镉胁迫对二种不同耐性豆科植物生长与活性氧代谢的影响及水杨酸对镉毒害的缓解效应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镉(Cd)是对植物最具毒害作用的环境污染物之一,它可干扰植物的许多生理生化过程,如干扰光合作用、呼吸作用、氮和蛋白质代谢以及营养元素的吸收。
     本研究以10种豆科植物为材料,采用溶液培养法对其进行了Cd耐性的对比研究。种子萌发和幼苗生长的结果表明:绿豆(Phaseolus aureus)是Cd敏感植物,箭舌豌豆(Vicia Sativa)是Cd耐性植物。
     研究了10-100μM Cd (CdCl2)(?)(?)种12h对萌发的绿豆和箭舌豌豆种子内以及100μM Cd处理幼苗3d对幼苗叶片中一些生理生化特性的影响。结果表明:≥50μM Cd处理降低了绿豆和箭舌豌豆萌发种子内蛋白酶活性和游离氨基酸含量,但增加了其中的硫代巴比妥酸反应产物(TBARS,Thiobarbituric acid reactive substances)含量;100μMCd降低了二种植物的根系活力、叶片的叶绿素含量及光合作用、硝酸还原酶活性和硝态N、Ca、Mg、Fe、Zn和Mo元素的含量。这些参数的降低在绿豆幼苗中较为明显。
     研究了100μM Cd (CdCl2)处理期间绿豆和箭舌豌豆叶的超氧化物歧化酶(Superoxide dismutase, SOD)、抗坏血酸过氧化物酶(Ascorbate peroxidase, APX)、过氧化氢酶(Catalase, CAT)、谷胱甘肽还原酶(Glutathione reductase, GR)和愈创木酚过氧化物酶(Guaiacol peroxidase, GPOD)活性以及还原型谷胱甘肽(Reduced glutathione, GSH)和抗坏血酸(Ascorbic acid, ASC)含量的变化。结果表明:在Cd处理9d期间,绿豆和箭舌豌豆叶的SOD、APX和CAT的活性以及绿豆叶GR活性呈先升后降的趋势,而绿豆和箭舌豌豆叶的GPOD以及箭舌豌豆叶的GR活性呈上升趋势。与此同时,绿豆叶的GSH和ASC含量呈下降的趋势,箭舌豌豆叶的GSH则先稍有下降、后升到对照的水平,ASC含量的变化不明显。与绿豆相比,CAT、APX和SOD活性在箭舌豌豆叶中较高。
     采用组织化学染色法观察了100μMCd (CdCl2)处理6d后绿豆和箭舌豌豆幼苗叶内超氧阴离子(O2·-)和过氧化氢(H2O2)的积累。结果发现:Cd处理明显增加了二种植物叶片中O2·-和H202的量、质膜NADPH氧化酶活性以及共质体和质外体中SOD和APX的活性;二种植物叶片中,尤其是绿豆叶片质外体的GPOD明显升高;依赖于H2O2的CeCl3沉淀颗粒主要定位在细胞壁和胞外空间,少量的定位于叶绿体中,依赖于O2·-的二甲基联苯胺(DAB)沉淀颗粒主要定位于叶绿体、细胞壁以及胞外空间,这表明Cd处理使二种植物叶产生了02·-和H2O2,且在绿豆的叶绿体和胞外空间生成的较多。
     采用NADPH氧化酶的抑制剂二苯基碘(DPI)和POD的抑制剂叠氮化钠(NaN3)的研究结果表明:在二种植物叶内,Cd诱导积累的ROS主要来源于质膜NADPH氧化酶和质外体过氧化物酶。和箭舌豌豆叶相比,绿豆叶中Cd诱导产生的O2·-和H202、质膜NADPH氧化酶和质外体过氧化物酶活性升高更明显。相比之下,箭舌豌豆叶共质体有较高的SOD和APX活性。
     研究了水杨酸(Salicylic acid,SA)对Cd毒害的可能性缓解作用。结果显示:50μM Cd (CdCl2)明显增加了绿豆和箭舌豌豆根系中电解质泄漏率和TBARS含量。100μMSA浸种16h或预处理幼苗16h缓解了Cd对二种植物生长的抑制作用,降低了Cd造成的氧化伤害。SA浸种比SA预处理幼苗对Cd毒害的缓解效果更好。100μM SA浸种降低了O2·-和H2O2在二种植物根细胞壁上的产生,这个作用在绿豆的根中更明显。结果还表明SA的缓解效应可能与SOD和APX活性的上调有关。
Cadmium (Cd) is one of the most toxic environmental pollutants for plants. Cd can interfere with numerous biochemical and physiological processes including photosynthesis, respiration, nitrogen and protein metabolism, and nutrient uptake. In the present study, ten species were compared in solution culture experiments to investigate the resistance of leguminous plants to excessive Cd. Based on the seed germination and seeding growth, common vetch (Vicia Sativa) and mung bean (Phaseolus aureus) were chosen as two different Cd-resistant and Cd-sensitive species.
     Compared with control, the seed soaking with10-100μM Cd (CdCl2) for12h significantly decreased protease activities and the contents of free amino acid in the germinating seeds of mung bean and common vetch, and increased the content of soluble protein and the electrolyte leakages of germinating seeds.100μM Cd decreased the root vitality, chlorophyll content, photosynthetic rate, nitrate reductase activity, and concentrations of nitrate nitrogen, Ca, Mg, Fe, Zn and Mo in leaves of both species. The decrease of these parameters was more pronounced in seedlings of mung bean than those in common vetch.
     It was studied that the changes in activity of catalase (CAT), ascorbate peroxidase (APX) superoxide, dismutase (SOD), guaiacol peroxidase (GPOD) and glutathione reductase (GR) and contents of reduced glutathione and ascorbic acid in leaves of mung bean and common vetch seedlings under Cd stress. Results showed that the activities of CAT, APX and SOD initially increased and then decreased and the activities of GPOOD significantly increased in leaves of both species during the9-day of100μM Cd treatment. For the activity of GR, similar change was observed in the leaves of mung bean. In the leaves of common vetch, GR activity increased with the increasing Cd exposure time and reduced glutathione initially decreased and then increased. In contrast, the contents of reduced glutathione and ascorbic acid decreased with Cd treatment time in mung bean. Compared with those in mung bean, the activities of CAT, APX and SOD were higher in common vetch leaves than in mung bean leaves under Cd stress.
     Excess Cd treatment induced oxidative stress. The effects of Cd on the accumulation of H2O2and O2'-in leaves of mung bean and common vetch were investigated using both histochemical and cytochemical methods. Cadmium at100μM obviously increased the production of O2·-and H2O2, and the activities of plasma membrane-bound NADPH oxidases and the symplastic and apoplastic activities of SOD and APX in the leaves of both species. Apoplastic GPOD activity was significantly induced in the leaves of both species, particularly in mung bean with100μM Cd. In the leaves of both species treated with100μM Cd, H2O2-dependent CeCl3precipitate was mainly localized in cell walls and the corners of the extracellular space as well as a small amount in chloroplasts of the mesophyll cells, and O2·-dependent DAB precipitates were observed mainly in chloroplasts, cell walls, and extracellular spaces. It was evident that more H2O2and O2·-were produced in the chloroplasts and extracellular spaces of mung bean than in those of common vetch. Experiments with diphenyleneiodonium as an inhibitor of NADPH oxidase and NaN3as an inhibitor of peroxidase showed that the majority of Cd-induced ROS production in the leaves of both species may be from plasma membrane-bound NADPH oxidase and apoplastic GPOD. Compared with those in the species common vetch, Cd-induced O2·-and H2O2production, NADPH oxidase and apoplastic GPOD activity increase were more pronounced in mung bean. In contrast, common vetch had higher leaf symplastic SOD and APX activities than mung bean.
     The possible mediatory role of salicylic acid (SA) in protecting plants from Cd toxicity was studied. Treatment with50μM Cd significantly increased the electrolyte leakages and total thiobarbituric acid reactive substances content in roots of mung bean and common vetch. Seeds soaking with100μM SA for16h or seedlings pretreatment with100μM SA for16h alleviated the negative effect of Cd on growth of both species. The alleviation of Cd toxicity was more pronounced by seed soaking with SA than seedlings pretreatment with SA. Seeds soaking with100μM SA decreased the production of O2·-and H2O2in root apoplast of both species. This effect was more evident in the roots of mung bean than in roots of common vetch. The data suggest that the beneficial effect of SA during an earlier growth could be related to up-regulation of antioxidant enzyme SOD and APX.
引文
1 安建平,王廷璞,谢天柱,杨爱民,王莉.镉胁迫对亚麻种子萌发及幼苗生理特性的影响[J].中国麻业科学,2008,30(4):199-203
    2 曹福亮,欧祖兰.水杨酸对银杏幼苗抗高温胁迫能力的影响[J].浙江林学院学报,2008,25(6):756-759
    3 陈佰鸿,李新生,曹孜义,姚庆荣.一种用透明胶带粘取叶片表皮观察气孔的方法[J].植物生理学通讯,2004,40(2):215-218
    4 陈朗,宋玉芳,张薇等.土壤镉污染毒性效应的多指标综合评价[J].环境科学,2008,29(9):2607-2612
    5 陈秋明,易慧,李晓艳,义鸣放.高温胁迫下外源水杨酸对百合抗氧化酶系统的影响[J].中国农业大学学报,2008,13(2):44-48
    6 陈贻竹,李晓萍,夏丽等.叶绿素荧光技术在植物环境胁迫研究中的应用[J].热带亚热带植物学报,1995,(4):79-86
    7 杜朝昆,李忠光,龚明.水杨酸诱导的玉米幼苗适应高温和低温胁迫的能力与抗氧化酶系统的关系[J].植物生理学通讯,2005,41(1):19-22
    8 杜兰芳,沈宗根,郁达,刘维红,邓燕,周银芬.汞胁迫对豌豆种子的毒害效应[J].西北植物学报,2004,24(12):2266-2271
    9 葛才林,杨小勇,孙锦荷等.重金属胁迫对水稻萌发种子淀粉酶活性的影响[J].西北农林科技大学学报,2002,30(3):47-52
    10郭永灿,周青山,姚正辉.镉对白鲢肾组织细胞的纤维结构及超微结构损伤的影响[J].中国环境科学,1989,9(2):1172122
    11韩涛,李丽萍,冯双庆.外源水杨酸处理对采后番茄和黄瓜果实抗冷性的影响[J].中国农业科学,2002,35(5):571-575
    12郝福顺,张锦广,于中连,陈珈NADPH氧化酶NtrbohD参与烟草悬浮细胞ABA诱导的H2O2快速产生过程[J].自然科学通报,2008,18(3):350-356
    13何俊瑜,任艳芳,朱诚,蒋德安.镉胁迫对不同水稻品种种子萌发、幼苗生长和淀粉酶活性的响[J].中国水稻科学,2008,22(4):399-04
    14何亚丽,刘友良,陈权,卞爱华.水杨酸和热锻炼诱导的高羊茅幼苗的耐热性与抗氧化的关系[J].植物生理与分子生物学报,2002,28(2):89-95
    15胡秀丽.H202,Ca2+/CaM在ABA诱导的玉米叶片抗氧化防护中的作用及其信号转导[J].2006, 南京农业大学博士论文
    16黄玉山,罗广华,关綮文.镉诱导植物的自由基过氧化损伤[J].植物学报,1997,39(6):522-526
    17蒋文智,黎继岚.Cd对烟草光合特性的影响[J].植物生理学通讯,1989,6:27-31
    18康国章,欧志英,王正询,孙谷畴.水杨酸诱导提高香蕉幼苗耐寒性的机制研究[J].园艺学报2003,30(2):141-146
    19李彩霞,李鹏,苏永发.水杨酸对镉胁迫下玉米幼苗质膜透性和保护酶活性的影响[J].植物生理学通讯,2006,42(5):882-884
    20李德红,潘瑞炽,水杨酸在植物体内的作用[J].植物生理学通报,1995,31(2):144-149
    21李德明,张秀娟,李改华,邓丹凤,邹恒.几种重金属离子对高羊茅种子萌发及生理活性的响应[J].草业科学,2008,25(6):98-102
    22李合生.植物生理生化实验原理与技术[J].高等教育出版社,2005,261-263
    23李俊梅,王焕校.镉胁迫下玉米生理生态反应与抗性差异研究[J].云南大学学报,2000,4:311-317
    24李丽君,谢苏婧.镉对玉米种子萌发和生长的影响[J].山西大学学报,2001,024(001):93-94
    25李永红,魏玉香,谷茂.水杨酸预处理对鸡冠花幼苗热胁迫的生理效应[J].西北植物学报,2008,28(11):2257-2262
    26李子芳,刘惠芬,熊肖霞,刘卉生.镉胁迫对小麦种子萌发幼苗生长及生理生化特性的影响[J].农业环境科学学报,2005,24(21):17-20
    27林忠平.植物抗逆性与水杨酸介导的信号传导途径的关系[J].植物学报,1997,39(2):185-188
    28刘长利,王文全,魏胜利.干旱胁迫对甘草种子吸胀萌发的影响[J].中草药,2004,35(12):1402-1405
    29刘传平,郑爱珍,田娜,沈振国.外源GSH对青菜和大白菜镉毒害的缓解作用[J].南京农业大学学报,2004,27(4):26-30
    30刘东华.镉对洋葱根生长和细胞分裂的影响[J].环境科学学报,1992,12(4):339-446
    31刘吉祥,白冬梅,马国良等.Cd2+和Ni2+对小麦毒性的比较研究[J].农业环境保护,2001,20(4):252-253,260
    32刘俊,吕波,徐朗莱.植物叶片中过氧化氢含量测定的方法改进[J].生物化学与生物物理进展,2000,27(5):548-550
    33刘新,张蜀秋.水杨酸、茉莉酸和乙烯在调控蚕豆气孔运动中的相互关系[J].植物生理学通迅,2000,26(6):487-491
    34刘志华,伊晓云,曾其龙,王火焰,沈仁芳.低浓度镉对大白菜苗期生长及营养元素吸收积累的影响研究[J].土壤,2008,40(4):630-634
    35罗立新,孙铁珩,靳月华.Cd胁迫对小麦叶片细胞膜脂过氧化的影响[J].中国环境科学,1998, 18(1):72-75
    36骆进仁.甘肃省退耕还林模式的研究[J].中国畜牧杂志,2006,42(1):63-65
    37罗中云.北京科技报,2008,01,14
    38马培芳,李利红,杨亚军,赵会杰等.水杨酸对高温强光胁迫下小麦叶绿体D1蛋白磷酸化及光系统Ⅱ功能的影响[J].应用生态学报,2008,19(12):2632-2636
    39马晓春,赵立新,李家玲.镉对小麦发芽率及淀粉酶活力的影响[J].环境保护科学,1997,23(6):27-29
    40马引利,佘小平.铝、镉对小麦幼苗生长的影响及其DNA损伤效应研究[J].西北植物学报,2006,26(4):0729-0735
    41毛凯,周寿荣,蒲朝龙.豆科牧草与小麦间作的群体产量结构及其生产效益[J].草业学报,1994,11(2):25-27
    42苗雨晨,董发才,宋纯鹏.NADPH氧化酶可能参与了ABA诱导蚕豆气孔保卫细胞运动[J].武汉植物学研究,2001,19(4):311-316
    43莫文红,李懋学.镉离子对蚕豆根尖细胞分裂的影响[J].植物学通报,1992,9(3):30-34
    44鲍士旦.土壤农化分析[M].北京,农业出版社,1994,216-218
    45南志标,张吉宇,王彦荣.五个箭舌豌豆品系基因型与环境互作效应及农艺性状稳定性[J].生态学报,2004,24(3):39-52
    46庞金安,马德华,霍振荣,李淑菊.水杨酸预处理对提高黄瓜幼苗耐低温能力的影响[J].华北农学报,2000,15(1):112-115
