产双酶恶臭假单胞菌的选育与酶法制备D-pHPG
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
D-对羟基苯甘氨酸(D-pHPG)是合成p-内酰胺类抗生素如阿莫西林、头孢羟氨苄等的重要中间体,其主要的制备方法包括化学法和生物酶法。其中最安全环保、步骤简单的方法是一菌双酶法。本文所研究的恶臭假单胞菌在其生长代谢过程中能同时产生D-海因酶(DHase)和N-氨甲酰-D-氨基酸酰胺水解酶(DCase),此双酶能将DL-对羟基苯海因一步催化生成D-对羟基苯甘氨酸。
     本文主要的研究内,容包括:产双酶菌种的验证及中间体N-氨甲酰-D-对羟基苯甘氨酸(NC-D-pHPG)的制备;紫外(UV)结合硫酸二乙酯(DES)复合诱变选育高产菌株;低能民+注入诱变选育高产菌株;高产变异菌株发酵培养条件的优化;双酶的提取纯化和DHase的固定化;DHase固定化酶与DCase纯化酶两酶一步法制备D-对羟基苯甘氨酸。
     通过对出发菌株spMF0507的初步验证,确定其发酵20h-50h为对数生长期,最适生长温度为28℃-32℃,产双酶最适温度为28℃-30℃;其最适生长pH为6.5-7.5,产双酶最适pH为7.0-7.5。DHase和DCase在不同的温度和pH下表现出不同的酶活力,其中DHase稳定性较高,而DCase对热不稳定,在高温高pH条件下易失活。通过升温55℃-60℃处理菌悬液30min可使DCase失活而DHase基本保持原活力,把底物DL-pHPH配成6%浓度,与DCase失活的菌悬液等体积混合,控制温度33℃,pH9.0-9.5进行转化反应制备NC-D-pHPG,转化后结晶率达97.9%,制备的NC-D-pHPG纯度为98.5%。
     采用UV结合DES复合诱变出发菌株spMF0507,选择紫外灯照射30s并结合1.5mg/mL的DES处理20min后再通过20μg/mL5-氟尿嘧啶(5-FU)选择性筛选和发酵摇瓶初筛复筛并通过继代遗传稳定性实验考察,诱变菌spUD0612具有较高的产酶稳定性,其DHase酶活力达1.784U/mL,DCase酶活力达0.865U/mL,分别比出发菌株提高了87.39%和58.420%。
     用低能N+离子注入对spUD0612菌株进行诱变选育,在注入能量30 KeV,注入剂量为8×1015ions/cm2,真空10-3Pa,电流强度10mA,脉冲8s条件下进行矿注入,通过在含有25μg/mL5-FU的选择培养基上筛选和摇瓶初筛复筛后再通过继代遗传稳定性实验考察,诱变菌spUDN0706具有较高的产酶稳定性,其DHase活力达2.482U/mL,DCase酶活力、达1.253U/mL,分别比出发菌株spUD0612提高了46.69%和53.93%。
     通过对发酵培养基和发酵控制条件进行优化,确定了在接种量为8%-10%,培养温度为30℃,初始pH为7.5,摇瓶装量为100mL时,高产变异株spUDN0706发酵有较高的生物量和双酶活力。对发酵配方进行正交实验优化后通过综合比较双酶活力,得出最佳发酵培养基配方为:玉米浆2.0%;甲硫乙基海因(10%)3.5%;葡萄糖2.5%; NaCl0.3%; MgSO40.05%; CoCl20.01%; (NH4)2SO40.1%。在新配方和优化的控制条件下进行高产变异株spUDN0706摇瓶发酵, DHase和DCase酶活力分别为2.591U/mL和1.622U/mL,分别比原发酵条件下DHase和DCase酶活力提高了14.04%和28.63%。将高产变异株spUDN0706进行5L自动发酵罐发酵,DHase活力为3.0.78U/mL, DCase活力为1.953U/mL,分别比摇瓶活力提高了18.80%和20.41%。
     收集高产诱变株spUDN0706发酵液的菌体,采用高压均质机进行破碎,确定了最适匀浆压力为60MPa,最适破碎时间为15min。采用先20%(NH4)2SO4纯化DCase再34%(NH4)2SO4纯化DHase可实现双酶的分离纯化。通过粗酶液絮凝、两级(NH4)2SO4纯化以及经截留量为一万分子量的超滤膜处理,DHase纯化总收率为69.2%,纯化倍数达6.4;DCase纯化总收率为76.4%,纯化倍数达5.45。通过对DHase固定化条件的研究,确定了TJS载体投量为1g:133U,固定化温度、pH、固定化时间分别为25℃、7.5和15h,在此条件下进行DHase的固定化,固定化活力为48.7U/g,酶回收率为34.8%。
