改性活性白土的制备及对甲基橙染料废水的处理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着全世界人口的持续增加和工业农业的不断发展,全球淡水资源状况不容乐观,水资源缺乏,水质恶化,人类将面临严峻的挑战。现在全球约有八十个国家存在着影响其经济发展和国民生活的缺水问题。据统计,我国有2000万人饮水困难,400多座城市严重缺水,水资源严重短缺,水资源的供给与需求存在很大的矛盾,主要原因是水资源分布不均和水资源开发利用率低,而用水量却随国民经济发展迅速增长。如果不采取有效措施,预计2030年我国将会出现缺水高峰。这就使得废水的再生利用已经成为一种必然的趋势。印染工业需求的淡水量非常大,我国工业的排放污水量主要来自印染工业。近年来,国家和地方对印染行业的污水处理非常重视,但由于印染行业所排放的染料废水具有以下特点:水量排放大、难降解的有机物污染含量高、悬浮物含量高、碱性大、颜色深以及COD高,使得我国印染行业废水的平均治理率为75%左右,达标率也仅为30%,因此,研究经济有效的染料废水深度处理技术具有很大的现实意义。甲基橙染料作为印染废水中典型的有机污染物之一,是印染废水处理的主要目标。为此,本文通过静态间歇式吸附法、动态连续式吸附法以及吸附行为对以甲基橙染料的水溶液作为模拟处理的对象进行处理研究,试图找出一种对甲基橙废水进行有效的处理的吸附剂以及吸附方法。
     论文的第一部分首先对全球水资源的概况做一个简要的说明;其次分析了染料废水所产生的危害及污染,并且指出印染废水的排放给人类的生存和生态环境带来了危害;然后对染料废水处理方法的分类进行阐述并且进一步详细说明甲基橙染料废水处理的现状;最后重点说明了使用活性白土(MC)对甲基橙(MO)废水的处理现状。
     论文的第二部分主要通过酸改性制备了一种廉价的吸附剂——改性活性白土(MAC),并使用环境扫描电镜(SEM)、X射线衍射仪(XRD)、能量色散X射线光谱仪(EDX)、和物理吸附等分析手段对制备的吸附剂进行了结构表征;同时用新制备的吸附剂对模拟甲基橙染料废水进行处理研究。结果表明:在288K,pH=7,吸附剂用量为1.0g时.100mL初始浓度为100mg/L的甲基橙染料废水,处理60min后,COD去除率达到81.3%;处理180min后甲基橙染料废水脱色率可以达到96.3%,达到国家排放一级标准。
     论文的第三部分主要研究了活性白土对染料废水中甲基橙水溶液的吸附行为,包括影响吸附作用的因素、吸附等温线、吸附动力学和吸附热力学。吸附平衡实验表明,活性白土对甲基橙的吸附更符合Langmuir模型的吸附行为,属于优惠吸附;动力学研究表明,活性白土对甲基橙的吸附过程非常适合准二级动力学模型,为物理吸附,平衡吸附量随着温度的升高而降低;吸附热力学行为表明,整个吸附过程以物理吸附为主。
     论文的第四部分研究了采用动态连续吸附法使用改性活性白土对甲基橙染料废水进行处理。通过考察不同流速、不同柱高和废水初始浓度的不同对穿透曲线的影响及穿透点的变化情况。得出以下结论:在流速为1.78cm/min、柱高为3.5cm的条件下处理100mg/L的甲基橙废水,其脱色率达到98.9%,穿透曲线的穿透点出现在464min。
With the continued increasing of the world's population and rapid development of industry and agriculture, it is not optimistic with the state of global freshwater resources, water scarcity and water quality deterioration, humans will face severe challenges. Now there are water shortages in about80countries that affect their economic development and national life; more than400cities were faced with severe water shortages, severe water shortages, there is a big contradiction between water supply and demand. The main reason is that the water resources division inequality and exploitation of water resources is low, but with the development of the national economy, water consumption is growing rapidly. Our country will be plagued by drought peak in2030, if we do not take effective measure. This makes the recycling of wastewater has become an inevitable trend. A great deal of fresh water was demanded for printing and dyeing industry, and a great lot of industrial effluent was discharged from the dyeing industry in China. In recent years, the importance of national and local printing and dyeing industry wastewater treatment was recognized, which has the character of large volume of water emission, the high content of biodegradable organic pollution, high levels of suspended solids, alkaline, deep color and high COD, it makes that average control rate of about75%of the textile dyeing industry wastewater, the compliance rate was only30%. Therefore, the research cost-effective advanced wastewater treatment technology for dyes has great practical significance. Methyl orange as one of the typical organic pollutants in the printing and dyeing wastewater is the main objective of the printing and dyeing wastewater. In this paper, static batch adsorption, dynamic continuous adsorption and adsorption behavior of aqueous solution of methyl orange as the analog processing object were investigated, in order to find an effective adsorbent adsorption of methyl orange wrastewater.