    47秦天才,吴玉树.镉、铅及其相互作用对小白菜生理生化特性的影响[J].生态学报,1994,014(001):46-50
    48邱化蛟,贺明荣,常欣等.不同基因型冬小麦叶片酸性磷酸酯酶活性的差异[J].作物学报,2004,30(8):739-744
    49佘小平,贺军民,张键,邹庆春.水杨酸对盐胁迫下黄瓜幼苗生长抑制的缓解效应[J].西北植物学报,2002,22(2):401-405
    50沈宁东,贺晨邦,何建兰,包国贤.水杨酸对豌豆种子萌发的影响[J].青海师范大学学报,2005,4:83-86
    51施农农.镉胁迫下水稻种子的萌发生长及体内水解酶的活性变化[J].农业环境保护,1999,18(5):13-216
    52束良佐,李爽.水杨酸浸种对水分胁迫下玉米幼苗某些生理过程的影响[J].南京农业大学学报,2002,25(3):9-11
    53苏金为,王湘平.镉诱导的茶树苗膜脂过氧化和细胞程序性死亡[J].植物生理与分子生物学学报,2002,28(4):292-298
    54孙光闻,朱祝军,方学智.不同镉水平对白菜生长及抗氧化酶活性的影响[J].园艺学报,2004,31(3):378-380
    55孙光闻,陈日远,刘厚诚,陈玉娣.镉与植物活性氧代谢[J].广东微量元素科学,2005,12(4):7-10
    56孙建云,沈振国.镉胁迫对不同甘蓝基因型光合特性和养分吸收的影响[J].应用生态学报,2007,18(11):2605-2610
    57孙歆,郭云梅,雷韬等.水杨酸对水分胁迫下菜豆若干生理指标的影响[J].四川大学学报(自然科学版),2005,42(3):575-579
    58孙艳,崔鸿文,胡荣.水杨酸对黄瓜幼苗壮苗的形成及抗低温胁迫能力的生理效应[J].西北植物学报,2000,20(4):616-620
    59汤春芳,刘国云,曾光明等.镉胁迫对萝卜幼苗活性氧的产生、膜脂过氧化和抗氧化酶活性的影响[J].植物生理与分子生物学学报,2004,30(4):469-471
    60唐宏亮,贺学礼.豆科植物在可持续农业发展中的作用[J].干旱地区农业研究,2004,22(2):194-199
    61陶嘉玲,郑光华.种子活性[M].北京:科学出版社,1991,109-111
    62汪洪,赵士诚,夏文建等.不同浓度镉胁迫对玉米幼苗光合作用、脂质、过氧化和抗氧化酶活性的影响[J].植物营养与肥料学报,2008,14(1):36-42
    63汪建飞,邢素芝,段立珍等.镉在杂交苏丹草中的积累和毒害效应[J].南京农业大学学报,2005,28(2):64-68
    64王爱国,罗广华.植物体内羟胺与超氧阴离子反应的关系[J].植物生理学通讯,1990,26(6):55-57
    65王春春,沈振国.镉在植物体内的积累及其对绿豆幼苗生长的影响[J].南京农业大学学报,2001,24(4):9-13
    66王焕校.污染生态学基础[M].昆明:云南大学出版社,1990:91-108
    67王静,杨德光,马凤鸣,常敬礼.水分胁迫对玉米叶片可溶性糖和脯氨酸含量的影响[J].玉米科学,2007,15(6):57-59
    68王凯荣.镉对不同基因型水稻生长毒害影响的比较[J].农村生态环境,1996,12(3):18-23
    69王利军,黄卫东,于凤义.高温胁迫对14C-SA在葡萄植株中的运转和分配的影响[J].植物生理学报,2001,27(2):129-134
    70王利军,黄卫东,战吉成.水杨酸和高温锻炼与葡萄抗热性及抗氧化的关系[J].同艺学报,2003,30(4):452-454
    71王林,曹瑾,陈大伟等.铅镉联合对体外培养大鼠肾小管上皮细胞存活及凋亡的影响[J].中国兽医科学,2008,38(04):327-331
    72王松华,储卫红,周正义等.水杨酸对小麦镉毒害的缓解效应[J].种子,2005,24(10):15-17
    73王晓琴,张芬琴,曾秀存等.Cd2+对龙葵根尖细胞有丝分裂的影响[J].河西学院学报,2007,23(5):47-48
    74王兴明,涂俊芳,李晶等.镉处理对油菜生长和抗氧化酶系统的影响[J].应用生态学报,2006,17(1):102-106
    75王彦荣,南志标,聂斌.几种抗寒春箭舌豌豆新品系的形态特异性比较[J].草业学报,2005,14(2):28-32
    76王赟文,南志标,王彦荣等.高山草原条件下一年生豆科牧草生产性能的评价[J].草业学报,2001,10(2):47-55
    77文江祁,王俊,邸烨等.陈化马铃薯切片交替途径运行与产热的关系[J].科学通报,1995,40(22):2086-2087
    78吴庆钰,杨俊诚,张建峰等.镉与苄嘧磺隆复合污染对水稻细胞、DNA的毒害作用[J].农业环境科学学报,2007,26(6):2216-2220
    79谢瑞玲,刘庆荣,张春明等.镉作业工人停止接触后镉接触和肾功能损害指标变化[J].中国热带医学,2008,8(4):550-551
    80薛建平,王兴,张爱民等.水杨酸对高温胁迫下半夏叶片光合作用及叶绿素荧光的影响[J].中国药学杂志,2008,43(24):1856-1858
    81杨丹慧,许春辉,赵福洪等.镉离子对菠菜叶绿体光系统Ⅱ的影响[J].植物学报,1989,31(9):702-707
    82杨丹慧,许春辉,王可玢等.镉离子对菠菜叶绿体色素蛋白质复合物及激发能分配的影响[J].植物学报,1990,32(3):198-204
    83杨剑平,段碧华,潘金豹等.水杨酸和水分胁迫对玉米苗过氧化氢代谢的影响[J].中国农学通报,2002,18(2):8-11
    84杨明杰,林咸永,杨肖娥.Cd对不同种类植物生长和养分积累的影响[J].应用生态学报,1998,9(1):89-94
    85杨淑慎,高俊凤.氧、自由基与活性植物的衰老[J].西北植物学报,2001,21(2):215-220
    86叶梅荣.NaCl胁迫下水杨酸浸种对水稻幼苗生长的影响[J].安徽技术师范学院学报,2002,16(4):44-46
    87余东,许家辉,李永裕等.Cd胁迫对枇杷叶片酶活性及膜透性的影响[J].热带作物学报,2008,29(2):154-158
    88鱼小军,王芳,龙瑞军.破除种子休眠方法研究进展[J].种子,2005,24:46-49
    89原永兵,曹宗巽.水杨酸在植物体内的作用[J].植物学通报,1994,11(3):1-9
    90曾庆玲,黄晓华,周青.酸雨对水稻、小麦和油菜种子萌发的影响[J].环境科学,2005,26(1): 181-184
    91曾祥玲,曹成有,高菲菲等.镉、铅对沙打旺种子萌发及早期生长发育的毒性效应[J].草业学报,2008,17(4):71-77
    92张成军,解恒才,郭佳秋,张文辉.干旱对4种木本植物幼苗脯氨酸含量的影响[J].南京农业大学学报,29(5):33-36
    93张殿忠.测定小麦叶片游离脯氨酶的方法[J].植物生理学通讯,1990(4):62-66
    94张芬琴,徐朗莱,沈振国.镉胁迫下绿豆和箭舌豌豆幼苗的抗氧化反应[J].西北植物学报,2006(7):1384-1389
    95张红晓.铜胁迫诱导蛋白的鉴定及CuZn-SOD在铜诱导的抗氧化防护中的作用.南京农业大学博士论文,2007
    96张建全,南志标,王彦荣.四个春箭舌豌豆品系原种及第三代过氧化物酶同工酶分析[J].草业学报,2003,12(5):94-98
    97张士功,高吉寅,宋景芝.水杨酸和阿斯匹林对盐胁迫下小麦种子萌发的作用[J].植物生理学通讯,1999,35(1):29-32
    98张玄兵,夏春华,黄碧兰.水杨酸对龙船花抗低温胁迫的影响[J].热带作物学报,2004,3(25):85-88
    99张耀生,赵新全,周兴民.高寒牧区三种豆科牧草与燕麦混播的试验研究[J].草业学报,2001,10(1):13-19
    100张玉秀,柴团耀.菜豆病程相关蛋白基因在重金属胁迫下的表达分析[J].中国生物化学与分子生物学报,2000,16(1):46-50
    101张志权.引入土壤种子库对铅锌尾矿废弃地植被恢复研究:定居植物对重金属的吸收和再分配[J].植物生态学报,2001,25(3):306-311
    102张志权,束文圣,廖文波等.豆科植物与矿业废弃地植被恢复[J].生态学报,2002,21(2)47-52
    103张治安,王振民,徐克章.镉胁迫对萌发大豆种子中活性氧代谢的影响[J].农业环境科学学报,2005.24:670-673
    104赵博生,莫华.镉对蒜根生长的毒害及抗坏血酸、铁盐的解毒效应[J].武汉植物学研究,1997,15(2):167-172
    105郑青松,陈刚,刘玲等.盐胁迫对油葵种子萌发和幼苗生长及离子吸收、分布的效应[J].中国油料作物学报,2005,27(1):60-64
    106周青,黄晓华,张一.镉对种子萌发的影响[J].农业环境保护,2000,19:156-15
    107周斯建,义鸣放,穆鼎.高温胁迫下铁炮百合幼苗形态及生理反应的初步研究[J].园艺学报,2005,32(1):145-147
    108朱广廉.植物生理学实验[M].北京:北京大学出版社,1988,47-53
    109朱教君,李智辉,康宏樟等.聚乙二醇模拟水分胁迫对沙地樟子松种子萌发影响研究[J].应用生态学报,2005,16(5):801-804
    110宗良刚,徐晓炎.水稻对土壤中镉的吸收及其调控措施[J].生态学杂志,2004,23(3):120-123
    111 Aktas H, Karni L, Chang DC, Turhan E, et al.. The suppression of salinity-associated oxygen radicals production, in pepper (Capsicum annuum) fruit, by manganese, zinc and calcium in relation to its sensitivity to blossom-end rot [J]. Physiol Plant,2005,123:67-74
    112 Ali NA, Bernal, MP, Mohammed A. Tolerance and bioaccumulation of cadmium by Phragmites australis grown in the presence of elevated concentrations of cadmium, copper, and zinc. Aquatic Botany,2004,80 (3):163-176
    113 Allan AC, Fluhr R. Two distinct sources of elicited reactive oxygen species in tobacco epidermal cells [J]. Plant Cell,1997,9:1559-1572
    114 Alverez AL. Salicylic acid in machinery of hypersensitive cell death and disease resistance [J]. Plant Mol Biol,2000,44:429-442
    115 Ammar WB, Nouairi I, Zarrouk M, Jemal F. Cadmium stress induces changes in the lipid composition and biosynthesis in tomato (Lycopersicon esculentum Mill.) leaves [J]. Plant Growth Regul,2007,53:75-85
    116 An YJ. Assessment of comparative toxicities of lead and copper using plant assay [J]. Chemosphere, 2006,62:1359-1365
    117 Apel K, Hirt H. Reactive oxygen species:Metabolism,oxidative stress, and signal transduction. Annu. Rev [J]. Plant Biol,2004,55:373-399
    118 Aptepv Lalorayamm. Inhibitory action of phenolic compounds on abscisic acid induced abscission [J]. Exp Bot,1982,33:826-829
    119 Arakawa N, Tsutsumi K, Sanceda N G, Kurata T, Inagaki C. A rapid and sensitive method for the determination of ascorbic acid using 4,7-diphenyl-l,10-phenanthroline. Agric Biol Chem,1981,45 (5):1289-1290
    120 Aravind P, Prasad MNV. Modulation of cadmium-induced oxidative stress in ceratophyllum demersum by zinc involves ascorbate-glutathione cycle and glutathione metabolism [J]. Plant Physiol Biochem,2005,43,107-116
    121 Atesi I, Suzen HS, Aydin A, et al.. The oxidative DNA base damage in tests of rats after intraperitoneal cadmium injection [J]. Biometals,2004,17 (4):371-377
    122 Aust AE, Eveleigh JF. Mechanism of DNA oxidation [J]. Proc Soc Exp Biol Med,1999,222: 246-252.
    123 Azevedo RA, Alas RM, Smith RJ and Lea PJ. Response of antioxidant enzymes to transfer from elevated carbon dioxide to air and ozone fumigation, in the leaves and roots of wild-type and a catalase-deficient mutant of barley [J]. Physiol Plant,1998,104:280-292
    124 Babior BM, Lambeth JD, Nauseef W The neutrophil NADPH oxidase [J]. Arch Biochem Biophys, 2002,397:342-344
    125 Bagchi D, Bagchi M, Hassoun EA. Cadmium induced excretion of urinary lipid peroxidation in Sprague-Dawtey rats [J]. Biol Trace Elem Res,1996,52:143-154
    126 Bajji M, Kinet JM, Lutts S. The use of the electrolyte leakage method for assessing cell embrane stability as a water stress tolerance test in durum wheat [J]. Plant Growth Regul,2002,36:61-70
    127 Balestrasse KB.Gallego SA, Benavides MP, Tomaro ML. Polyamines and proline are affected by cadmium stress in nodules and roots of soybean plants [J]. Plant Soil,2005,270:343-353
    128 Balestrasse KB, Gallego SM, Tomaro ML. Oxidation of the enzymes involved in nitrogen assimilation plays an important role in the cadmium-induced toxicity in soybean plants [J]. Plant Soil 2006,284:187-194
    129 Baryla A, Carrier P, Franck F, et al.. Leaf chlorosis in oilseed rape p lants (B rassica napus) grown on cadmium-polluted soil:Causes and consequences for photosynthesis and growth [J]. Planta, 2001,212:696-709
    130 Bazzaz FA, Rolfe GL, Carlson RW. Effect of cadmiumon on photosynthesis and transpiration of excised leaves of corn and sunflower [J]. Physiologia Plantarum,1992,32:373-377
    131 Beauchamp C, Fridovich I. Superoxide dismutase:Improved assay applicable to acrylamide gels [J]. Anal Biochem,1971,44:276-287
    132 Bergmann L, Rennengerg H. Glutathione metabolism in plants [M]. In LJ De Kok, H Rennenberg, C Brunold, WE Rauser, eds. Sulfur Nutrition and assimilation in Higher Plants. SPB Academic Publishing, The Hague, The Netherlands,1993,61-75
    133 Berlett BS, Stadtman ER. Protein oxidation in aging, disease and oxidative stress [J]. J Biol Chem, 1997,272:20313-20316
    134 Bestwick CS, Brown IR, Bennett MHR, Mans. Localization of hydrogen peroxide accumulation during the hypersensitive reaction of lettuce cells to Pseudomonas syringae pv. Phaseolicola [J]. The Plant Cell,1999,19 (2):209-221
    135 Bestwick CS, Brown IR, Mansfield JW. Localized changes in peroxidase activity accompany hydrogen peroxide generation during the development of a nonhost hypersensitive reaction in lettuce [J]. Plant physiology,1998,118 (3):1067-1078
    136 Beyer W, Imlay J, Fridovich I. Superoxide dismutases [J]. Prog Nucl Acid Res,1991,40:221-253
    137 Bhattacharjee S. Membrane lipid peroxidation, free radical scavengers and ethylene evolution in Amaranthus as affected by lead and cadmium [J]. Biol Plant,1997,40 (1):131-135
    138 Bishop PL. Pollution Prevention:Fundamentals and Practice [M]. China Beijing:Qinghua Univ Press,2002,41
    139 Blum U, Schwedt G. Inhibition behavior of acid phosphatase, phosphodiesterase I and adenosine deaminase as tools for trace metal analysis and speciation [J]. Analytica Chimica Acta,1998,360 (1-3):101-108