     通过测定不同pH和不同温度下DHase固定化酶及DCase纯化酶的酶活力,DHase固定化酶最适pH为9.5,最适温度为60℃;DCase纯化酶最适pH为7.5,最适温度为40℃。DHase固定化酶对热和酸碱的稳定性均明显优于DCase纯化酶。Mn2+、Ca2+、Mg2+、Ba2+对DHase固定化酶和DCase纯化酶均有激活作用;Co2+对DHase固定化酶有激活作用而对DCase纯化酶有抑制作用;Fe2+、Zn2+、Hg2+对DHase固定化酶及DCase纯化酶均有抑制作用,其中重金属Hg2+对酶有强烈的抑制作用。DHase固定化酶的半衰期为210d,其表观米氏常数Km为20.14mmol/L; DCase纯化酶半衰期为6d,其表观米氏常数Km为8.40mmol/L。在底物浓度3%,温度38℃,DHase固定化酶投入量5kU/L, DCase纯化酶投入量3kU/L条件下进行多批次转化,固定化酶半衰期在256批以后,每批的转化率和收率均在97%左右。用DHase固定化酶结合DCase纯化酶两酶一步法转化DL-pHPH制备D-pHPG后,经截留量为一万分子量的超滤膜过滤浓缩精制,D-pHPG的含量为99.2%,比旋度为-159.8°,达到了较高的质量水平。
D-hydroxyphenylglycine (D-pHPG) is the most important intermediate used for the synthesis of Semisynthetic antibiotic including amoxicillin and Cefadroxil. The two main synthesis methods for D-pHPG are chemical processes and enzymatic processes, among which the process using one strain with twin enzyme is the best for the environmental and economic concerns. Pseudomonas putida studied in this paper can produce both D-Hydantoinase (DHase) and D-Carbamoylase (DCase) in its growing period. Twin enzyme (DHase and DCase) can catalyse DL-p-hydroxyphenylhydantoin (DL-pHPH) to D-pHPG directly.
     The main contents of this paper were:to identify the strain that can produce twin enzyme and produce the intermediate N^carbamoyl-D-p-hydroxyphenylglycine (NC-D-pHPG); to mutate and screen the strain with ultraviolet radiation(UV) and diethyl sulfate(DES); to mutate and screen the strain with N+ion implantation; to optimize the culture condition of mutated strain; to isolate and purify twin enzyme and immobilize DHase; to produce D-pHPG with immobilized DHase and purified DCase.
     With the identification of the strain spMF0507, it was determined that its logarithm growing period was about 20-50hours; the best growing temperature is 28-32℃, the best enzyme producing temperature is 28-30℃; The best growing pH was 6.5-7.5. The best enzyme producing pH was 7.0-7.5. DHase and DCase showed different activity under different temperature and pH. DHase was more stable than DCase. DCase will be inactivated by being heated at 55-60℃for about 30 min. DL-pHPH can translate to NC-pHPG by reacting with the strain of inactivated DCase under following conditions:DL-pHPH concentration 6%, temperature 33℃and pH9.0-9.5. The crystallized rate of NC-D-pHPG was 97.9% and the purity of NC-D-pHPG was 98.5% by HPLC.
