转座子Ds的水稻转化及其在杂交后代中的跳跃分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
将转座子标签法应用于水稻,构建水稻突变体库,是进行功能基因组学研究的重要手段。本研究将双元表达载体CamDs转入水稻中,发展了一个带有基因捕获器的Ac/Ds激活转座子系统作为插入标签来研究水稻基因组。主要研究结果分述如下:
     1.利用农杆菌介导的转化方法,将CamDs载体转入水稻品种秀水11,获得了62个独立可育的转基因株系。
     2.对转Ds因子T_1代株系及转Ac基因T_1代株系进行了PCR检测,PCR结果证明分别有92.8%和93.5%的转Ac株系和转Ds株系为阳性。32个样品的Southern杂交检测结果表明,Ac/Ds确已整合到水稻基因组中并可稳定遗传给子代,且拷贝数多为1~2个。
     3.转Ds植株T_0代、T_2代以及转Ac植株T_0代、T_1代经过抗性筛选,移入大田。先后共构建了290个杂交群体,其中Ac×Ds杂交群体234个,Ds×Ac杂交群体56个。
     4.本研究对12个杂交组合的108株水稻进行了Ds转座分析。杂交F_1代水稻苗经过抗性筛选,苗期进行Basta抗性检测及PCR检测,验证了杂交种中Ds转座事件的发生。检测结果表明,Ds因子的转座频率在0~50%的范围,平均转座频率约13%。
     5.对经过抗性筛选的杂交种F_1代在不同发育阶段、不同器官取样进行GUS染色。结果表明,杂交植株A4-1在开花期时花和叶子均有gus基因的表达。说明本研究中的基因捕获器能够捕获到特异时期特异基因的表达。
     6.转基因植株及其后代出现了一些可见的形态突变,包括Ds31-1的穗型突变、Ds147的黄叶子突变、Ds9的细高秆突变以及其他一些突变类型,如白化苗、斑纹状叶片、分蘖早、苗期生长快、叶角大等。这些形态突变是否与T-DNA插入有关还需进一步验证。
Transposon tagging is an important tool for the study of functional genomics. By constructing the binary vector CamDs and transformation mediated by Agrobacterium, we developed an Ac/Ds transposon system that could be used for both gene trapping and activation tagging. The following results are obtained :
    1. Through Agrobacterium-mediated transformation, 62 independent fertile transgenic rice lines were produced.
    2. In T1 generations, 92.8% Ac lines and 93.5% Ds lines were identified as transgenic plants by PCR analysis. Southern blotting analysis for 32 independent transgenic plants indicated that the maize transposable element Ac/Ds had been integrated into the rice genome and most integration was one or two insertion sites.
    3. Resistance assay was applied to TO, T2 transgenic Ds rice and TO, T1 transgenic Ac rice. The resistant plants were planted in field. In order to induce transposition of the inserted Ds elements, the Ds-inserted transgenic plants were crossed with the transgenic plants carrying AcTPase. A population of about 290 hybrids consisting of Ac × Ds and Ds × Ac was constructed in this study.
    4. For the F1 population of Ac × Ds crossing offspring, 108 single hybrid plants of 12 combinations were studied. First, the hybrids consisting of both Ac and Ds were screened by hygromycin and kanamycin. Second, we could estimate that Ds were excised based on the Basta-resistance analysis. Third, the excision frequency of Ds element was evaluated with PCR amplification. If Ds element did not excise, PCR amplification would fail because of the long distance (8.3kb) between the two primers. Otherwise, a 860bp DNA fragment would be amplified. The result indicated that the excision frequency of Ds element trans-activated by Ac transposase was from 0 ~ 50% and the average excision frequency was about 13%.
    5. To assess the efficiency of gene trapping using the gus reporter gene, we
    
    
    
    examined GUS expression patterns in various organs of F1 hybrids in different growth periods. The hybrid plant A4-1 displayed GUS expression in flowers and leaves at the flowering stage. This result implied that the gene trap system was able to identify the specific organs that were GUS positive at specific stage.