    140 Bolwell GP, Wojtaszek P. Mechanisms for the generation of reactive oxygen species in plant defence-abroad perspective [J]. Physiol Mol Plant Pathol,1997,51:347-661
    141 Bolwell GP. Role of active oxygen species and NO in plant defence responses [J]. Curr Opin Plant Biol,1999,2:287-294
    142 Borboa L, De la Torre C. The genotoxicity of Zn (II) and Cd (II) in Al l ium cepa root meristematic cells [J]. New Phytol,1996,134:481-486
    143 Boussama N, Ouariti O, Suzuki A, et al.. Cd stress on nitrogen assimilation. J Plant Physiol,1999, 155:310-317
    144 Bowler C, Van MM, Inze D. Superoxide dismutase and stress tolerance. Annu Rev Plant Physiol Plant Mol Biol,1992,43:83-116
    145 Bradford MW. A rapid and sensitive method for the quantitation of microgram quantities protein using the principle of protein-dye binding [J]. Anal Biochem,1976,72:248-259
    146 Buckhout TJ, Bell PF, Luster DG, Chaney RL. Iron stress induced redox acyivity in tomato (Lycopersicum esculentum Mill.) is localized on the plasma membrane [J]. Plant Physiol,1989,90: 151-156
    147 Burzynski M. The Influence of Lead and Cadmium on the Absorption and Distribution of Potassium, Calcium, Magnesium and Iron in Cucumber Seedlings [J]. Acta Physiol Plant,1987,9:229-238
    148 Cakmak I. Role of zinc in protecting plant cells from reactive oxygen species [J]. New Phytol,2000, 146:185-205
    149 Cazale AC, Rouet-Mayer MA, Barbier-Brygoo H, et al.. Oxidative burst and hypoosmotic stress in tobacco cell suspensions [J]. Plant Physiology,1998,116:659-669
    150 Chakravarty B, Srivastava S. Toxicity of some heavy metals in vivo and in vitro in Helianthus annus [J]. Mutation Res,1992,283:287-294
    151 Chamnongpol S, Willekens H, Moeder W, Langebartels C, Sandermann H, Van Montagu A, Inze D, Van CW. Defense activation and enhanced pathogen tolerance insuced by H2O2 in transgenic tobacco [J]. Proc Natl Acad Sci. USA,1998,95:5818-5823
    152 Chaoui A, Mqazhoudi S, Ghorbal MH, et al.. Cadmium and zinc induction of lipid peroxydation and effects on antioxi2dant enzyme activities in bean (Phaseolus vulgaris L.) [J]. Plant Sci,1997,127: 139-147
    153 Chen CT, Chen TH, Lo KF, Chiu CY. Effect of proline on copper transport in rice seedling under excess copper stress [J]. Plant Sci,2004,166:103-111
    154 Chen J, Zhu C, Li LP, Sun ZY, Pan XB. Effects of exogenous salicylic acid on growth and H2O2-metabolizing enzymes in rice seedlings under lead stress [J]. Journal of Environmental Sciences,2007,19:44-49
    155 Chien HF, Lin CC, Wang JW, Chen CT, Kao CH. Changes in ammonium ion content and glutamine synthetase activity in rice leaves caused by excess cadmium are a consequence of oxidative damage [J]. Plant Growth Regul,2002,36:41-47
    156 Cho UH, Seo NH. Oxidative stress in Arabidopsis thaliana exposed to cadmium is due to hydrogen peroxide accumulation [J]. Plant Sci,2005,168:113-120
    157 Choudhury S, Panda SK. Role of salicylic acid in regulating cadumium induced oxidative stress in Oryza sativa L. roots [J]. Bulg J plant physiol,2004,30 (3-4):95-110
    158 Christensen JH, Bauw G, Welinder KG, Van MM, Boerjan W. Purification and characterization of peroxidases correlated with lignification in poplar xylem [J]. Plant Physiol,1998,118:125-135
    159 Chugh LK, Gupta VK, Sawhney SK. Effect of cadmium on enzymes of nitrogen metabolism in pea seedlings [J]. Phytochemistry,1992,31:395-400
    160 Chugh LK, Sawhney SK. Photosynthetic activities of Pisum sativum seedlings grown in p resence of cadmium [J]. Plant Physiology and B iochem istry,1999,37:297-303
    161 Clarke SM, Mur LAJ, Wood JE, Scott IM. Salicylic acid dependent signaling promotes basal thermotolerance but is not essential for acquired thermotolerance in Arabidoupsis thaliana [J]. Plant J,2004,38:432-447
    162 Clemens S. Molecular mechanisms of plant metal tolerance and homeostasis [J]. Planta,2001,212: 475-486
    163 Conte C, Mutti I, Puglisi P. DNA fingerprinting analysis by a PCR based method for monitoring the genotoxic effect of heavy metals pollution [J]. Chemosphere,1998,37:2739-2749
    164 Cordoba-Pedregosa MC, Villalba JM, Cordoba F, Gonzalez-Reyes JA. Changes in intracellular and apoplastic peroxidase activity, ascorbate redox status, and root elongation induced by enhanced ascorbate content in Allium cepa L [J]. Journal of Experimental Botany,2005,56 (412):685-694
    165 Costa G, Morel JL. Water relation, gas exchange and amino acid content in Cd treated lettuce [J]. Plant Physiol Biochem,1994,32:561-570
    166 Cross AR, Parkinson JF, Jones OTG. Mechanism of the superoxide-producing oxidase of neutrophils. Oxygen is necessary for the fast reduction of cytochrome b245 by NADPH [J]. Biochem J,1985, 226:881-884
    167 Cross AR, Rae J, Curnutte JT. Cytochrome b245 of the neutrophil superoxide-generating system contains two nonidentical hemes. Potentiometric studies of a mutant form of gp9lphox. J Biol Chem,1995,270:17075-17077
    168 Dalurzo HC, Sandalio LM, Gomez M, del Rio LA. Cadmium infiltration of detached pea leaves: effect on its activated oxygen metabolism [J]. Phyton,1997,37:59-64
    169 Daniel-Vedele F, Filleur S, Caboche M. Nitrate transport:a key step in nitrate assimilation [J]. Curr Opin Plant Biol,1998,1:235-239
    170 Das P, Samantaray S, Rout GR. Studies on cadmium toxicity in plants:a review [J]. Environ Pollut, 1997,98:29-36
    171 Dat JF, Lopez-Delgado H, Foyer CH, Scott IM. Parallel changes in H2O2 and catalase during thermotolerance induced by salicylic acid or heat acclimation in mustard seedlings [J]. Plant Physiol,1998,116:1351-1357
    172 Davies KJA. Protein damage and degradation by oxygen radicals. I General aspects [J]. J Biol Chem.,1987,162:9895-9901
    173 De Filippis LF, Ziegler H. Effect of sublethal concentrations of zinc, cadmium and mercury on the photosynthetic carbon reduction cycle of Euglena [J]. J Plant Physiol,1993,142:167-172
    174 DeCoursey TE, Cherney VV. Potential, pH and arachidonate gate hydrogen ion currents in human neutrophils [J]. Biophys J,1993,65:1590-1598
    175 De-Kundu P, Banerjee A. Multiple formes of acid phosphatase from seedling axes of Vigna radiata [J]. Phytochemistry,1990,29:2825-2828
    176 Del Rio LA, Corpas FJ, Sandalio LM, Palma JM, Gomez M, Barroso JB. Reactive oxygen species, antioxidant systems and nitric oxide in peroxisomes [J]. J Exp Bot,2002,53:1255-1272
    177 Delriol A, Sandallo LM. Cadmium-induced subcellular accumulation of O2 and H2O2 in pea leaves [J]. Plant, Cell and Environment,2004,27:1122-1134
    178 Desikan R, Hancock JT, Ichimura K, et al.. Harpin induces activation of the Arabidopsis mitogen-activated protein kinases AtMPK4 and AtMPK6 [J]. Plant Physiology,2001, 126:1579-1587
    179 Devi SR, Prasad MNV. Copper toxicity in Ceratophyllum demersum L. (coontail), a free-floating macrophyte:response of antioxidant enzymes and antioxidants [J]. Plant Sci,1998,138:157-165
    180 Di Marco G, Tricoli D. Effect of water deficit on photosynthesis and electron transport in wheat grown in a natural environment [J]. J Plant Physiol,1993,142:156-160
    181 di Toppi LS, Gabbrielli R. Responses to cadmium in higher plants [J]. Environ Exp Bot,1999,41 105-130
    182 Dietz KJ, Baier M, Kramer U. Free radicals and reactive oxygen species as mediators of heavy metals toxicity in plants. In:Prasad, MNV, Hagemeyer J. (Eds.), Heavy metal stress in plants. Springer-Verlag, Berlin, Heidelberg,1999,73-97
    183 Dinakar N, Nagajyothi PC, Suresh S, Udaykiran Y, Damodharam T. Phytotoxicity of cadmium on protein, proline and antioxidant enzyme activities in growing Arachis hypogaea L. seedlings [J]. Journal Environmental Sciences,2008,20 (2):199-206
    184 Ding CK, Wang CY, Gross KC, et al.. Reduction of chilling injury and transcript accumulation of heat shock proeins in tomato fruit by methyl jasmonate and methyl salicylate [J]. Plant Sci,2001, 161:1153-1159
    185 Dixit V, Pandey V, Shyam R. Differential antioxidative responses to cadmium in roots and leaves of pea (Pisum sativum L. cv. Azad) [J]. J Exper Bot,2001,52:1101-1109
    186 Doke N, Miura Y, Sanchez LM, et al.. The oxidative burst protects plants against pathogen attack: mechanism and role as an emergency signal for plant bio-defence-a review [J]. Gene,1996,179:45-51
    187 Dracup MNH et al.. Effect of phosphorus deficiency on phosphates activity of cell walls from roots of subterranean clover [J]. J Exp Bot,1999,35:466-480
    188 Drazic G, Mihailovic N, Stojanovic Z. Gadmium toxicity:the effect on macro-and micro-nutrient contents in soybean seedlings [J]. Biologia Plantaram,2004,48 (4):605-607
    189 Drazic G, Mihailovic N. Modification of cadmium toxicity in soybean seedlings by salicylic acid [J]. Plant Sci,2005,168:511-517
    190 Drazkiewicz M, Skorzynska-Polit E, Krupa Z. The redox state and activity of superoxide dismutase classes in Arabidopsis thaliana under cadmium or copper stress [J]. Chemosphere,2007,67 188-193
    191 Duener J, Klessig DF. Salicylic acid is a modulator of tobacco and mammalian catalases [J]. J Biol Chem,1996,271:28492-28501
    192 Duff SMG, Sarath G, Plaxton WC. The role of acid phosphatase in plant phosphorus metabolism [J]. Plant Physiol,1994,90:791-800
    193 Eichhorn H, Klinfhammer M, Becht P, Tenhaken R. Isolation of a novel ABC-transporter gene from soybean induced by salicylic acid [J]. J Exp Bot,2006,57:2193-2201