     In the first part, first global overview of water resources was introduced. Followed by analysis of the hazards and pollution generated by the dye wastewater, at the same time, bring harm to human existence and the ecological environment and pointed out that the printing and dyeing wastewater discharge. Then, the classification of the dye wastewater treatment methods and further detailed description of the status quo of methyl orange dye wastewater treatment were described; Finally, the use of activated clay(MC), methyl orange(MO) wastewater processing status was presented.
     In the second part, a low-cost adsorbent modified activated clay (MAC) was prepared by acid modified, and the characterization of the prepared adsorbents was performed using environmental scanning electron microscope (SEM), X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX), physical adsorption analyzer and other analytical methods. The methyl orange dyeing wastewater was treatment by modified activated clay, the experimental results show that: at pH7, adsorbent dosage of1.0g,100mL of the initial concentration of100mg/L methyl orange dye wastewater, COD removal efficiency reached81.3%at288K after60min, the decolorization rate reached96.3%after180min. Treated wastewater can reach the first grade level of wastewater discharge standards.
     In the third part, the behavior of activated clay on the adsorption of methyl orange aqueous solution was investigated, which including the factors that affect the adsorption, adsorption isotherms, adsorption kinetics and adsorption thermodynamics. The adsorption equilibrium experiments show that activated clay adsorption of methyl orange is more in line with the Langmuir model, and the adsorption behavior are preferential adsorption; Kinetic studies showed that the adsorption process of methyl orange on activated clay is very suitable for the pseudo second order kinetic model, equilibrium adsorption capacity is reduced with increasing temperature. The adsorption thermodynamic behavior of the whole adsorption process is mainly physical adsorption.
     In the forth part, methyl orange dyeing wastewater was treated by modified activated clay using the dynamic continuous adsorption. The effect of different breakthrough curves and the penetration point by different flow rates, different column height and wastewater initial concentration was investigated. The experimental results show that:the flow rate of1.78cm/min, column height of3.5cm with the initial concentration of100mg/L methyl orange wastewater, the decolorization rate reached98.9%, and penetration point of the breakthrough curve in464min were obtained.
引文
[1]袁海源.纺织染整废水的再生利用研究与回用水水质标准的制定[D].上海:华东大学,2008.
    [2]关平.全球淡水资源状况分析[J].福建环境,1995,1(03):31-34.
    [3]Wensen Chu, Alex C-H Ching, Adsorotion of acid form aqueous solutions onto acid activated bentonit[J]. Desalination&Water Reuse,2002,11(4):16.
    [4]侯文俊,余发健,印染废水处理工艺进展[J].工业用水与废水,2004,35(2):57-60.
    [5]程云,周启星,马奇英.染料废水处理技术的研究与进展[J].环境污染治理技术与设备,2003,4(6):56-60.
    [6]余欣,吴赞敏.国内外印染废水处理情况对比研究[J].济南纺织化纤科技.2008(3):12-14.
    [7]C. I. Pearce, J. R. Lloyd, J. T. Guthrie. The removal of color from fextile wastewater using whole bacterial cells[J]. Dyes and Pigments,2003,58(3):179-196.
    [8]王立旋,马宏瑞,韩德宝.有机粘土吸附酸性染料废水研究[J].印染助剂,2011,28(3):40-43.
    [9]李鹏刚,张斌.阳离子染料可染涤纶纤维的染色工艺[J].化纤与纺织技术.2011,40(1):1-5.
    [10]张正宇,郑春玲,季媛.腈纶直接染料染色工艺[J].毛纺科技.2010,38(3):27-29.
    [11]孙莎莎,许桥,董召虹.分散染料结构对涤锦交织物染色的影响[J].印染工业.2011.13(1):9-13.
    [12]赵玉华,苍晓艺,赵首权.直流电和交流电凝聚法处理偶氮染料废水的对比研究[J].沈阳建筑大学学报,2011,27(1):125-129.
    [13]余艳娥,汤雷.木棉纤维活性染料的染色工艺研究[J].河北纺织,2011,41(3):43-46.
