].中国造纸学报,2010,25(1):22-26.
    [113]陈学民,黄魁,伏小勇,等.2种表居型蚯蚓处理污泥的比较研究[J].环境科学,2010,31(5):1274-1279.
    [114]马迪,赵兰坡.禽畜粪便堆肥化过程中碳氮比的变化研究[J].中国农学通报,2010,26(14):193-197.
    [115]卢秉林,王文丽,李娟,等.添加小麦秸秆对猪粪高温堆肥腐熟进程的影响[J].环境工程学报,2010,4(4):926-930.
    [116]栾冬梅,关静姝,徐瑨,等.碳氮比对牛粪好氧堆肥过程的影响[J].东北农业大学学报,2008,39(8):77-81.
    [117] Bernal M P, Alburquerque J A, Moral R. Composting of animal manures and chemical criteriafor compost maturity assessment. A review[J]. Bioresource Technology,2009,100(22):5444-5453.
    [118] Tang Z, Yu G, Liu D, et al. Different analysis techniques for fluorescence excitation-emissionmatrix spectroscopy to assess compost maturity[J]. Chemosphere,2011,82(8):1202-1208.
    [119] Monroy F, Aira M, Domínguez J, et al. Seasonal population dynamics of Eisenia fetida(Savigny,1826)(Oligochaeta, Lumbricidae) in the field[J]. Comptes Rendus Biologies,2006,329(11):912-915.
    [120] Yadav A, Garg V K. Recycling of organic wastes by employing Eisenia fetida[J]. BioresourceTechnology,2011,102(3):2874-2880.
    [121] Gupta R, Mutiyar P K, Rawat N K, et al. Development of a water hyacinth based vermireactorusing an epigeic earthworm Eisenia foetida[J]. Bioresource Technology,2007,98(13):2605-2610.
    [122] Ho C P, Yuan S T, Jien S H, et al. Elucidating the process of co-composting of biosolids andspent activated clay[J]. Bioresource Technology,2010,101(21):8280-8286.
    [123]高定,郑国砥,陈同斌,等.堆肥处理对排水污泥中重金属的钝化作用[J].中国给水排水,2007,23(4):7-10.
    [124]李明.高温堆肥与蚯蚓堆肥对城市污泥重金属形态的影响[J].环境工程学报,2008,2(10):1407-1412.
    [125]伏小勇,秦赏,杨柳,等.蚯蚓对土壤中重金属的富集作用研究[J].农业环境科学学报,2009,28(1):78-83.
    [126] Ndegwa P M, Thompson S A, Das K C. Effects of stocking density and feeding rate onvermicomposting of biosolids[J]. Bioresource Technology,2000,71(1):5-12.
    [127]符波,廖潇逸,丁丽丽,等.环境扫描电镜对废水生物样品形态结构的表征研究[J].中国环境科学,2010,30(1):93-98.
    [128]王志刚,赵永存,廖启林,等.近20年来江苏省土壤pH值时空变化及其驱动力[J].生态学报,2008,28(2):720-727.
    [129]吴月茹,王维真,王海兵,等.采用新电导率指标分析土壤盐分变化规律[J].土壤学报,2011,48(4):869-873.
    [130]张红玉,马志宏,李国学,等.菌、热及菌热联合对垃圾堆肥腐熟的比较分析[J].农业环境科学学报,2011,30(7):1430-1435.
    [131]宋莎,李廷轩,王永东,等.县域农田土壤有机质空间变异及其影响因素分析[J].土壤,2011,43(1):44-49.
    [132]张翠莲,玛喜.土壤退化研究的进展与趋向[J].北方环境,2010,22(3):42-45.
    [133]刘强,陈玲,黄游,等.施用污泥堆肥对土壤环境及高羊茅生长的影响[J].农业环境科学学报,2009,28(1):199-203.
    [134]刘洪涛,马达,郑国砥,等.城市污泥堆肥在园林绿化及相关领域中的应用[J].中国给水排水,2009,25(13):117-119.
    [135]唐淦海,刘郡英,谷春豪,等.作物秸秆与城市污泥高温好氧堆肥产物对土壤氮矿化的影响[J].农业工程学报,2011,27(1):326-331.
    [136]徐建明,张甘霖,谢正苗,等.土壤质量指标与评价[M].北京:科学出版社,2010:169-180.
    [137]陈强龙,谷洁,高华,等.秸秆还田对土壤脱氢酶和多酚氧化酶活性动态变化的影响[J].干旱地区农业研究,2009,27(4):146-151.
    [138]杨鹏鸣,周俊国.不同肥料对土壤蔗糖酶和过氧化氢酶活性的影响[J].广东农业科学,2011(11):78-80.
    [139]罗虹,刘鹏,宋小敏.重金属镉、铜、镍复合污染对土壤酶活性的影响[J].水土保持学报,2006,20(2):94-96.
    [140]黄继川,彭智平,于俊红,等.施用玉米秸秆堆肥对盆栽芥菜土壤酶活性和微生物的影响[J].植物营养与肥料学报,2010,16(2):348-353.
    [141]李素俭,李新平,刘瑞丰,等.商洛药源基地土壤脲酶、磷酸酶和土壤养分的关系研究[J].水土保持学报,2010,24(6):227-230.