    194 Ekmekci Y, Tanyolac D, Ayhan B. Effects of Cadmium on antioxidant enzyme and photosynthetic activities in leaves of maize cultivars [J]. Jounal of Plant Physiology,2008,165:600-611
    195 Elstner EF. Mechanisms of oxygen activation in different compartments of plant cells In:Active oxygen/oxidative stress and plant metabolism. Pell E.J. and Steffen K.L.(eds) American Soc. Plant Physiol [J]. Rockville, M.D,1991,13-25
    196 Enyedi AJ, Yalpani N, Sliverman P, Raskin I. Signal molecule in systemic plant resistance to pathogens and pests [J]. Cell,1992,70:879-886
    197 Eun S, Young HS, Lee Y. Cadmium disturbs microtubule or ganization in t he root meristem of Zea mays [J]. Physiol Plan,2000,110:357-365 execution of hypersensitive cell death in tobacco leaves [J]. Plant Physiol,2005,138:1516-1526
    198 Fecht-Christoffers MM, Fiihrs H, Braun HP, Horst WJ. The role of hydrogen peroxide-producing and hydrogen peroxide-consuming peroxidase in the leaf apoplast of cowpea in Manganese tolerance [J]. Plant physiol,2006,140:1451-1463
    199 Fodor E, Szabo-Nagy A, Erdei L. The effects of cadmium on the fluidity and H+-ATPase activity of plasma membrane from sunflower and wheat roots [J]. J Plant Physiol,1995,147:87-92
    200 Fojtova M, Kovarik A. Genotoxic effect of cadmium is associated with apoptotoc changes in tobacco cells [J]. Plant Cell and Environment,2000,23:531-537
    201 Foreman J, Demidchik V, Bothwell JHF, et al. Reactive oxygen species produced by NADPH oxidase regulate plant cell growth [J]. Nature,2003,422:442-446
    202 Foyer CH, Lelandais M, Kunert KJ. Photooxidative stress in plants [J]. Physiologia Plantarum,1994, 92:696-717
    203 Foyer CH, Lopez-Delgado H, Dat JF, Scott IM. Hydrogen peroxide- and glutathione-associated mechanisms of acclamatory stress tolerance and signaling [J].. Physiol Plant,1997,100:241-254
    204 Foyer CH, Noctor G. Oxygen processing in photosynthesis:Regulation and signaling [J]. New phytol,2000,146:359-388
    205 Foyer CH, Noctor G. Redox sensing and signaling associated with reactive oxygen in chloroplasts, peroxisomes and mitochondria. Physiol [J]. Plant,2003,119:355-364
    206 Foyer CH, Noctor G. Oxidant and antioxidant signaling in plants:a re-evaluation of the concept of oxidative stress in a physiological context [J]. Plant Cell Environ,2005,28:1056-1071
    207 Franck A. Quantitative assessment of genotoxicity using random amplied polymorphic DNA: omparison of genomic template stability with key fitness parameters in daphnia magna exposed to benzo (a) pyrene [J]. Environ Toxicol Chem,1999,18:2275-2282
    208 Gallego SM, Benavioes MP, Tomaro ML. Effect of heavy metal ions on sunflower leaves:evidence for involvement of oxidative stress [J]. Plant Sci,1996,121:151-159
    209 Gardner PR, Fridovich I. Superoxide sensitivity of Escherichia coli 6-phosphogluconate dehydratose [J]. J Biol Chem,1991,266:1478-1483
    210 Gamier L, Simon-Plas F, Thuleau P, Agnel JP, Blein JP, Ranjeva R, Montillet JL. Cadmium affects tobacco cells by a series of three waves of reactive oxygen species that contribute to cytotoxicity [J]. Plant Cell Environ,2006,29:1956-1969
    211 Geiger G, Brandl H, Furrer G, Schulin R. The effects of copper on the activity of cellulase and (3-glucosidase in the presence of montmorillonite or Al-montrnorillonite [J]. Soil Biol Biochem, 1998,30:1537-1544
    212 Giannopolitis CN, Ries SK. Superoxide dismutase in higher plants [J]. Plant Physiol,1977,59: 309-314
    213 Gichner T. DNA damage induced by indirect and direct acting mutagens in catalase-deficient transgenic tobacco cellular and acellular comet assays [J]. Mutation Research,2003,5:187-193
    214 Gouia H, Ghorbal MH, Meyer C. Effects of cadmium on activity of nitrate reductase and on other enzymes of the nitrate assimilation pathway in bean [J]. Plant Physiol Biochem,2000,38:629-638
    215 Gratao PL, Polle A, Lea PJ, Azevedo RA. Making the life of heavy metal-stressed plants a little easier. Funct Plant Biol 32:481-494 Lin, C.C., Kao, C.H.,2000. Effect of NaCl stress on H2O2 metabolism in rice leaves [J]. Plant Growth Regul,2005,30:151-155
    216 Greger M, Ogren E. Dircet and indirect feefcts of Cd2+ on physiological in sugar beet (Beta vulgaris) [J]. Physioologia Plantarum,1991,83:129-135
    217 Greger M, Johansson M. Cadmium feefcts on leaf transpiration of sugar beet (Beta vulgaris) [J], Physioologia Plantarum,1992,86:465-473
    218 Griffith OW. Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine, Anal Biochem,1980,106:207-212
    219 Grisham MB, McCord JM. Chemistry and cytotoxicity of reactive oxygen metabolites. In:Taylor, A. E, Matalan S, Ward PA, eds. Physiology of oxygen radicals. Bethseda, MD [J]. American Physiological Society,1986,1-18
    220 Noriega GO, Balestrasse KB, Batlle A, Tomaro ML. Cadmium induced oxidative stress in soybean plants also by the accumulation of d-aminolevulinic acid [J]. Biometals,2007,20:841-851
    221 Gunes A, Inal A, Alpaslan M, Eraslan F, et al.. Salicylic acid induced changes on some Physiological Parameters for oxidative stress and mineral nutrition in maize (Zea mays L.) grown under salinity [J]. Jounal of plant Physiology,2007,164:728-736
    222 Guo B, Liang YC, Zhu YG, Zhao FJ. Role of salicylic acid in alleviating oxidative damage in rice roots (Oryza sativa) subjected to cadmium stress [J]. Environmental Pollution,2007,147:743-749
    223 Gussarson M, Asp H, Adalststeinsson S, Jensen P. Enhancement of cadmium effects on growth and nutrient composition of birch (Betula pendula) by buthionine sulfoximine (BSO) [J]. J Exp Bot, 1996,47:211-215
    224 Gutierrez-coronada MA, Trejo-Lopez C, Larque-saavedra A, et al.. Effects of saliculic acid on the growth of roots and shoots in soybean [J]. Plant Physiol Biochem,1998,36:653-665
    225 Ha SB, Smith AP, Howden R, et al.. Phytochelatin synthetase genes from Arabidopsis and the yeast Schizosac-charomyces pombe [J]. Plant Cell,1999,11:1153-1164
    226 Hamada AM. Effects of exogenously added ascorbic acid, thiamin or aspirin on photosynthesis and some related activities of drought-stressed wheat plants. In:Garab G, et al.. Photosynthesis: Mechanisms and Effects. Kluwer Academic Publisher, Kordrecht,1998,4:2581-1584
    227 Hamada, AM, Al-Hakimi AMA. Salicylic acid versus salinity-drought induced stress on wheat seedlings. Rostl Vyro,2001,47:444-450
    228 Hamid M, Ashraf MY, Khalil-up-Rehman, Arashad M. Influence of salicylic acid seed priming on growth and some biochemical attributes in wheat grown under saline conditions [J]. Pak J Bot, 2008,40(1):361-367
    229 Hao FS, Wang XC, Chen J. Involvement of plasma-membrane stress in roots of wheat seedlings [J]. Plant Science,2006,170:151-158
    228 Harris JA, Salamanca CP, Barea JM. Land Restoration of Land:the Ecology and Practice [M]. Singapore:Longman,1996
    230 He JX,Wen JQ, Chong K, et al.. Changes in t ranscript levels of chloroplast psbA and pabD genes during water st ress in wheat leaves [J]. Phsiol Plant,1998,102:49-54
    231 He YL, Liu YL, Cao WX, et al.. Effects of different treatments of salicylic acid on heat tolerance associated with antioxidant metabolism in Kentucky bluefrass [J]. Crop Sci,2005,45:988-995
    232 Heath RL, Packer L. Photoperoxidation in isolated chloroplasts I. Kinetics and stoichiometry of fatty acid peroxidation [J]. Arch Biochem Biophys,1968,125:189-198
    233 Hegedus A, Erdei S, Horvath G. Comparative studies of H2O2 detoxifying enzymes in green and greening barley seedlings under cadmium stress [J]. Plant Sci,2001,160 (10):85-93
    234 Henderson LM, Chappel JB, Jones OTG. The superoxidegenerating NADPH oxidase of human neutrophils is electrogenic and associated with an H1 channel [J]. Biochem J,1987,246:325-329
    235 Henderson LM, Chappell JB. NADPH oxidase of neutrophils [J]. Biochim Biophys Acta,1996, 1273:87-107
    236 Henk S, Sharma SS, Riet V. Heavy metal-induced accumulation of free proline in a metaltolerant and a nontolerant ecotype of Silene vuigaris [J]. Physiologia Plantarum,1997,101:477-482
    237 Hernandez LE, Garate A, Carpena-Ruiz R. Effects of cadmium on the uptake, distribution and assimilation of nitrate in Pisum sativum [J]. Plant Soil,1997,189:97-106
    238 Hernandez JA, Campillo A, Jimenz A, Alarcon TJ, Sevilla F. Response of antioxidant system and leaf water relation to NaCl stress in pea plants [J]. New Phytol,1999,141:241-251
    239 Hernandez JA, Ferrer MA, Jimenez A, Barcelo AR, Sevilla F. Antioxidant systems and O2·-/H2O2 production in the apoplast of pea leaves, its relation with salt-induced necrotic lesions in minor veins [J]. Plant Physiol,2001,127:817-831
    240 Hinkle PM, Kinsella PA, Osterhoudt KC. Cadmium uptake and toxicity via voltage-sensitive calcium channels [J]. Journal Biology Chemistry,1987,262:16333-16337
    241 Hiraga S, Sasaki K, Ito H, Ohashi Y, Matsui H. A large family of class Ⅲ plant peroxidases [J]. Plant Cell Physiol,2001,42:462-468
    242 Hsu YTT, Kao CH. Cadmium-induced oxidative damage in rice leaves is reduced by polyamines [J]. Plant Soil,2007a,291:27-37
    243 Hsu YTT, Kao CH. Toxicity in leaves of rice exposed to cadmium is due to hydrogen peroxide accumulation [J]. Plant Soil,2007b,298:231-241
    244 Hu XL, Jiang MY, Zhang AY, et al.. Abscisic acid-induced apoplastic H2O2 accumulation up-regulates the activities of chloroplastic and cytosolic antioxidant enzymes in maize leaves [J]. Planta,2005,223(1):57-68