    6. Of transgenic TO lines and T] generations, some plants showed morphological aberrations, including dense spike (Ds31-l), yellow leaf (Ds147), slender (Ds9), albino, stripe, early tillering, growth promotion, leaf with big angle. Further molecular analysis is in necessity to testify whether these morphological aberrations are linked to T-DNA insertion or not.
引文
1.曹孟良等.农杆菌介导水稻高效遗传转化体系的建立.湖南农业大学学报,1999,25(5):349-356.
    2.华东师范大学生物系植物教研室主编.植物生理学实验指导.北京:人民教育出版社,1981.
    3.刘巧泉等.根癌农杆菌介导的水稻高效转化体系的建立.植物生理学报,1998,24(3):259-271.
    4.卢扬江,郑康乐.一种简易提取水稻DNA的方法.中国水稻科学,1992,6(1):47-48.
    5.王赟等.水稻稀穗突变体的遗传分析及基因的精细定位.科学通报,2003,48(15):1666-1670.
    6.王石平,刘克德,张启发.水稻基因组中的节段重复.植物学报,2000,42(11):1150-1155.
    7.郑雷英等.水稻穗部突变体C1的形态和定位分析.科学通报,2003,48(3):264-267.
    8.朱正歌等.水稻转座子突变体库的构建及突变类型的遗传分析.生物工程学报,2001,17(3):288-292
    9. Aldemita RR, Hodges TK. Agrobacterium tumefaciens-mediated transformation of japonica and indica rice varieties. Planta, 1996, 199: 612-617.
    10. Bancroft I, Dean C. Transposition pattern of the maize element Ds in Arabidopsis thaliana. Genetics, 1993, 134: 1221-1229.
    11. Bancroft I, Dean C. Factors affecting the excision frequency of the maize transposable element Ds in Arabidopsis thaliana. Mol Gen Genet, 1993, 240: 65-72.
    12. Barakat A, Gallois P, Raynal M et al. The distribution of T-DNA in the genomes of transgenic Arabidopsis and rice. FEBS Lett, 2000, 471: 161-164.
    13. BINNS A N. Agrobacterium-mediated gene delivery and the biology of host range limition. Physiol Plant, 1990, 79: 135-139.
    14. Chan MT, Lee TM, Chang HH. Transformation of indica rice (Oryza sativa L.) mediated by agrobacterium tumefaciens. Plant Cell Physiol, 1992, 33: 577-583.
    15. Chan MT, Chang HH, Ho SL et al. Agrobacterium mediated production of transgenic rice plants expressing a chimeric a-amylase promoter/β-glucuronidase gene. Plant Mol Biol, 1993, 22: 491-506.
    
    
    16. Charng YC, Pfitzner AJP, Pfitzner UM et al. Construction of an inducible transposon, INAc, to develop a gene tagging system in higher plants. Molecular Breeding, 2000, 6: 353-367.
    17. Chen S, Zhang QE Improvement of bacterial blight resistance of hybrid rice by molecular marker-assisted selection. Journal of Huazhong Agricultural University, 2000, 19(3): 183-189.
    18. Chen S Y, Jin W Z, Wang M Y, et al. Distribution and Characterization of over 1000 T-DNA tags in rice genome. Plant J, 2003, 36:105-113.
    19. Chert XY. Agrobacterium transformation rice plants expressing synthetic CrylAcb and Cryl A(c) gene are highly tro to striped stem borer an yellow stem borer. Proc Natl Sci USA, 1998, 95: 1-6.
    20. Chen Z-G (陈兆贵), Wang J(王江), Zhang Z-M (张泽民) et al. Selection and identification of Ds insertion homozygotes in rice (Oryza sativa L.). Journal of Plant Physiology and Molecular Biology, 2003, 29(4): 337-341.
    21. Chilton MD, Drummond MH, Merio DJ et al. Stable incorporation of plasmid DNA into higher plant cells: the molecular basis of crown gall tumorigenesis. Cell, 1977, 11: 263-271.