     A high twin enzyme producing, strain spUD0612 with genetic stability was obtained from Pseudomonas putida spMF0507 by mutagenesis with UV 30s and diethyl sulfate for 20min,followed by resistance selection with substrate analogue 20μg/mL 5-FU. After the screening of fermentation with a shake flask, its activity of DHase and DCase reached 1.784 U/mL and 0.865 U/mL, respectively. Compared with starting strain, the enzyme activity enhanced 87.39% and 58.42%, respectively. A high twin enzyme producing strain spUDN0706 with genetic stability was obtained from Pseudomonas putida spUD0612 by mutagenesis with N+ ion implantation (30KeV,8×1015ions/cm2,10-3Pa,10mA,8s)followed by resistance selection with substrate analogue 25μg/mL 5-FU. After the screening of fermentation using a shake flask, its. activity of DHase and DCase reached 2.482 U/mL and 1.253 U/mL, respectively.Compared with spUD0612, the enzyme activity enhanced 46.69% and 53.93%, respectively.
     The culture medium and the fermentation conditions were optimized based on the former culture medium and formal fermetation conditions. The results of the experiments showed the best fermentation conditions were as following:inoculum amount 8-10%, loading amount 100mL,culture temperature 30℃, initial pH7.5.And the best composition were as following:corn steep liquor 2.0%,glucose 2.5%, revulsent 3.5%,NaCl 0.3%,MgSO40.05%,CoCl20.01%,(NH4)2SO40.1%. The spUDN0706 grew well on the optimized medium and fermentation condition.Its activity of DHase and DCase reached-2.591U/mL and 1.622U/mL, respectively. Compared with the formal medium and fermentation condition, the enzyme activity enhanced 14.04% and 28.63%, respectively. By validating on 5L auto-fermentor, its activity of DHase and DCase reached 3.078U/mL and 1.953U/mL, respectively. Compared with using shake flask, the enzyme activity enhanced 18.80% and 20.41%, respectively.
     Collecting the strain of spUDN0706 fermentation broth and breaking up the strain making use of homogenizer, the best pressure was 70MPa and the best breaking up time was 15min. Purifying twin enzyme with 20%(NH4)2SO4 and 34%(NH4)2SO4 can isolate and purify both DHase and DCase. After flocculation, purification and ultrafiltration, the total purified yield and purification folds of DHase were 69.2% and 6.4, respectively; and the total purified yield and purification folds of DCase were 76.4% and 5.45, respectively. The effects of some parameters on DHase immobilization were investigated, and the optimized conditions were obtained as follows:carrier TJS input 133U/lg, immobilization time 15h, temperature 28℃, pH7.5 and the activity of immobilized enzyme was 48.7U/g, the immobilization yield was 34.8% under the optimized conditions.
     By checking the activity of immobilized DHase and purified Dcase, it was determined that the best pH and temperature for immobilized DHase were 9.5 and 60℃respectively; and the best pH and temperature for DCase were 7.5 and 40℃, respectively. Immobilized DHase was more stable than purified DCase against temperature and pH. Ions including Mn2+, Ca+, Mg2+, Ba2+could activate both immobilized DHase and purified DCase.Co2+activated immobilized DHase but inhibited purified Dcase. Fe2+, Zn2+, and especially Hg2+inhibited both immobilized DHase and purified DCase. The half life of immobilized DHase was 210 days and its apparent Km was 20.14mmol/L; the half life of purified DCase was 6 days and its apparent Km was 8.40mmol/L. Immobilized DHase and purified DCase can catalyse the conversion of DL-pHPH to D-pHPG in one step under following conditions: substrate conc.3%,temperature 38℃,immobilized DHase input 5kU/L,purified DCase input 3kU/L. Immobilized DHase could be used over 256 cycles and conversion rate and yield were all over 97% averagely. After purification by ultrafiltration and concentration, the content of the translated D-pHPG was 99.2% and its polarity was-159.8°, achieving a satisfactory reliability.
引文
[1]周正任.医学微生物学[M].人民卫生出版社,2000,6:345-348.
    [2]Genu-Joong Kim,Hak-Sung Kim. Optimization of the enzymatic synthesis of D-p-hydroxyphenylglycine from D-L-5-substittuted hydantoin using D-hydantionase and N-carbamoylase [J]. Enzyme Microbial tech,1995(17):64-67.