    245 lannelli MA, Pietrini F, Fiore L et al.. Antioxidant response to cadmium in Phragmites australis plants [J]. Plant Physiol Biochem,2002,40:977-9821
    246 Iglesias RG, Babiano MJ. ABA levels in chick-pea seeds during the first twenty-four hours of germination [J]. Effect of polyethylene-glycol Phytochemistry,1996,41:681-683
    247 Imlay JA, Chin SM, Linn S. Toxic DNA damage by hydrogen peroxide through the fenton reaction in vivo and in vitro [J]. Science,1988,240:640-642
    248 Janda T, Szalai G, Tari I, Paldi E. Hydrophonic treatment with salicylic acid decreases the effect of chilling in maize (Zea mays L.) plants [J]. Planta,1999,208:175-180
    249 Jeliazkova EA, Craker LE. Seed germination of some medicinal and aromatic plants in a heavy metal environment. Journal of herbs, spices & medicinal plants,2002,10 (2):105-112
    250 Jiang MY, Zhang JH. Involvement of plasma membrane NADPH oxidase in abscisic acid-and water stress-induced antioxidant defense in leaves of maize seedlings [J]. Planta,2002,215: 1022-1030
    251 Jita P, Brahma B, Panda. A comparison of biochemical responses to oxidative and metal stress in seedlings of barley [J]. virontal Pollution,1998,101:99-105
    252 Jones RD, Hancock T, Alyn H, et al.. NADPH Oxidase:A Universal Oxygen Sensor? Free Radical [J]. Biology & Medicine,2000, Vol.29(5):416-424
    253 Joo JH, Bae YS, Lee JS. Role of auxin-induced reactive oxygen species in root gravitropism [J]. Plant Physiol.,2001,126:1055-1060
    254 Kaiser WM, Weiner H, Huber SC. Nitrate reductase in higher plants:A case study for transduction of environmental stimulation control of catalytic activity [J]. Physiol Plant,1999,105:385-390
    255 Kang HM, Saltveit ME. Chilling tolerance of maize, cucumber and rice seedlings leaves and roots are diferentially affected by salicylic acid,Physiol [J]. Plant,2002,11:571-576
    256 Kapus A, Romanek R, Qu AY, Rostein, OD, Grinstein SA. pH sensitive and voltage-dependent proton conductance in the plasma membrane of macrophages [J]. J. Gen Physiol,1993,102 729-760
    257 Karpinski S, Reynolds H, Karpinska B, Wingsle G, Creissen G, Mullineaux P. Systemic signaling and acclimation in response to excess excitation energy in Arabidopsis [J]. Science,1999,284 654-657
    258 Keller T, Damude HG, Werner D, et al. A plant homologue of the neutrophil NADPH oxidase gp91phox subunit gene encodes a plasma membrane protein with Ca2+ binding motifs. The Plant Cell, 1998,10:255-66
    259 Kent CRH, Eady JJ, Ross GM.The comet moment at a measure of DNA damage in the comet assay [J]. Int J Radiat Biol,1995,655-407
    260 Klotz MG, Hutcheson SW. Multiple periplastic catalases in phytopathogenic strains of Pseudomonas syringae [J]. Appl Environ Microbiol,1992,58:2468-2473
    261 Krantev A, Yordanova R, Janda T, Szalai G, Popova L. Treatment with salicylic acid decreases the effect of cadmium on photosynthesis in maize plants [J]. Journal of Plant Physiology,2008,165 (9): 920-931
    262 Kuo MC, Kao CH. Antioxidant enzyme activities are upregulated in response to cadmium in sensitive, but not in tolerant rice (Oryzasativa L.) seedlings [J]. Bot Bull Acad Sin,2004,45 291-299
    263 Kuriakose SV, Prasad MNV. Cadmium stress affects seed germination and seedling growth in Sorghum bicolor (L.) Moench by changing the activities of hydrolyzing enzymes [J]. Plant Growth Regulation,2008,54 (2):143-156
    264 Kwak JM, Mori IC, Pei ZM, Leonhardt N, Torres MA, Dangl JL, Bloom RE, Bodde S, Jones JDG, Schroeder JI.NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis [J]. The EMBO Journal,2003,2 (2):2623-2633
    265 Labra M, Gianazza E, Waitt R, Eberini I, Sozzi A, Regondi S, Grassi F, Agradi E. Zea mays L. protein changes in response to potassium dichromate treatments [J]. Chemosphere,2006,60: 1234-1244
    266 Laemmli, UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4 [J]. Nature,1970,227:680-685
    267 Lagriffoul A, Mocquot B, Mench M, Vangronsveld J. Cadmium toxicity effects on growth, mineral and chlorophyll contents, and activities of stress related enzymes in young maize plants (Zea mays L.) [J]. Plant and Soil,1998,200:241-250
    268 Laloi C, Apel K, Danon A. Reactive oxygen signaling:the latest news. Curr Opin [J]. Plant Biol, 2004,7:323-328
    269 Lamb C, Dixon RA The oxidative burst in plant disease resistance [J]. Annual Review of Plant Physiology and Plant Molecular Biology,1997,4 (8):251-275
    270 Lambeth JD. Nox enzymes and the biology of reactive oxygen [J]. Nature Rev Immunol,2004,4: 181-189
    271 Lamoureux GL, Rusness DG. The role of glutathione and glutathione-S-transferases in pesticide metabolism, selectivity and medical aspects [M]. In D Dolphin, R Poulson, O Avramovic, eds, Enzymes and Cofactors, Series Vol IIIB. Wiley Liss & Sons, New York,1989,153-196
    272 Lederer B, Boger P. Antioxidative Responses of tobacco expressing a bacterial glutathione reductase. Z Naturforsch,2003,58c,843-849
    273 Lee, MY, Shin, HW. Cadmium-induced changes in antioxidant enzymes from the marine alge Nannochloropsis oculate [J]. J Appl Phycol,2003,15:13-19
    274 Li W, Khan MA, Yamaguchi S, Kamiya Y. Effects of heavy metals on seed germination and early seedling growth of Arabidopsis thaliana [J]. Plant Growth Regul,2005,46:45-50
    275 Liliana B, Pena, Laura A. pasquini, Maria L. Tomaro, Susana M. Gallego. Proteolytic system in sunflower (Helianthus annuus L.) leaves under cadmium stress [J]. Plant science,2006,171 531-537
    276 Lin AJ, hang XH, Chen MM, Cao Q. Oxidative stress and DNA damages induced by cadmium accumulation [J]. Journal of Environmental Sciences,2007,19:596-602
    277 Liu D, Jiang W, Gao X. Effects of cadmium on root growth, cell dividion and nucleoli in root tip cells of gatlic [J]. Biologia Plantarum,2003,47 (1):79-83
    278 Liu X, Zhang S, Shan X, Zhu YG. Toxicity of arsenate and arsenite on germination seedling growth and amylolytic activity of wheat [J]. Chemosphere,2005,61:293-301
    279 Lopez E, Arce C, Oset-Gasque MJ et al.. Cadmium induces reactive oxygen species generation and lipid peroxidation in cortical neurons in culture [J]. Free Radical Biology & Medicine,2006,40: 940-951
    280 Lopez-Delgado H, Dat JF, Foyer GH, et al.. Induction of thermotolerance in potato microp lants by acetyl salicylic acid and H2O2 [J]. Journal of Experim ental B otany,1998,49:713-720
    281 Lopez-Huertas E, Corpas JF, Sandalio ML, del Rio AL. Characterization of membrane polypeptides from pea leaf peroxisomes involved in superoxide radical generation [J]. Biochem J,1999,337 531-536
    282 Lozano-Rodriguez E, Hernandez LE, Bonay P, Carpena-Ruiz R. Distribution of Cd in pea and maize tissues.Physiological disturbances [J]. Journal of Experimentai Botany,1997,48:123-128
    283 Luo JP, Jiang ST, Pan LJ. Enhanced somatic embryogenesis by salicylic acid of Astragalus adsurgens Pall.:relation ship with productionand and H2O2-metabolizing enzyme activities [J]. Plant Science,2001,161:125-132
    284 Ma BH, Wan JM, Shen ZG H2O2 production and antioxidant responses in seeds and early seedlings of two different rice varieties exposed to aluminum [J]. Plant Growth Regulation,2007, 52:91-100
    285 Mahdavian K, Ghorbanli M, Kalantari Kh M. Role of salicylic acid in regulating ultraviolet radiation-induced oxidative stress in pepper leaves [J]. Russian Journal of Plant Physiology,2008, 55 (4):560-563
    286 Maksymiec W, Krupa Z The effects of shot-term exposition to Cd, excess Cu ions and jasmonate on oxidative stress appearing in arabidopsis thaliana [J]. Environmental and Experimental Botany, 2006,57:187-194
    287 Malamy J, Carr JP, Klessig DR. Salicylic acid:a ikely endgenous signal in the resistance response of tobacco to viral infection [J]. Science,1990,250:1002-1004
    288 Mancini A, Buschini A, Restivo F M, et al.. Oxidative stress as DNA damage in different transgenic tobacco plants [J]. Plant Science,2006,170:845-852
    289 Manthe B, Schulz M and Schnabl H. Effects of salicylic acid on growth and stomatal movements of Vicia faba L.; Evidence for salicylic acid metabolization [J]. J them Ecol,1992,18:1525-1539
    290 Mateo A, Funck D, Muhlenbock P. Kular B, Muliineaux PM, Karpinski S. Controlled levels of saliculic acid are required for optimal photosynthesis and redox homeostasis [J]. J Exp Bot,2006, 57:1795-1807
    291 Matsumoto H, Yamaya T. Inhibition of potassium uptake and regulation of membrane-associated Mg2+-ATPase activity of pea roots by aluminium [J]. Soil Sci Plant Nutr,1986,32:179-188
    292 Mc Loughlin MJ, Bell MJ, Wright GC, Cozens GD. Uptake and partitioning of cadmium by cultivars of peanut (Arachis hypogaea L.) [J]. Plant Soil,2000,222:51-58
    293 McKersie BD, Leshem YY. Stress and Stress Coping in Cultivated Plants [J]. Kluwer Academic Publishes,1994,1-18
    294 Mehra PK, Tripathi RD. Phytochelatins and metal tolerance [M]. In SB Agrawal, M Agrawal, eds, Environmental Pollution and Plant Responses. CRC Press, Boca Raton, FL,2000,367-382
    295 Meister A, Anderson ME, Ann R. Manipulation of glutathione and amino acid biosynthesis in the chloroplast [J]. Biochem,1983,52:711-718
    296 Mengoni A, Gonnelli C, Galardi F. Genetic diversity and heavy metal tolerance in populations of Silene paradoxa L. (Caryophyllaceae):A random amplified polymorphic DNA analysis [J]. Mol Ecol,2000, (9):1319-1324