    22. Chilton MD, Montoya AL, Merlo DJ et al. Restriction endonuclease mapping of a plasmid that confers oncogenicity upon Agrobacterium tumefaciens strain B6-806. Plasmid, 1978, 1: 254-269.
    23. Chin HG, Choe MS, Lee SH et al. Molecular analysis of rice plants harboring an Ac/Ds transposable element-mediated gene trapping system. Plant J, 1999, 19:615-623.
    24. Dong JJ, Teng WM, Buchholz WG et al. Agrobacterium-mediated transformation of javanica rice. Molecular Breeding, 1996, 2: 267-276.
    25. Dooner HK, Weck E, Favreau M. A molecular genetic analysis of insertions in the Bronze locus in maize. Mol Gen Genet, 1985, 200: 240-246.
    26. Dooner HK, Belachew A. Transposition pattern of the maize element Ac from the bz-m2 (Ac) allele. Genetics, 1989, 122: 447-457.
    27. Dooner HK, Keller J, Harper E et al. Variable patterns of transposition of the maize element activator in tobacco. Plant Cell, 1991, 3: 473-482.
    28. Enoki H, Izawa T, Kawahara M et al. Ac as a tool for the functional genomics of rice. Plant J, 1999, 19: 605-613.
    29. Fedoroff N, Furtek D, Nelson O. Cloning of the Bronze locus in maize by a simple and
    
    generalizable procedure using the transposable controlling element activator(Ac). Proc Natl Acad Sci USA, 1984, 81: 3825-3829.
    30. Fedoroff NV, Smith DL. A versatile system for detecting transposition in Arobidopsis. Plant J, 1993, 3: 273-289.
    31. Foster E, Hattori J, Labbe H et al. A tobacco cryptic constitutive promoter, tCUP, revealed by T-DNA tagging. Plant Mol Biol, 1999, 41(1): 45-55.
    32. Greco R, Ouwerkerk BF, Sallaud C et al. Transposon insertional mutagenesis in rice. Plant Physiol, 2001, 125: 1175-1177.
    33. Hayashi H, Czaja I, Lubenow H et al. Activation of a plant gene by T-DNA tagging: auxin-independent growth in vitro. Science, 1992, 258: 1350-1353.
    34. Healy J, Corr C, Deyoung J et al. Linked and unlinked transposition of a genetically marked Dissociation element in transgenic tomato. Genetics, 1993, 134: 571-584.
    35. Hiei Y, Ohta S, Komari T et al. Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J, 1994, 6: 271-282.
    36. Hiei Y, Komari T, Kubo T. Transformation of rice mediated by Agrobacterium tumefaciens. Plant Mol Biol, 1997, 35: 205-218.
    37. Hirochika H, Sugimoto K, Otsuki Y et al. Retrotransposons of rice involved in mutations induced by tissue culture. Proc Natl Acad Sci USA, 1996, 93: 7783-7788.
    38. Hirochika H. Retrotransposons of rice: their regulation and use for genome analysis. Plant Mol Biol, 1997, 35: 231-240.
    39. Hobbs SL, Kpodar P, DeLong CM. The effect of T-DNA copy number, position and methylation on reporter gene expression in tobacco transformants. Plant Mol. Biol, 1990, 15: 851-864.
    40. Hu G, Fu Y, Si H et al. Improvement of the activation-tagging vector for rice transformation and construction of rice mutant pool. International rice congress abstract. Beijing, China, 2002, PP.277.
    41. Ishida Y, Satia H, Ohta S et al. High efficient transformation of maize (zea mays L.) mediated by Agrobacterium tumefaciens. Nature Bio Technol, 1996, 14: 745-750.
    42. Ito T, Motohashi R, Kuromori T et al. A new resource of locally transposed dissociation
    
    elements for screening gene-knockout lines in silico on the Arabidopsis genome. Plant Physiol, 2002, 129: 1695-1699.