    [3}袁静明,封霞,赵莉霞.非天然D-型氨基酸生物转化中酶的纯化及其基因序列[J].山西大学学报(自然科学版),2002,25(2):156-162.
    [4]蔡照,李国云.D-对羟基苯甘氨酸的开发应用[J].化工科技市场,发展论坛2002,25(11):23-26.
    [5]李建生.D-对羟基苯甘氨酸的技术开发和市场分析[J].精细与专用化学品,2000,1:11-12.
    [6]戴伟国.左旋对羟基苯甘氨酸的工业现状及发展方向[J].中国制药信息2001,17(1):38-39.
    [7]李隽,胡卓逸,蔡萍.二氢嘧啶酶产生菌的筛选及发酵条件的研究[J].药物生物技术,1999,6(2):90-94.
    [8]Takahasli S, Ohasai.T. Kii.Y.et al, Microbia transfermation of hydantoins to N-carbamyl-D-amino.acids [J}. Ferment Techol,1979,57(4):328.
    [9]陆庆宁,高永红,陶建伟.D(-)-α-(4-乙基-2,3-双氧代哌嗪-1-甲酰胺基)对羟基苯乙酸的合成[J].精细化工,2003,20(9):570-574.
    [10]殷树梅,冯柏成,张书圣.DL-对羟基苯甘氨酸的合成新工艺[J].化学通报,2000,5:53-57.
    [11]张小飞.固定化青霉素酰化酶(IPA750)制备7-ADCA的研究[D].中南林学院,2003:6.
    [12]杨汝德.现代工业微生物[M].华南理工大学出版社,2001:343-354.
    [13]徐兆瑜.7-ADCA与7-ACA医药中间体[J].四川化工与腐蚀控制,2003,4(6):38-45.
    [14]国家药典委员会.中华人民共和国药典2000年版二部[S].化学工业出版社,2000,1:338.
    [15]张骁,束梅英,张韬.阿莫西林的市场现状及前景[J].中国药房,2002,13(9):519-521.
    [16]温家柱,蔡梅初,王占良.7-ADCA及其相关侧链的开发[J].河北化工,2002,3:5-7.
    [17]王京平,智瑞彩.左旋对羟基苯甘氨酸的技术进展[J].河北化工,1999,4:14.
    [18]泮锋纲,陈立功,陈宏亮.D-对羟基苯甘氨酸合成综述[J].广州化学,2002,27(2):54-5.9.
    [19]D-对羟基苯甘氨酸生产技术有突破[R].沈阳化工,2004,29(3):180.
    [20]孙华林.D-对羟基苯甘氨酸的制备及开发前景[J].云南化工,2001,28(2):41-42.
    [21]Arbogas J W, Darmanyan A P, Foote C S et al. Photophysical properties of C60[J]. Phys.Chem.,1991,95:11-12.
    [22]Arbogast J W, Foote C S, Kao-M. Electrontransfer to C60 [J]. Am. Chem. Soc.,1992, 114:2277-2279.
    [23]周华,孟祥军,姚家元,等.对羟基苯甘氨酸的合成[J].中国医药工业杂志,1998,29(11):519.
    [24]Talor R, Parson J P, Avent A G et al. Degradation of C60 by light[J]. Nature,1991,351:227.
    [25]Creegan K M, Robbins J L, Robbins W Ket al. Synthesis and characterization of C60 the first fullerene epoxide.J.Am.Chem.Soc.,1992,114:1103-1105.
    [26]李业英,阚振荣,朱宝成.微生物酶法制备D-对羟基苯甘氨酸的研究进展[J].生物学杂志,2003,20(6):11-14.
    [27]尤田耙.手性化合物的现代研究方法[M].合肥:中国科技大学出版社.1993:37.
    [28]许激扬,吴梧桐,公剑等.化学酶法合成D-对羟基苯甘氨酸[J].中国药科大学学报,1998,29:394-396.