    297 Metraux J, Singer H, Rials J, Ward E, Wyss-Benz M, Gaudin J, Raschdorf K, Shmid E, Blum W, Inverardi B. Increase in salicylic acid at the onset of systemic acquired resistance in cucumber, Science,1990,250:1004-1006
    298 Metraux JP. Recent breakthroughs in the study of salicylic acid biosynthesis [J]. Trends Plant Sci, 2002,7:332-334
    299 Metwally A, Finkemeier I, Georgi M, Dietz K J. Salicylic acid alleviates the cadmium toxicity in barley seedlings [J]. Plant Physiol,2003,132,272-281
    300 Michael PW, Bhalchandra AD.Cadmium-induced inhibition of the growth and metastsis of human lung carcinoma xenografts [J]. Role of apoptosi Carcinogenesis,1999,20 (1):65-70
    301 Michael PW. Cadmium carcinogenesis in review [J]. J Inorganic Bioche,2000,79:241-244
    302 Mihoub A, Chaoui A, Ferjani EE. Biochemical change associated with cadmium and copper stress in germinating pea seeds (Pisum sativum L.) [J]. C R Biol,2005,328:33-41
    303 Mikami B, Adachi M, Kage T, et al. Structure of raw starch-digesting Bacillus cereus beta-amylase complexed with maltose [J]. Biochemistry,1999,38 (22):7050-7061
    304 Milone MT, Sgherri C, Clijsters H, NavarizzoIzzo F. Antioxidative responses of wheat treated with realistic concentration of cadmium [J]. Environmental and Experimental Botany,2003,50 265-276
    305 Mishra A, Choudhuri MA. Effects of salicylic acid on heavy metal-induced membrane deterioration mediated by lipoxygenase in rice [J]. Biol Plant,1999,42:409-415
    306 Mittler R, Oxidative stress, antioxidants and stress tolerance [J]. Trends in Plant Science,2002,7: 405-411
    307 Mittler R, Vanderauwera S, Gollery M, Van Breusegem F. Reactive oxygen gene network of plants [J]. Trends Plant Sci,2004,9:490-498
    308 Monk LS, Fagersted KV, Crawford RMM. Oxygen toxicity and superoxide dismutase as an antioxidant in physiological stress [J]. Physiol Plant,1989,76:456-459
    309 Montillet JL, Chamnongpol S, Rusterucci C, Dat J, Van de Cotte B, Agnel JP, Battesti C, Inzee D, Van BF, Triantaphylides C. Fatty acid hydroperoxides and H2O2 in the execution of hypersensitive cell death in tobacco leaves [J]. Plant Physiol,2005,138:1516-1526
    310 Moral R, Gomez I, Navarro-Pedreno J, Mataix J. Effects of cadmium on nutrient distribution, yield and growth of tomato grown in soil-less culure [J]. J Plant Nutr,1994,17:953-962
    311 Morita S, kaminaka H, Masumura T, Tanaka K. Induction of rice cytosolic ascorbate peroxidase by oxidative stress signaling. Plant Cell Physiol,1999,40:417-422
    312 Muhammad S, Iqbal MZ. The toxicity effects of heavy metals on gennination and seedling growth of Cassia siamea Lamk [J]. Journal of New Seeds,2005,7 (4):95-105
    313 Muhammad A, Habib R. Athar, Muhammad Ashraf. Does exogenous application of salicylic acid through the rooting Medium modulate grouwth and photosynthetic capacity in two differently adaped spring wheat cultivars under salt stress? [J]. Journal of Plant Physiology,2007,164 685-694
    314 Munoz N, Gonzalez C, Molina A, Zirulnik F, Luna CM. Cadmium-induced early changes in O2-, H2O2 and antioxidative enzymes in soybean (Glycine max L.) leaves [J]. Plant Growth Regul,2008, 56:159-166
    315 Munzuroglu O, Geckil H. Effects of metals on seed germination, root elongation, and coleoptile and hypocotyl growth in Triticum aestivum and Cucumis sativus. Archives of Environmental Contamination and Toxicology,2002,43 (2):203-213
    316 Murata Y, Pei ZM, Mori IC, et al. Abscisic acid activation of plasma membrane Ca2+ channels in guard cells requires cytosolic NAD(P)H and is differentially disrupted upstream and downstream of reactive oxygen species production in abil-1 and abi2-l protein phosphatase and 2C mutants [J]. Plant Cell,2001,13:2513-2523
    317 Nada E, Ferjani BA, Ali R, Rwina BB, Imed M, Makki B. Cadmium-induced growth inhibition and alteration of biochemical parameters in almond seedlings grown in solution culture [J]. Acta Physiol Plant,2007,29:57-62
    318 Nakano Y, Asada K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts [J]. Plant Cell Physiol,1981,22:867-880
    319 Nawrath C, Metraux JP. Salicylic acid induction-deficient mutants of Arabidopsis express PR-2 and PR-5 and accumulate high levels of camalexin after pathogen inoculation [J]. Plant Cell,1999,11: 1393-1404
    320 Nawrath C, Heck S, Parinthawong N, Metraux JP. EDS5, An essential component of salicylic acid-dependent signaling for disease resistance in arabidopsis is a member of the MATE transporter family [J]. Plant Cell,2002,14:275-286
    321 Nedunchezhian N, Kulandaivelu G. Effect of Cd and UV-B radiation on polypep tide composition and photosystem activities of V igna unguiculata chlorop lasts [J]. Biologia Plantarum,1995,37: 437-441
    322 Neill SJ, Desikan R, Clarke A, et al.. Hydrogen peroxide and nitric oxide as signaling molecules in plants [J]. Journal of Experimental Botany,2002,53:1237-1247
    323 Nemeth M, Janda T, Horvath E, et al.. Exogcnons salicylic acid increases polyamine content but may decrease drought in maize [J]. Plant Sci,2002,162:569-574
    324 Noctor G, Foyer CH. Ascorbate and glutathione:keeping active oxygen under control [J]. Annu Rev Plant Physiol Plant Mol Biol,1998,49:249-279
    325 Nouairi I, Ammar WB, Youssef NB, Daoud DBM, Ghorbal MH, Zarrouk M. Comparative study of cadmium effects on membrane lipid composition of Brassica juncea and Brassica napus leaves. Plant Sci,2006,170:511-519
    326 Nriagu JO, Pacyna JM. Quantitative assessment of world wide contamination of air, water and soils with trace metals [J]. Nature,1988,333:134-139
    327 Nystrom T. Role of oxidative carbonylation in protein quality control and senescence [J]. Embo J, 2005,24:1311-1317
    328 Ohnish T. Kobert S. An improved assay of inorganic phosphate in the presence of ex-tralabile phosphate compounds:application to the ATPase assay in the presence of phosphocreation. Anal [J]. Biochim,1975,69:261-267
    329 Olmos E, Martinez-Solano JR, Piqueras A, Hellin E. Early steps in the oxidative burst induced by cadmium in cultured tobacco cells (BY-2 line) [J]. J Exp Bot,2003,54:291-301
    330 Orozco-Cardenas ML, Narvaez-Vasquez J, Ryan CA. Hydrogen peroxide acts as a second messenger for the induction of defensegenes in tomato plants in response to wounding, systemin, and methyljasmonate [J]. The Plant Cell,2001,13(1):179-191
    331 Ortega-Villasante C, Rellan-Alvarez R, DelCampo, FF, Carpena-Ruiz RO, Hernandez LE. Cellular damage induced by cadmium and mercury in Medicago sativa [J]. J Exp Bot,2005,56,2239-2251
    332 Padmaja K, Parsad DDK, Parsad ARK. Inhibition of chlorophyll synthesis in Phaseolus vulgaris L.seedlings by cadmium acetate [J]. Photosynthetica,1990,24:399-404
    333 Pal ME, Horvath T, Janda E, Paldi G. Szalai. Cadmium stimulates the accumulation of salycilic acid and its putative precursors in maize (Zea mays) plants, Physiol [J]. Plant,2005,125:356-364
    334 Panda SK, Khan MH. Chromium phytotoxicity effects on the germination of green gram (Vigna radiata) seeds [J]. J Phytol Res,2003a,15:225-228
    335 Panda SK, Chaudhury I, Khan MH. Heavy metal induced lipid peroxidation and affects antioxidants in wheat leaves [J]. Biol Plant,2003b,46:289-294
    336 Panda SK, Patra HK. Effect of salicylic acid potentiates cadmium-induced oxidative damage in Oryza sativa L. leaves [J]. Acta Physiol Plant,2007,29:567-575
    337 Parkos CA, Allen RA, Cochrane CG, Jesaitis AJ. Purified cytochrome b from human granulocyte plasma membrane is comprised of two polypeptides with relative molecular weights of 91,000 and 22,000 [J]. J Clin Invest,1987,80:732-742
    338 Patel MJ, Patel JN, Subramanian RB. Effect of cadmium on growth and the activity of H2O2 scav enging enzymes in Colocassia esculentum [J]. Plant and Soil,2005,273:183-188
    339 Pellinen R, Palva T, Kangasjarvi J. Subcellular localization of ozone-induced hydrogen peroxide production in birch (Betula pendula) leaf cells [J]. Plant J,1999,20:349-356
    340 Pereira GJG, Molina SMG, Lea PJ,Azevedo RA. Activity of antioxidant enzymes in response to cadmium in Crotalaria juncea [J]. Plant and Soil,2002,239:123-132
    341 Perfus-Barbeoch L, Leonhardt N, Vavasseur A, Forestier C. Heavy metal toxicity:cadmium permeates through calcium channels and disturbs the plant water status [J]. The Plant Journal,2002, 32 (4):539-548
    342 Pietrini F, Iannelli MA, Pasqualini S, Massacci A. Interaction of cadmium with glutathione and photosynthesis in developing leaves and chloroplasts of Phragmites australis (Cav.)Trin. Ex Steudel [J]. Plant Physiology,2003,133:829-837
    343 Pilon-Smits EAH, Zhu YL, Sears T, Terry N. Over expression of glutathione reductase in Brassica juncea:Effects on cadmium accumulation and tolerance. Physiol [J]. Plant,2000,110:455-60
    344 Pinton R, Calanak I, Narschner H. Zinc deficiency enhanced NAD(P)H-dependent superoxide radical production in plasma membrane vesicles isolated from roots of bean plants [J]. Journal of Experimental Botany,1994,45:45-50
    345 Piqueras A, Olmos E, Martinez-Solano JR, Hellin E. Cd-induced oxidative burst in tobacoo BY2 cells:time-course, subcellular location and antioxidant response [J]. Free Radical Research,1999, 31:supplement, S33-S38