    43. Ito T, Seki M, Hayashida N et al. Regional insertional mutagenesis of genes on Arabidopsis thaliana chromosome V using the Ac/Ds transposon in combination with a cDNA scanning method. Plant J, 1999, 17: 433-444.
    44. Izawa T, Ohnishi T, Nakano T et al. Transposon tagging in rice. Plant Mol Biol, 1997, 35: 219-229.
    45. Izawa T, Miyazaki C, Yamamoto M et al. Introduction and transposition of the maize transposable element Ac in rice (Oryza sativa L.). Mol Gen Genet, 1991, 227: 391-396.
    46. Jefferson R A, Kavanagh T A, Bevan M W et al. GUS fusion: β-glucuronidase as a sensitive and versatite gene fusion marder in higher plant. EMBO J, 1987, 6: 3901-3907.
    47. Jeon JS, Lee S, Jung KH et al. T-DNA insertional mutagenesis for functional genomics in rice. Plant J, 2000, 22: 561-570.
    48. Jeong DH, An S, Kang HG et al. T-DNA insertional mutagenesis for activation tagging in rice. Plant Physiol, 2002, 130: 1636-1644.
    49. Jin WZ, Wang SM, Xu M et al. Characterization of enhancer trap and gene trap harboring Ac/Ds transposon in transgenic rice. Journal of Zhejiang University Science, 2004, 5(4): 390-399.
    50. Jones JDG, Carland FM, Maliga P et al. Visual detection of transposition of the maize element Activator (Ac) in tobacco seedlings. Science, 1989, 244: 204-207.
    51. Koprek T, McElroy D, Louwerse J et al. An efficient method for dispersing Ds elements in the barley genome as a tool for determining gene function. Plant J, 2000, 24: 253-263.
    52. Krizkova L and Hrouda M. Direct repeats of T-DNA integrated in tobacco chromosome: characterization of junction regions. Plant J, 1998, 16 (6): 673-680.
    53. Liu YG, Mitsukawa N, Oosumi T et al. Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR. Plant J, 1995, 8: 457-463.
    54. Matsumoto S, Ito Y, Hosoi T et al. Integration of Agrobacterium T-DNA into a tobacco chromosome: possible involvement of DNA homology between T-DNA and plant DNA. Mol Gen Genet, 1990, 224: 309-316.
    
    
    55. Mayerhofer R, Koncz-Kalman Z, Nawrath C et al. T-DNA integration: a mode of illegitimate recombination in plants. EMBO J, 1991, 10: 697-704.
    56. McClintock B. Cytogenetic studies of maize and Neurospora. Carnegie Inst Wash Yrbk, 1947, 46: 146-152.
    57. McClintock B. Mutable loci in maize. Carnegie Inst Wash Yrbk, 1948, 47: 155-169.
    58. McClintock B. Controlled mutation in maize. Carnegie Inst Wash Yrbk, 1995, 54: 245-255.
    59. Moon SO, Han JJ, Ryu CH et al. Using the gene trap system in rice to isolate genes preferentially expressed in anthers. International rice congress abstract. Beijing, China. 2002. PP. 322.
    60. Nakagawa Y, Machida C, Machida Y et al. Frequency and pattern of transposition of the maize transposable element Ds in transgenic rice plants. Plant Cell Physiol, 2000, 41: 733-742.
    61. Petunia by Fluorescence in situ hybridization: physical evidence for suppression of recombination. Plant Cell, 1996, 8: 823-830.
    62. Philippe V, Babara W, Ajay K et al. Matrix attachment regions increase transgene expression levels and stability in transgenic rice plants and their progeny. The plant J, 1999, 18(3): 233-242.
    63. Potrykus I. Gene transfer methods for plants and cell cultures. Ciba Foundation Symposium, 1990, 154: 198-208.
    64. Raina S, Mahalingam R, Chen F et al. A collection of sequenced and mapped Ds transposon insertion sites in Arabidopsis thaliana. Plant Mol Biol, 2002, 50: 91-108.