    [29]黄红辉,刘猛六,胡卓逸.二氢嘧啶酶的分离纯化与性质研究[J].中国药科大学学报,2000,3(15):389-392.
    [30]石秀春,庄云龙.D-对羟基苯甘氨酸合成方法进展[J].化工生产与技术.2000,7(6):6-8.
    [31]马飞,许激扬,何林松等.双酶法合成D-(+)-对羟基苯甘氨酸[J].中国药科大学学报,2001,32(2):155.158.
    [32]Park J H,Kim G J,Kim H S. Production of D-Amino Acid Using whole cell of Recombinant Escherichiacoli with Separately and Coexpressed D-Hydantoinase and N-Carbamoylase [J]. Biotechnol Prog,2000,16:564-570.
    [33]Runser S, Chinski N, Oheyer E. D-p-hydroxyphenylglycine production from DL-5-p-hydroxyphenylhydantoin by Agrobacterium sp [J].Appl Microbiol Biotechnol, 1990,33:382.
    [34]Wiese A, Wilms B, Syldatk C. Cloning nucleotide sequence and expression of a hydantoinase gene from Arthrobacteraruescens DSM 3745 in Escherichiacoli and comparison with the corresonding gene from Arthrobacteraruescens DSM 3747[J]. Appl Microbiol Biotecnnol,2001,55:750-757.
    [35]Andre Morin, Fean-Pierre Tonel et al. Isolation and the study of the D-Hydantoinase property[J]. Applied Microbiology Bio-technology,1991(35):536-540.
    [36]Syldatk C, Laufer A, Miller R,et al. Production of optically pure D-and L-a-amino acids by bioconversion of D, L-5-monosubstituted hydantoin derivatives. In:Fiechter A ed. Advances in Biochem Enttin/Biotechnol. Berlin Herdelbere,1990.41:29-75.
    [37]Kim G J, Lee D E, and Kim H S. Construction and Evaluation of a Novel Bifunctional N-Carbamylase-D-Hydantoinase Fusion Enzyme[J]. Applied and Environmental Microbiology,2000,66(5):2133-2138.
    [38]Kim, G. J., and Kim H. S. Optimization of the enzymatic synthesis of D-p-hydroxyphenylglycine from DL-5-substituted hydantoin using D-hydantoinase and N-carbamoylase[J]. Enzyme Microb. Technol.1995.17:63-67
    [39]Kim, G. J., Kim H. S.. C-terminal regions of D-hydantoinases are nonessential for catalysis, but affect the oligomeric structure. Biochem. Biophys. Res. Commun.1998,243:96-100.
    [40]Li, N., Jiang. X. N., Cai. G. P. et al. A novel bifunctional fusion enzyme catalyzing ethylene synthesis via 1-aminocyclopropane-l-carboxylic acid[J]. J. Biol. Chem.,1996. 271:25738-25741.
    [41]Moller, A., Syldatk C., Schuize M. et al. Stereo-and substrate specificity of a D-hydantoinase and a N-carbamyl-D-amino acid amidohydrolase of Arthrobacter crystallopoietes AM2[J]. Enzyme Microb. Technol.,1988,10:618-625.
    [42]Mukohara Y. Ishikawa T. Watabe K. et al. A thermostable hydantoinase of Bacillus stearothermophilus NS1122A:cloning, sequencing, and high expression of the enzyme gene, and some properties of the expressed enzyme[J]. Biosci. Biotechnol. Biochem., 1994,58:1621-1626.
    [43]Ogawa, J., Shimizu S.Diversity and versatility of microbial hydantoin-transforming enzymes[J]. J. Mol. Catal. B,1997,2:163-176.
    [44]毕洪书,沈飞,沈树宝,等.海因酶法制备L-氨基酸研究进展[J].精细与专用化学品,技术进展,2002,22(5):18-20.
    [45]Kim G-J, Kim H-S.Identification of the structural similarity in the functionally related amidohydrolases. acting on the cyclic amide ring[J]. Biochemistry,1998,330:295-302.
    [46]Yokozeki K, Hirose Y, Kubota K. Mechanism of asymmetric production of L-aromatic amino acids from the corresponding hydantoins by Flavobacterium sp[J].Agric Biol Chem,1987,51:737-746.