    [14]王文利,位青松,张晓飞.硫化染料的开发及其应用性能的拓展[J].染料与染色,200,45(6):8-10.
    [15]邢其毅,徐瑞秋,周政.基础有机化学(下册)[M].高等教育出版社,1995,822-825.
    [16]杨蒲仙.印染废水水质及其处理途径[J].中国水污染防治技术,1999,43(6):61-65.
    [17]曹凤.印染废水水质特征及处理技术[J].科学与技术,2007,19(3):286-296.
    [18]戴日成.印染废水水质特征及处理技术综述[J].工业给排水,2000,26(3):33-41.
    [19]孙政.印染废水水质特征及生物处理技术综述[J].煤矿环境,2007,7(1):62-63.
    [20]陈婷.浅谈印染废水水质特征及处理技术[J].工程设计与应用研究,2007,(2):89-92.
    [21]朱宏飞,李定龙,朱传为.印染废水的危害及源头治理举措[J].环境科学与管理,2007,32(11):89-92.
    [22]刘北辰.从“水俣病”谈汞中毒的防治[J].职业卫生,2006.
    [23]王哲荣,赵婷.水体富营养化的成因危害及防治[J].河南农业,2012,1:21-25.
    [24]刘扬扬,靳铁胜,扬瑞坤.浅析水体富营养化的危害及防治[J].中国水运,2011,11(5):151-152.
    [25]储金宇,曹凯杰.印染废水处理技术综述[J].安徽农业科学,2007,35(7):2040-2042.2060.
    [26]余雁.工业印染废水处理技术的探讨[J].沿海企业与科技,2009,5:34-38.
    [27]梅拥军.工业印染废水处理技术综述[J].广东化工,2010,6(37):219-222.
    [28]陈虎.浅议印染废水处理技术的现状[J].科技视界,2012,4:133-136.
    [29]赵雪,何谨馨,展义臻.印染废水处理技术的研究进展[J].化学工业与工程技术,2011,11(9):24-27.
    [30]刘亮,安晓玲,李雅轩.印染废水处理技术的研究现状[J].河北工业科技,2008,25(3):178-181.
    [31]王辉,张钥,李朗晨.印染废水处理技术现状及发展趋势[J].现代商贸工业,2009,10(1):279-281.
    [32]李炳金,易绍金.印染废水处理技术研究[J].长江大学学报,2009,6(3):144-147.
    [33]黄利三.水处理新工艺新技术与工程方案设计及质量检验标准规范实用全书[M].重庆:银声音像出版社,2004:27-28.
    [34]古志攀,何少华.硅藻土吸附废水中染料的研究[J].矿业快报,2008,(7):43-44.
    [35]M. A. M. Khraisheh, M. A. Al-Ghouti, S. J. Allen, M. N. Ahmad. Effect of OH and silanol groups in the removal of dyes from aqueous solution using diatomite[J]. Water Research,2005,39(5):922-932.
    [36]骆广生,吕阳成.电泳萃取技术用于回收染料[J].环境保护,1999,(1):14-15.
    [37]杨秀红,郝军,孙衍宁.溶剂萃取法处理含酚废水.大连轻工业学校学报,2005,24(4):252-254.
    [38]孙红梅,成坚.纳滤膜法处理活性染料染色费水试验研究[J].水处理技术,2009,35(8):103-106.
    [39]高世江,顾志恒.印染废水处理技术应用与研究进展[J].污染与防治,2008,26:132-133.
    [40]G. M. Walker, L. R. Weatherley. Adsorption of acid dyes on tu granuler activated carbon in fixed beds[J]. Water Research,1997,31(8):2093-2101.
    [41]C. Namasivayam, D. Kavitha. Removal of Congo red from water by adsorption onto activated carbon prepared from coir pith, an agricultural solid waste[J]. Dyes and Pigments,2002,54(1):47-58.
    [42]K. Nakagawa, A. Narnba. Adsorption of phenol and reactive dye from aqueous solution on activated carbons derived from solid wastes[J]._Water Research,2004,38(7): 1791-1798.
    [43]N. Kannan, M. M. Sundrarm. Kinetics and mechanism of removal of methylene blue by adsorption on various carbons-a comparative study[J]. Dyes and Pigments,2001, 51(1):25-40.
    [44]V. Meshko, L. Markovska, M. Mincheva, A. E. Rodrigues. Adsorption of basic dyes on granular activated carbon and natural zeolite[J]. Water Research,2001,35(14): 3357-3366.