    65. Raineri Dm, Bottino P, Gondon MP et al. Agrobacterium mediated transformation of rice (Oryza sativa L.). Bio Technol, 1990, 8: 33-38.
    66. Rashid H, Yokoi S, Toriyama K et al. Transgenic plant production mediated by Agrobacterium in Indica rice. Plant Cell Reports, 1996, 15: 727-730.
    67. Sambrook J, Fritsch EF, Maniatis T. Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, USA, 1989.
    68. Sundaresan V, Springer P, Volpe T et al. Patterns of gene action in plant development revealed by enhancer trap and gene trap transposable elements. Genes Dev, 1995, 9: 1797-1810.
    69. Sundaresan V, Springer P, Volpe T et al. Patterns of gene action in plant development revealed
    
    by enhancer trap and gene trap transposable elements. Genes Dev, 1995, 9:1797-1810.
    70. Sundaresan V. Horizontal spread of transposon mutagenesis: new use of old elements. Trends Plant Sci, 1996, 1: 184-191.
    71. Springer PS. Gene traps: tools for plant development and genomics. Plant Cell, 2000, 12(7): 1007-1020.
    72. Suzuki Y, Uemura S, Saito Y et al. A novel transposon tagging element for obtaining gain-of-function mutants based on a self-stabilizing Ac derivative. Plant Mol Biol, 2001, 45: 123-131.
    73. Szabados L, Kovacs I, Oberschall A et al. Distribution of 1000 sequenced T-DNA tags in the Arobidopsis genome. Plant J, 2002, 32: 233-242.
    74. Ten Hoopen R, Robbins TP, Fransz PF et al. Localization of T-DNA Insertions in Petunia by Fluorescence in Situ Hybridization: physical evidence for suppression of recombination. Plant Cell, 1996, 8: 823-830.
    75. Tinland B. The integration of T-DNA into plant genomes. Trends Plant Sci, 1996, 1:178-184
    76. Thomas CM, Jones DA, English JJ et al. Analysis of the chromosomal distribution of transposon-carrying T-DNAs in tomato using the inverse polymerase chain reaction. Mol.Gen.Genet, 1994, 242: 573-585.
    77. van Enckevort LJG, Lasschuit J, Stiekema WJ et al. Development of Ac and Ds transposon tagging lines for gene isolation in diploid potato. Molecular Breeding, 2001, 7:117-129.
    78. Van Larebeke N, Engler G, Holster M et al. Large plasmid in Agrobacterium turnefaciens essential for crown gall-inducing ability. Nature, 1974, 252: 169-170.
    79. Van Larebeke N, Genetello C, Schell J et al. Acquisition of tumour-inducing ability by non-oncogenic agrobacteria as a result of plasmid transfer. Nature, 1975, 255: 742-743.
    80. Wallroth M, Gerats AGM, Rogers SG et al. Chromosomal localization of foreign genes in Petunia hybrida. Mol. Gen.Genet, 1986, 202: 6-15.
    81. Weigel D, Ahnj H, Blazquez MA et al. Activation tagging in Arabidopsis. Plant Physiol, 2000, 122: 1003-1013.
    82. Wu J, Maehara T, Shimokawa T et al. A comprehensive rice transcript map containing 6591 expressed sequence tag sites. Plant Cell, 2002, 14: 525-535.
    83. Wu CY, Li XJ, Yuan WY et al. Development of enhancer trap lines for functional analysis of
    
    the rice genome. Plant J, 2003, 35: 418-427.
    84. Zaenen I, Van Larebeke N, Van Montagu Met al. Supercoiled circular DNA in crown-gall inducing Agrobacterium strains. J. Mol. Biol, 1974, 86: 109-127.
    85. Zhu Y (朱英), Cai X-L (蔡秀玲), Wang Z-Y (王宗阳). Promoter trapping by using promoterless GUS reporter gene in rice. Journal of Plant Physiology and Molecular Biology, 2003, 29(4): 289-294.