    [47]May O, Siemann M, Pietzsch M,et al. Substrate-dependent enantioselectivity of a novel hydantoinase from Arthrobacter aurescens DSM 3745:purification and characterization as new member of cyclic amidases[J]. J Biotechnol,1998,61:1-13.
    [48]Runser S, Meyer P C. Purification and biochemical characterization of the hydantoin hydrolyzing enzyme from Agrobacterium species. A hydantoinase with no 5,6-dihydrop amidine amidohydrolase activity[J]. Eur J Biochem,1993,213:1315-1324.
    [49]Ogawa J, Shimizu S. Diversity and versatility of microbial hydantoin transforming enzymes[J]. J Mol Catal B,1997,2:163-176.
    [50]Brooks K P, Jones E A, Kim B D,et al.Bovine liver dihydropyrimidine amidohydrolase:purification, roesand:characterization as a zinc metalloenzyme[J]. Arch Biochem Biophys,1979.226:469-483.
    [51]Kikugawa M, Kaneko M, Fujimoto-Sakata S, et al. Purification, characterization and inhibition of dihydropyrimidinase from rat liver[J]. Eur J Biochem,1994,219:393-399.
    [52]May O, Siemann M, Syldatk C. Catalytic and structural function of zinc for the hydantoinase from Arthrobacter aurescens DSM 3745[J]. J Mol Catal B,1998,4:211-218.
    [53]Yamashiro A, Yokozeki K, Kano H, et al.Enzymatic production of L-amino acids from the corresponding 5-substi-tuted hydantoins. by a newly isolated bacterium, Bacillus brevis AJ-12299[J]. Agric Biol Chem,1988,52:2851-2856.
    [54]李志强,刘景晶,胡卓逸,等.假单胞菌海因酶基因的克隆及其在大肠杆菌中的表达[J].中国药科大学学报,2001,32(3):227-230.
    [55]袁静明,封霞,石亚伟.D-海因酶基因重组子的构建和酶的表达活性[J].山西大学学报(自然科学版),2004,27(1):1-6.
    [56]许祯,姜卫红,焦瑞身,等.Burkholderia pickettii中D-乙内酰脲酶基因(dha)的克隆、测序及表达[J].生物工程学报,2002,18(2):150-154.
    [57]江宁,姜岷,韦萍.恶臭假单胞菌Pseudomonas JS-01的发酵动力学[J].南京化工大学学报,2001,23(3):36-39.
    [58]Yokozeki K, Nakamori S, Yamanka S, et al. Optimal conditions for the enzymatic production of D-amino acid from the corresponding 5-substituted hydantoins[J]. Agri BioChem,1987,51:355-358.
    [59]Ikenaka Y, Nanba H, Yajima K, et al. Screening、characterization and cloning of the gene for N-carbamyl-D-amino acid amidohydrolase from the rmotolerants oil bacteria. [J].Biosci Biotechnol Biochem,1998,62:882.
    [60]Runser S, Chinski N, Ohleyer E. D-p-Hydroxyphenylglycine production from DL-5-p-hydroxyphenylhydantoin by Agrobacterium s p.[J].Appl Microbiol Biotechnol, 1990,33:382-387.
    [61]Nanba H, Takano M, Takahashi S, et al. Isolaion of Agrobacterium sp strain KNK712 that produces N-carbamy-1-D-amino acid ami-dohydrolase, cloning of the gene for this enzyme and properties of the enzyme[J]. Biotech Biochem,1998,62(5):875-878.
    [62]Olivieri R, Fascetti E, Angelini L, et al. Microbial transformation of racemic hydantoins to D-amino acid.[J]. Biotechnol Bioeng,1981,23:21-73.
    [63]Moller A, Sydtk C, Schulze M,et al. Stereo and substrate specificity of a-D-hydantoinase and a-D-N-carbamyl-amino acid ami-dohydrolase of Arthr obactor crystallopoietes Am. [J].Enzyme Microbiol Technol,1988,10:618-625.