    [142]申荣艳,郑正,骆永明,等.城市污泥施入对不同类型土壤磷酸酶活性的影响[J].安徽农业科学,2010,38(26):14406-14408,14411.
    [143]马宁宁,李天来,武春成,等.长期施肥对设施菜田土壤酶活性及土壤理化性状的影响[J].应用生态学报,2010,21(7):1766-1771.
    [144]几种化合物对东北主要土壤芳基硫酸酯酶活性影响的比较[J].中国土壤与肥料,2009(5):18-22,71.
    [145]林燕萍,赵阳,胡恭任,等.多元统计在土壤重金属污染源解析中的应用[J].地球与环境,2011,39(4):536-542.
    [146]刘善江,夏雪,陈桂梅,等.土壤酶的研究进展[J].中国农学通报,2011,27(21):1-7.
    [147]黄游,陈玲,梁好均,等.污泥中锌对土壤酶活性的影响及评价[J].生态环境学报,2009,18(3):895-898.
    [148] Zeng F, Ali S, Zhang H, et al. The influence of pH and organic matter content in paddy soil onheavy metal availability and their uptake by rice plants[J]. Environmental Pollution,2011,159(1):84-91.
    [149] Meier S, Azcón R, Cartes P, et al. Alleviation of Cu toxicity in Oenothera picensis bycopper-adapted arbuscular mycorrhizal fungi and treated agrowaste residue[J]. Applied SoilEcology,2011,48(2):117-124.
    [150]李鸿江,顾莹莹,赵由才.污泥资源化利用技术[M].北京:冶金工业出版社,2010:50-70.
    [151]郝汉舟,靳孟贵,李瑞敏,等.耕地土壤铜、镉、锌形态及生物有效性研究[J].生态环境学报,2010,19(1):92-96.
    [152]郭观林,周启星.污染黑土中重金属的形态分布与生物活性研究[J].环境化学,2005(04):383-388.
    [153]胡恭任,于瑞莲,赵金秀,等.泉州湾洛阳江河口桐花树和秋茄红树植物中重金属元素的分布与富集特征[J].岩矿测试,2010,29(3):236-240.
    [154]黄丽荣,李雪,唐凤德,等.污泥对樟子松生物量及其重金属积累和土壤重金属有效性的影响[J].环境科学学报,2010,30(12):2450-2456.
    [155]郭笑笑,刘丛强,朱兆洲,等.土壤重金属污染评价方法[J].生态学杂志,2011,30(5):889-896.
    [156]廖启林,华明,金洋,等.江苏省土壤重金属分布特征与污染源初步研究[J].中国地质,2009,36(5):1163-1174.
    [157]中国国家环境保护局.中国土壤元素背景值[M].北京:中国环境科学出版社,1990:100-200.
    [158]叶琛,李思悦,张全发.三峡库区消落区表层土壤重金属污染评价及源解析[J].中国生态农业学报,2011(01):146-149.
    [159]吴春笃,瞿俊,李明俊,等.镇江内江底泥重金属分布特征及潜在生态危害评价[J].中国环境监测,2009,25(5):90-94.
    [160]郑志侠,潘成荣,丁凡.巢湖表层沉积物中重金属的分布及污染评价[J].农业环境科学学报,2011,30(1):161-165.
    [161]郭海全,杨志宏,李宏亮,等.河北平原表层土壤重金属环境质量及污染评价[J].中国地质,2011,38(1):218-225.
    [162]张丽红,徐慧珍,于青春,等.河北清苑县及周边农田土壤及农作物中重金属污染状况与分析评价[J].农业环境科学学报,2010,29(11):2139-2146.
    [163]汤洁,陈初雨,李海毅,等.大庆市建成区土壤重金属潜在生态危害和健康风险评价[J].地理科学,2011(01):117-122.
    [164]罗燕,秦延文,张雷,等.大伙房水库表层沉积物重金属污染分析与评价[J].环境科学学报,2011,31(5):987-995.
    [165] Zhiyuan W, Dengfeng W, Huiping Z, et al. Assessment of Soil Heavy Metal Pollution withPrincipal Component Analysis and Geoaccumulation Index[J]. Procedia EnvironmentalSciences,2011,10(Part C):1946-1952.
    [166]侯千,马建华,王晓云,等.开封市幼儿园土壤重金属生物活性及潜在生态风险[J].环境科学,2011(06):1764-1771.
    [167]徐争启,倪师军,庹先国,等.潜在生态危害指数法评价中重金属毒性系数计算[J].环境科学与技术,2008,31(2):112-115.
    [168]李祥平,齐剑英,王春霖,等.云浮Tl污染区水体重金属分布特征及污染评价[J].环境科学,2011,32(5):1321-1328.
    [169]余辉,张文斌,余建平.洪泽湖表层沉积物重金属分布特征及其风险评价[J].环境科学,2011,32(2):437-444.
    [170]王爱军,叶翔,李团结,等.近百年来珠江口淇澳岛滨海湿地沉积物重金属累积及生态危害评价[J].环境科学,2011,32(5):1306-1314.