    [45]陨晨,黄庆.活性炭吸附法去除印染工业废水色度的试验与研究[J].四川环境,2006,25(4):29-34.
    [46]杨静全.活性炭在水中的吸附应用.天津工业大学.2010,3:148-149.
    [47]滕宗焕,陈建中.改性粉煤灰的吸附机理及其在废水处理中的应用[J].西南给排水,2007,29(4):22-28.
    [48]常品茹.粉煤灰在印染废水治理中的应用[J].能源环境保护,2008,22(2):22-24.
    [49]朱健,王平,罗文连.硅藻土吸附重金属离子研究现状及进展[J].中南林业科技大学学报,2011,31(7):183-189.
    [50]古志攀,何少华.硅藻土吸附废水中染料的研究[J].矿业快报,2008,(7): 43-44.
    [51]Jing Fan, Yanhui Guo, Jianji Wang. Rapid decolorization of azo dye methyl orange in aqueous solution by nanoscale zerovalent iron particles[J]. Journal of Hazardous Materials,2009,166:904-910.
    [52]王海霞,何海宾,谷晋川.粉煤灰絮凝剂处理甲基橙废水的实验研究[J].科技信息,2011,5:535-537.
    [53]王磊,复璐,鲁栋梁.二氧化钛紫外光催化降解甲基橙废水的实验研究[J].化学与生物工程,2010,27(3):27-31.
    [54]梁山景,程建萍,陈长琦.功率超声处理甲基橙废水的实验研究[J].合肥工业大学学报,2010,33(10):1563-1566.
    [55]徐文倩,徐春霖,周益洪.微波协同活性炭处理甲基橙废水的研究[J].江苏环境科学,2008,21(2):33-36.
    [56]马子川,蒋兰宏,霍庆.新生Mn02对甲基橙废水的脱色特性研究[J].城市环境与城市生态,2001,14(5):23-27.
    [57]姜桂兰,张培萍.膨润土加工与应用[M].化学工业出版社,2005,4:13-78.
    [58]王世杰,陈丰.膨润土的酸化脱色机理研究[J].矿物学报,1993,13(14):325-330.
    [59]王德强,郭九皋,王辅亚.酸化蒙脱石成分和结构影响的研究[J].矿物学报,1998,18(2):189-193.
    [60]Nade da Jovanvi, Joran Jana Kovi. Pore structure and adsorption properties of an acid activated bentonite[J]. Applied Clay Science,1991,6(1):59-68.
    [61]晏得珍,何玉凤,王艳.膨润土的改性及在废水处理中的应用研究近战[J].水处理技术,2009,35(5):25-29.
    [62]刘晓东,马小隆,吕宪俊.活性白土制备工艺条件优化研究[J].非金属矿,2004,27(3):30-33.
    [63]王翠珍,周广枉,冯承莲.活性白土对溶液中重金属离子的吸附性能研究[J].中国非金属矿工业导刊,2005,4:49-52.
    [64]钱俊青,梁昌海,朱菁.活性白土吸附处理酵母发酵废水[J].离子交换与吸附,2010,26(5):464-469.
    [65]刘晓明,马小隆,刘心悦.用活性白土吸附剂处理含铬电镀废水的初步试验[J].能源环境保护,2005,19(6):24-27.
    [66]高晓薇,韦藤幼,潘远凤,等.活性白土的化学改性及其作用机理研究[J].广西大学学报,2010,35(3):411-414.
    [67]苗硕.中国淡水资源现状与保护措施探讨[J].现代商贸工业,2010,17:19-25.
    [68]李慧,王建中,张萍,等.印染废水处理技术研究进展[J].广东化工,2010,8(3):19-25.
    [69]常爱荣,孙谨.印染废水处理工艺研究进展[J].广东化工,2010,9:217-219.
    [70]高世江,顾志恒.印染废水处理技术应用于研究进展[J].污染与防治,2008,26:27-28.
    [71]亢宇,鲁安怀,周平.天然粘土对有机污染物的吸附结果与讨论[J].中国非金属矿工业导刊,2003,2:42-44.
    [72]王立璇,马宏瑞,韩德宝.有机粘土吸附酸性染料废水研究[J].印染助剂,2011,28(3):39-43.
    [73]兰黄鲜.天然粘土改性的研究进展[J].中国粉体工业,2011,14(1):11-14.
    [74]G. Moussavi, M. Mahmondi. Removal of azo and anthraquinone reactive dyes from industrial wastewaters using MgO nanoparticles[J]. J. Hazard. Mater,2009,168: 806-812.