    [64]Louwrier A.Knowles C.The purification and characterization of a novel D-specific-crbamoylase enzyme from an Agrobacterium sp [J]. Enzyme Microbiol Technol, 1996,19:562-568.
    [65].赵莉霞,范俊虎,袁静明,等.N-氨甲酰基-D-氨基酸酰胺水解酶研究进展[J].国外医药抗生素分册,2002,23(6):255-257.
    [66]Wang W C, Hau W H, Chien F T, et al. Crystal structure and site-directed mutagenesis studies of N-carbamyl-D-animo acid amido hydrolase from Agrobacterium radio bacterrevealsahomotetramer and insight in to a catalytic cleft [J]. J MolBio, 2001,306:251-256.
    [67]赵莉霞,钮利喜,范俊虎,等.N-氨甲酰基-D-氨基酸酰胺水解酶基因的克隆与表达[J].高技术通讯,2003,1:32-36.
    [68]Nakai T, Hasegawa T, Yamashita E,et al. Crystal structure-of N-carbamyl-D-amino acid amidohydrolase.[J]. Structure,2000,8(7):729-812.
    [69]袁静明,石亚伟,杨秀清,等.N—氨甲酰基—D—氨基酸酰胺水解酶的快速纯化及性质[J].微生物学报,2002,42(1):88—92.
    [70]郝淑凤,张惟材,李迎丽,等.节杆菌BT801 N-氨甲酰氨基酸水解酶基因的克隆与表达[J].生物工程学报2003,19(2):174-177.
    [71]杨柳青,何南,张玉彬.手性药物的生物转化[J].中国新药杂志,2000,9(12):817-819.
    [72]孙万儒.产二氢嘧啶酶的菌种筛选和发酵条件的研究[J].微生物学报,1983,23(2):133-142.
    [73]Morin A, Hummel W, Kula M R. Rapid dection of microbial hydantoinase on solid medium [J]. BiotechnolLett1986,8(8):573-576.
    [74]罗雪,冯瑞山,胡卓逸.海因酶产生菌的微孔快速筛选法[J].华西医大学报,2001,32(3):462-463.
    [75]江宁,任永娥,强亚静,等.用底物类似物抗性法筛选海因酶高产菌株[J].微生物学报,1995,35(3):342-345.
    [76]Nanba H, Ikenaka Y, Yamada Y.et al. Isolationf Agrobacteriums p. strain KNK712 that produces N-Carbamly-D-amino acid amidohydrolase, cloning of the genes for this enzyme, and properties of the enzyme[J]. Biosci Biotechol Biochem,1998,62(5):875-881.
    [77]王灼维,王璋.链霉菌生产谷氨酸转胺酶的发酵工艺条件研究[J].食品工业科技,2003,24(9):17-21.
    [78]Chao Y P, Juang T Y, Chern J T, et al. Production of D-p-Hydroxyphenylg lycineby N-Carbamoyl-D-amino Acid Amidohydrolase Over producing Escherichia coli Strains [J]. Biotechnol Prog,1999,15:603-607.
    [79]Grifantini R, Galli G, Carpani G, et al Efficient convertion of 5-substituted hudantion to D-a-aminoacidsusingrecombinant Escherichiacoli strans [J]. Microbiology,1998, 144:947-954.
    [80]Chao Y P, Chiang C J, Lo T E.et al. Over prodection of D-hydantoinase and carbamoylaseinasolunle forming Escherichicoli [J].Appl Microbiol Biotechnol,2000, 54:348-353.
    [81]Oh K H, Nam S H,Kim H S. Directedevolution of N-Carbmy L-D-amino Acid amidohydrolase for simutaneous improvement of oxidaticeand Thermalstability[J].Biotechnol Prog.2002,18:47-477.
    [82]周德庆.微生物学教程[M]高等教育出版社,1980,8:98-103.
    [83]齐秀兰.妥布霉素产生菌诱变育种的研究[J].微生物学杂志,1995,15(1):9-13.