    346 Pourrut B, Perchet G, Silvestre J, Cecchi M, Guiresse M, Pinelli E. Potential role of NADPH-oxidase in early steps of lead-induced oxidative burst in Vicia faba roots [J]. Jounal of Plant Physiology,2008,165:571-579
    347 Prasad KVSK, Pardha S P, Sharmila P. Concerted actionantioxidant enzyme and curtailed growth under zinc toxicity in Brassica napus [J]. Environ Exp Bot,1999,42:1-10
    348 Prasad MNV. Cadumium toxicity and tolerrance in vascular plants [J]. Environmental and Experimental Botany,1995,35 (4):525-545
    349 Quartacci MF, Cosi E, Navari-Izzo F. Lipids and NADPH dependent superoxide production in plasma membrane vesicles from roots of wheat grown under copper deciency or excess [J]. J Exp Bot,2001,52:77-84
    350 Ranieri A, Castagna A, Scebba F, Careri M, Zagnoni I, Predieri G, Pagliari M, di Toppi LS.Oxidative stress and phytochelatin characterisation in bread wheat exposed to cadmium excess [J]. Plant Physiology and Biochemistry,2005,43 (1):45-54
    351 Rao MV, Paliyath G, Ormrod DP. Ultraviolet-B-and ozone induced biochemical changes in antioxidant enzymes of Arabidopsis thaliana [J]. Plant Physiol,1996,110:125-136
    352 Rao MV, Davis KR. Ozone-induced cell death occurs via two distinct mechanisms in rabidopsis:the role of salicylic acid [J]. Plant J.1999,17:603-614
    353 Rasin I, EhmannA, Melander WR, et al.. Salicylic acid:a natural inducer of heat production in Arum lilies [J]. Science,1987,237:1601-1602
    354 Raskin I.Role of Salicylic acid in plant.Ann.Rev. [J]. Plant Physiology Plant Mol.Biol,1992,43: 439-463
    355 Rauser WE. Phytochelatin [J]. Annu Rev Biochem,1990,59:61-86
    356 Rauser WE. Phytochelatins and related peptides [J]. Plant Physiol,1995,109:1141-1149
    357 Rellan-Alvarez R, Ortega-Villasante C, Alvarez-Fernandez A, del Campo FF, Hernandez LE. Stress Responses of Zea mays to Cadmium and Mercury [J]. Plant and Soil,2006,279:41-50
    358 Rhoads DM and Mclntosh L. Salicylic acid regulation of respiration in higher plants:alternative oxidase expression [J]. Plant Cell,1992,4:1131-1139
    359 Romero-Puertas MC, McCarthy I, Sandalio LM, Palma JM, Corpas FJ, Gomez M, del Rio LA. Cadmium toxicity and oxidative metabolism of pea leaf peroxisomes [J]. Free Radical Research 31 (Suppl.),1999,525-532
    360 Romero-Puertas MC, Palma JM, Gomez M, del Rio LA, Sandalio LM. Cadmium causes the oxidative modification of proteins in pea plants [J]. Plant, Cell and Environment,2002,25 677-686
    361 Romero-Puertas MC, Rodriguez-Serrano M, Corpas FJ, Gomez M, Delrio LA, Sandalio LM. Cadmium-induced subcellular accumulation of O2'·- and H2O2 in pea leaves [J]. Plant Cell Environ, 2004,27:1122-1134
    362 Romero-Puertas MC, Corpas FJ, Rodriguez-Serrano M, Gomez M, del Rio LA, Sandalio LM. Differential expression and regulation of antioxidative enzymes by cadmium in pea plants [J]. Journal of Plant Physiology,2007,164:1346-1357
    363 Rong ZY, Yin HW. A method for genotoxicity detection using random amplified polymorphism DNA with Daniorerio [J]. Ecotoxicology and Environmental Safety,2004,58:96-103
    364 Rubinstein B, L uster DG. Plasmamembrane redox activity:Components and role in plant Processes [J]. Ann Rev Plant Physiol Plant Mol Biol,1993,44:131-155
    365 Ruposhev A. Cytogenctic effect of heavy metals ions on Cripis capillars L. seeds, Genetika,1976, 12:37-43
    366 Sagi M, Fluhr R. Superoxide production by plant homologues of the gp91(phox) NADPH oxidase: modulation of activity by calcium and by tobacco mosaic virus infection [J]. Plant Physiol,2001, 126:1281-1290
    367 Sagi M, Fluhr R. Production of Reactive Oxygen Species by Plant NADPH Oxidases [J]. Plant Physiology,2006,141:336-340
    368 Sanchez-Galan S, Garcia-Vazquez E, Linde AR. Brown Trout and European Minnow as Target Species for Genotoxicity Tests:Differential Sensitivity to Heavy Metals [J]. Ecotoxicology and Environmental Safety,1999,43 (3):301-304
    369 Sandalio LM, Dalurzo HC, Gomez M, et al.. Cadmium-induced changes in the growth and oxidative metabolism of pea plant s [J]. Journal of Experimental Botany,2001,364 (52) 2115-2126
    370 Sataru S, Baker J R, Urbenjapol S, et al.. Global perspective on cadmium pollution and toxicity in non-occupationally exposed population [J]. Toxicology Letters,2003,137:65-83
    371 Scandalias JG. Oxygen stress and superoxide dismutase [J]. Plant Physiol,1993,101:7-12
    372 Scott IM, Clarke SM, Wood JE, Mur LAJ. Salicylate accumulation inhibits growth at chilling temperature in Arabidopsis [J]. Plant physiology,2004,135 (2):1040-1049
    373 Scebba F, Arduini I, Ercoli L, Sebastlani L. Cadmium effects on growth and antioxidant enzymes activities in Miscanthus sinensis [J]. Biologia Plaantarum,2006,50 (2):688-692
    374 Schaedle M, Bassham JA. Chloroplast glutathione reductase [J]. Plant Physiol,1977,59: 1011-1012
    375 Schlegel H, Godhbold DL, Huttermann A. Whole plant water relations of spruce (Picea abies) seedlings. [J]. Physiologia Plantarum,1987,69:265-270
    376 Schutzendubel A, Schwang P, Teichmann T, Gross K, Langenfeld-Heyer R, Godbold DL, Polle A. Cadmium-induced changes in antioxidative systems, hydrogen peroxide content, and differentiation in scots pine roots [J]. Plant Physiol,2001,127:887-898
    377 Schutzendubel A, Nikolova P, Rudolf C, Polle A. Cadmium and H2O2-indueed oxidative stress in populusxcanescens roots [J]. Plant Physiol Biochem,2002,40:577-584
    378 Senaratna T, Touchell D, Bunn E, et al.. Acetyl salicylic acid (as-pirin) and salicylic acid induce multiple stress tolerance in bean and tomato plants [J]. Plant Growth Reg,2000,30:157-161
    379 Shah K, Dubey RS. Cadmium elevates level of protein, amino acids and alters the activityof proteolytic enzymes in germinating rice seeds [J]. Acta Physiol Plant,1998,20:189-196
    380 Shalaby AM, Al-Wakeel SAM. Changes in nitrogen metabolism enzyme activities of Vicia faba in response to aluminium and cadmium [J]. Biol Plant,1995,37:101-106
    381 Sharma SS, Kaul S, Metwally A, Goyal KC, Finkemeier I, Dietz KJ. Cadmium toxicity to barley (Hordeum vulgare) as affected by varying Fe nutritional status [J]. Plant Sci,2004,166:1287-1295
    382 Shaw BP. Effect of mercury and cadmium on the activities of antioxidative enzymes in the seedlings of Phaseolus aureus [J]. Biologia Plantarum,1995,37:587-596
    383 Shi Q, Bao Z, Zhu Z, Ying Q, Qian Q. Effects of different treatments of salicylic acid on heat tolerance,chloropyll fluorescence,and antioxidant enzyme activity in seedlings of Cucumis sativa L [J]. Plant Growth Regul,2006,48:127-135
    384 Shirasu K, Nakajima A, Rajshekar K, Dixon RA, Lamb C. Salicylic acid potentiates an agonist-dependent gain control that amplifies pathogen signal in the activation of defence mechanism [J]. Plant Cell,1997,9:261-270
    385 Shraddha S, Susan E, et al.. Cadmium accumulation and its influence on lipid peroxidation and antioxidative system in an aquatic plant [J]. Bacopa monnieri L.Chemosphere,2006, (62): 233-246
    386 Simonovicov M, Huttova J, Mistrik I, Sirrika B, Tamas L. Peroxidase mediated hydrogen peroxide production in barley roots grown under stress condition [J]. Plant Growth Regulation,2004,44 267-275
    387 Simon-Plas F, Elmayan T, Blein JP. The plasma membrane oxidase NtrbohD is responsible for AOS production in elicited tobacco cells [J]. The Plant Journal,2002,31:137-147
    388 Singh S, Eapen S, D'Souza SF. Cadmium accumulation and its influence on lipid peroxidation and antioxidative system in an aquatic plant, Bacopa monnieri L. [J]. Chemosphere,2006,62:233-246
    389 Singh HP, Batish DR,Kohli RK, Arora K. Arsenic-induced root growth inhibition in mung bean (Phaseolus aureus Roxb.) is due to oxidative stress resulting from enhanced lipid peroxidation [J]. Plant Growth Regul,2007,53:65-73
    390 Skorzynska-Polit E, Drazkiewicz M, Krupa Z. The activity of the antioxidative system in cdmium-treated Arabidopsis thaliana [J]. Biol Plant,2003,47:71-78
    391 Somashekaraiah BV, Padmaja K, Prasad ARK. Phytotoxicity of Cadmium Ions on Germinating Seedlings of Mung Bean (Phaseoulus vulgaris)-Involvement of Lipid Peroxides in Chlorophyll Degradation. Physiol [J]. Plant,1992,85:85-89
    392 Srivastava, A. and Jaiswal, V.S., Biochemical Changes in Duck Weed after Cadmium Treatment [J]. Water Air Soil Pollut,1990,50:163-170
    393 Stadtman ER. Oxidation of proteins by mixed-function oxidation systems:implication in protein turnover, aging and neutrophil function [J]. Trends Biochem Sci,1986,11:11-12
    394 Steinbeck MJ, Khan AU, Appel WH Jr, Karnovsky MJ. The DAB-Mn cytochemical method revisited:Validation of specificity for superoxide [J]. J Histoche Cytochem,1993,41:1659-1667
    395 Stevens RG, Creissen GP, Mullineaux PM. Cloning and characterisation of a cytosolic glutathione reductase cDNA from pea (Pisum sativum L.) and its expression in response to stress [J]. Plant Mol. Biol,1997,35:641-654
    396 Streb P, Michael-Knauf A, Feierabend J. Preferential photoinactivation of catalase and photoinhibition of photosystem II are common early symptoms under various osmotic and chemical stress conditions [J]. Physiol Plant,1993,88:590-598
    397 Sun X, Yuan S, Lin HH. Salicylic acid decreases the levels of dehydrin-like proteins in Tibetan hulless barley leaves under water stress. Zeitschrift fur Naturforschung. C, A Journal of Biosciences, 2006,61:245-250