    [75]A. Denizli, N. Cihangir, A.Y. Rad, M. Taner, G. Alsancak, Removal of chlorophenols from synthetic solutions using Phanerochaete chrysosporium[J]. Process Biochem,39 (2004):2025-2030.
    [76]S. Karcher, A. Kornmuller, M. Jekel, Anion exchange microspheres for removal of reactive dyes from textile wastewaters[J]. Water Res.2002 (36) 4717-724.
    [77]陈丽萍.活性白土吸附去除苯酚废水的实验研究[J].内蒙古师范大学学报(自然科学汉文版),2009,38(4):430-434.
    [78]A. Vinu, K. Z. Hossian, P. Srinivasu, et al. Carboxy-Mesoporous Carbon and Its Excellent Adsorption Capability for Proteins[J]. J. Mater. Chem,2007,17(18): 1819-1825.
    [79]H. Paul. W. Tomasz, R. Pedro, et al. Use of Ordered Mesoporous Materials as Tools for Organic and Bioorganic Synthesis[J]. Chem Inform,2008,39(38):107-118.
    [80]刘德军,范显华,章英杰.Tc在Ca-基膨润土中的吸附行为[J].核科学与工程,2004,(02):14-17.
    [81]章英杰,冯孝贵,梁俊福.超铀元素Am在膨润土上的吸附行为研究[J].世界核地质科学, 2008,(01):117-123.
    [82]刘宇飞.活性炭和沸石滤柱对邻苯二甲酸酯的去除效果试验研究[D].重庆大学,2008.
    [83]李梁波,池涌,陈耿.甲苯气体的动态吸附净化及吸附剂再生实验研究[J].环境 污染与防治,2011,(09):113-117.
    [84]王勋来,曾英,李哲.膨润土对核素的吸附行为研究[J].应用化工,2012,41(3):502-505.
    [85]金叶,章宏梓,吴礼光.纳滤膜对邻苯二甲酸脂的动态吸附行为及截留特征[J].水处理技术,2011,37(12):59-63.
    [86]李江涛,梁姣娇.介空碳材料对蛋白质的吸附行为[J].光谱实验室,2012,29(2):871-874.
    [87]钟倩倩,岳钦艳,李倩.改性麦草秸秆对活性艳红的吸附动力学研究[J].山东大学学报,2011,41(1):134-137.
    [88]周烈兴,彭金辉,钱天才.活性炭对甲苯的吸附及其等温线预测[J].化学反应工程与工艺,2011,27(2):188-192.
    [89]徐冬,张军,李刚.CO2和H2O在活性炭上的吸附平衡和吸附动力学研究[J].无机材料学报,2011,27(2):140-144.
    [90]孙兆通.关于Freundlich吸附等温式在废水处理应用中几个问题的探讨[J].环境科学,2011,2(1):53-55.
    [91]王重庆,顾小红.国产药用活性炭Freundlich等温吸附经验式的确立[J].中国生物医学工程学报,2004,3(1):68-71.
    [92]赵芳,吴晓芙,张艳丽.固液相离子吸附体系中吸附剂浓度效应与Langmuir方程的实用性[J].环境化学,2007,26(3):336-339.
    [93]李银丽,张思忠,张丽君.麦壳吸附亚甲基蓝的Langmuir模型研究[J].遵义师范学院学报,2009,11(1):65-67.
    [94]林玉锁Langmuir, Temkin(?)Freundlich方程应用于土壤吸附锌的比较[J].环境科学,200913(7):32-34.
    [95]Y. S. Ho, G. McKay. Pseudo-second order model for sorption precesses[J]. Process Biochem,1999,34:451-465.
    [96]S. Lagergren. Zur theorie der sogenannten adsorption geloester stoffe[J]. Kungliga Svenska Vetenskapsakad,1898,24:1-39.
    [97]Y. S. Ho, G. McKay, Sorption of dye from aqueous solution by peat[J]. Chem. Eng. J,2000,70:115-124.
    [98]S. H. Chien, W. R. Clayton. Application of Elovich equation to the kinetics of phosphate release and sorption on soils[J]. Soil Sci. Soc. Am. J,2007,44: 265-268.
    [99]B. O. zkaya. Adsorption and desorption of phenol on activated carbon and a comparison of isotherm models[J] Hazard. Mater,2006,129:158-163.
    [100]M. Alkan, Demirbas, S. C. elikc apa, M. Dogan, Sorption of acid red 57 from aqueous solution onto sepiolite[J] Hazard. Mater,2004,116 (1-2):135-145.