    398 Sutherland MW, Learmonth BA. The tetrazolium dyes MTS and XTT provide new quantitative assays for superoxide and superoxide dismutase [J]. Free Radical Res,1997,27:283-289
    399 Suzuki N, Koizumi N, Sano H. Screening of cadmiumresponsive genes in Arabidopsis thaliana [J]. Plant Cell Environ,2001,24:1177-1188
    400 Szabo- Nagy A, Olah Z, Erdei L. Phosphatase induction in roots of winter wheat during adaptation to phosphorus deficiency [J]. Physiol Plantarum,1987,70:544-552
    401 Szepesi A, Csiszar J, Galle A, Gemes K, Poor P, Tari I. Effects of long-term salicylic acid pre-treatment on tomato (Lycopersicon esculentum MILL L.) salt stress tolerance:changes in glutathione s-transferase activities and anthocyanin contents [J]. Acta Agronomica Hungarica,2008, 56(2):129-138
    402 Tabaldi LA, Ruppenthal R, Cargnelutti D, et al.. Effects of metal elements on acid phosphatase activity in cucumber (Cucumis sativus L.) seedlings [J]. Environmental and Experimental Botany, 2007,59:43-48
    403 Tamas L, Simonovicova M, Huttova J, Mistrik I Aluminum stimulated hydrogen peroxide production of germinating barley seeds [J]. Environ Exp Bot,2004,51:281-288
    404 Tamot BK, Khurana JP, and Maheshwari Obligate SC. Requirement of salicylic acid for short-day induction of flowering in a New Duckweed, Wolffiella hyalina 7378 [J]. Plant Cell Physiol,1987,28:349-353
    405 Tasgin E, Atici O, Nalbantoglu B. Effects of salicylic acid and cold on freezing tolerance in winter wheat leaves [J]. Plant Growth Regul,2003,41:231-236
    406 Tausz M, Sircelj H, Grill D. The glutathione system as a stress marker in plant ecophysiology:is a stress-response concept valid? J Exp Bot,2004,55:1955-1962
    407 Tewari RK, Kumar P, Sharma PN. Antioxidant responses to enhanced generation of superoxide anion radical and hydrogen peroxide in the copper-stressed mulberry plants [J]. Planta,2006,223 1145-1153
    408 Theodorakis CW. Integration of genotoxic and population genetic endpoints in biomonitoring and risk assessment [J]. Ecotoxicology,2001,10 (4):245-256
    409 Thordal-Christensen H, Zhang Z, Wei Y, Collinge DB. Subcellular localisation of H2O2 in plants, H2O2 accumulation in papillae and hypersensitive response during barley-powdery mildew interaction [J]. Plant J,1997,11:1187-1194
    410 Tiryakioglu M, Eker S, Ozkutlu F, Husted S, Cakmak I. Antioxidant defense system and cadmium uptake in barley genotypes differing in cadmium tolerance [J]. Journal of Trace Elements in Medicine and Biology,2006,20:181-189
    411 Tomes MA, Dangl JI. Functions of the respiratory burst oxidase in biotic interactions, abiotic stress and development [J]. Curr Opin Plant Biol,2005,8:397-403
    412 Torres MA, Onouchi H, Hamada S, Machida C, Hammond-Kosack KE, Jones JDG. Six rabidopsis thaliana homologues of the human respiratory burst oxidase(gp91 (phox)) [J]. Plant J,1998,14: 365-370
    413 Torres MA, Dangl JL, Jones JDG. Arabidopsis gp91(phox) homologues AtrbohD and AtrbohF are r equired for accumulation of reactive oxygen intermediates in the plant defense response [J]. Proc Natl Acad Sci USA,2002,99:517-522
    414 Tuteja N, Mohan BS, Mithilesh KM. Molecular mechanisms of DNA damage and repair:progress in plants [J]. Crit Rev Biochem & Mol Biol,2001,36 (4):337-397
    415 Van AF, Clijsters H. Effects of metals on enzyme activity in plants [J]. Plant Cell Environ,1990,13: 195-206
    416 Vanacker E, Carver TLW, Foyer CH. Pathogen-induced changes in the antioxidant status of the apoplast in barley leaves [J]. Plant Physiol,1998,117:1103-1114
    417 Van Gestelen P, Asard H, Caubergs RJ. Solubilizationand separation of a plant plasma membrane NADPH-O2-synthase from other NAD(P)H oxidoreductases [J]. Plant Physiol,1997,115 543-550
    418 Vassilev A, Lidon F, Scott P, Da Graca M, Yordanov I. Cadmium-induced changes in chloroplast lipids and photosystem activities in barley plants [J]. Biol Plant,2004,48:153-156
    419 Vasyukova NI, Ozeretskovskaya OL. Induced Plant Resistance and Salicylic Acid:A Review [J]. Applied Biochemistry and Microbiology,2007,43 (4):367-373
    420 Verma S, Dubey RS. Lead toxicity indices lipid peroxidation and alters the activities of antioxidant enzymes in growing rice plants [J]. Plant Sci,2003,164:645-655
    421 Vignais PV. The superoxide-generating NADPH oxidase:structural aspects and activation mechanism [J]. Cellular and Moleular Life Sciences,2002,5 (9):1428-1459
    422 Vincent JB, Crowder MW, Averill BA. Hydrolysis of phosphate monoesters:a biological problem with multiple chemical solutions [J]. Trends Biochem Sci,1992,17:105-110
    423 Wang YZ, Sze H. Similarities and differences between the tonoplast-type mitochondrial H+-ATPase of oat roots [J]. Bio,1985,260:10434-10443
    424 Wang W. Rice seed toxicity tests for organic and inorganic substances [J]. Environ Monitor Assess, 1994,29:101-107
    425 Wang Z, Zhang YX, Huang ZB, Huang L. Antioxidative response of metal-accumulator and non-accumulator plants under cadmium stress [J]. Plant and Soil,2008,310 (1-2):137-149
    426 Weiss SJ, LoBuglio AF. Phagocyte-generated oxygen metabolites and cellular injury [J]. Lab Invest, 1982,47:5-18
    427 Wissemeier AH, Diening A, Hergenroder A, Horst WJ, Mix-Wagner G. Callose formation as parameter for assessing genotypical plant tolerance of aluminium and manganese [J]. Plant Soil, 1992,146:67-75
    428 Wozniak K, Blasiak J. In vitro genotoxicity of lead acatate:induction of single and double DNA strand breaks and DNA-protein cross-links [J]. Mutat Res,2003,535:127-139
    429 Wu FB, Zhang GP. Genotypic differences in effect of Cd on growth and mineral concentrations in barley seedling. Bull Environ Contam. Toxicol,2002,69:219-227
    430 Wu FB, Zhang GP, Dominy P. Four barley genotypes respond differently to cadmium:lipid peroxidation and activities of antioxidant capacity [J]. Environmental and Experimnetal Botany, 2003,50:67-78
    431 Xiang CB, Oliver DJ. Glutathione metabolic Genes coordinnately respond to heavy metals and jasmonic acid in Arabidopis [J]. The Plant Cell,1998,10:1539-1550
    432 Xing T, Higgins VJ, Blumwald E. Race-specific elicitors of Cladosporium fulvum promote translocation of cytosolic components of NADPH oxidase to the plasma membrane of tomato cells [J]. Plant Cell,1997,9:249-259
    433 Xiong ZT, Wang H. Copper toxicity and bioaccumulation in chinese cabbage (Brassica pekinensis Rupr.) [J]. Environ toxicol,2005,20:188-194
    434 Yalpani N, Enyedi AJ, Leon J, Raskin I. Ultraviolet light and ozone stimulate accumulation of salicylic acid, athogen-related proteins and virus resistance in tobacco [J]. Planta,1994,193 372-376
    435 Yannarelli GG, Ana J. Fernandez-Alvarez DM. Santa-Cruz, Tomaro ML. Glutathione reductase activity and isoforms in leaves and roots of wheat plants subjected to cadmium stress [J]. Phytochemistry,2007, 68:505-512
    436 Yeh CM, Chien PS, Huang HJ. Distinct signalling pathways for induction of MAP kinase activities by cddmiun and copper in rice roots [J]. Journal of Experimental Botany,2007,58:659-671
    437 Yi T, Ching HK. Changes in protein and amino acid contents in two cultures of rice seedlings with different apparent tolerance to cadmium [J]. Plant Growth Reg,2003,40:147-155
    438 Yoshihara T, Hodoshima H, Miyano Y, Shoji K, Shimada H, Goto F. Cadmium inducible Fe deficiency responses observed from macro and molecular views in tobacco plants [J]. Plant Cell Rep,2006,25:365-373
    439 Yoshioka H, Numata N, Nakajima K, Katou S, Kawakita K, Rowland O, Jones JDG, Doke N Nicotiana benthamiama gp91phox homologues NtrbohA and NtrbohB participate in H2O2 accumulation and resistance to Phytophthora infestans [J]. The Plant Cell,2003,15:706-718
    440 Zawoznik MS, Groppa MD, Tomaro ML, Benavides MP. Endogenous salicylic acid potentiates cadmium-induced oxidative stress in Arabidopsis thaliana [J]. Plant Science,2007,173:190-197
    441 Zenk MH. Heavy metal detoxification in higher plants:a review [J]. Gene,1996,179:21-30
    442 Zhang FQ, Wang YS, Lou ZP, Dong JD. Effect of heavy metal stress on antioxidative enzymes and lipid peroxidation in leaves and roots of two mangrove plant seedlings (Kandelia candel and Bruguiera gymnorrhiza) [J]. Chemosphere,2007,67:44-50
    443 Zhang GP, Fukami M, Sekimoto H. Influence of cadmium on mineral concentration and yield components in wheat genotypes differing in Cd tolerance at seedling stage [J]. Field Crop Res,2002, 4079:1-7
    444 Zhang HX, Xia Y, Wang GP, Shen ZG. Excess copper induces accumulation of hydrogen peroxide and increases lipid peroxidation and total activity of copper-zinc superoxide dismutase in roots of Elsholtzia haichowensis [J]. Planta,2008,227:465-475
    445 Zhao Y, Song SQ, Yin SH. Difference of behaviour of germination and growth of two types of Suaeda salsa seeds [J]. Seed Science and Technology,2004,32 (3):739-748
    446 Zhou QX, Cheng Y, Zhang QR, Liang JD. Quantitative analyses of relationships between ecotoxicologial effects and combined pollution [J]. Science China Ser,2003, C33:566-573
    447 Zhou WB, Qiu BS. Effects of cadmium hyperaccumulation on physiological characteristics of Sedum alfredii Hance (Crassulaceae) [J]. Plant Science,2005,169 (4):737-745
    448 Zikic RV, Stajn AS, Saicic ZS et al.. The activities of superoxide dismutase, catalase and ascorbic acid content in the liver of goldfish (Carassius auratus gibelio Bloch) exposed to cadmiu [J]. Physiol Res,1996,45 (6):479-481