    [84]周建琴,韩宝玲,王男金.康乐霉素C产生菌的诱变育种及其发酵的研究[J].中国抗生素杂志,2000,25(5):386-387.
    [85]王筱虹.原生质体紫外诱变技术筛选红霉素高产菌株的研究[J].中国药科大学学报,2000,3.1(4):201-303.
    [86]白兰芳.西罗莫司产生菌Streptomyces hygroecopocus WY-93D诱变育种与代谢研究[J].中国抗生素杂志,2001,26(1):35-38.
    [87]沈其英刘录,申林波.紫外诱变选育高效降酚[J].微生物,2004,1(27):82-84.
    [88]邱雁临,孙宪迅,蔡俊,等.纤维素酶耐高温高产菌株的选育[J].中国酿造,2004,2(131):15-19.
    [89]Bhaskara. Use of microwave energy for the radiation of seed borne diaporethe phaseolorum in soybean and its effect on seed quality [J]. The Journal of Microwave Power and Electro magnetic Energy,1995,30:199-204.
    [90]Prakash A, et al. Assessment of microwave sterilization of food using intrinsic chemical markers[J]. The Journal of Microwave Power and Elecro magnetic Energy,1997,32:50-57.
    [91]Li Y Q, He X R. Studies on the screening of high-yielding Demethyl chlorote tracycline strain by combining laser irradiation with microwave irradiation[J]. Chinese Journal of Biotech,1998,14(4):445-485.
    [92]王保义,王长广,电磁场非热生物效应机理研究[J].电子科技导报,1997,2:5-7.
    [93]Chipley J L. Effects of microvave irradiation on microorganisms[J]. Advacce of Applied
    Microbiology,1980,26:129-145.
    [94]Mezykowski T. Response of Aspergillus nidulans and Physarum polycephahum-to micro irradiation[J]. Journal Microwave Power,1980,15(2):75-78.
    [95]Belvins R D Crenshlwa R C, Hougland AE, et al.The effects of microwave radiation and heat on specifie mutants of Selmonella typhimurium LT2[J]. Radiation Research,1980, 82(3):511-517.
    [96]Furia L, Hill D W, Gandhi O P. Effect of millimeter-wave irradiation on growth of Saccharomyyces cerevisiae[J]. IEE Transportation Biomedical Engineering,1986, 33(11):993-999.
    [97]Grundler W, Keilmann F. Nonthermal effects of millimeter microwaves on yeast growth[J]. Z Naturforsch,1978,33(12):15-22.
    [98]李永泉.微波诱变选育木聚糖酶高产菌[J].微生物学报,2001:17(1):50-53.
    [99]胡卫红.激光辐照微生物的研究概况[J].激光生物学报,1999,8(1):66-69.
    [100]赵炎生.赤霉素产生菌的激光、化学、复合诱变育种研究[J].激光生物学报,1997,6(4):122-128.
    [101]陈五岭.He-Ne激光诱变原生质体选育四环素高产菌的研究[J].光学学报,1998,27(4):330-333.
    [102]赵炎生等.脱落酸高产菌的激光诱变效应研究[J].激光生物学报,1999,8(3):205-208.
    [103]罗英,李俊刚,易林.激光复合诱变黑曲霉原生质体选育热稳定菊粉酶高产菌[J].四川师范大学学报(自然科学版),1998,21(5):581—586.
    [104]刘录祥,程俊源.植物诱变育种新技术研究进展[J].核农学通报,1997,4:181-190.
    [105]陈三凤,刘德虎编.现代微生物遗传学[M].2003:241-245.
    [106]王纪等.离子注入生物效应及育种研究进展[J].安徽农学院学报,1991,18(4):251-257.
    [107]宣云,王会峰,黄群策,等.离子束生物技术在小麦遗传改良中的应用[J].农业生物技术科学,2004,20(1):32-76.
    [108]颉红梅.不同能量重离子对庆大霉素生产菌绛红小单孢菌诱变的研究[J].中国抗生素杂志1998,23(6):462-463.
    [109]龚加顺.单宁酸酶产生菌氮离子注入的诱变效应研究[J].食品与发酵工业,2000,26(25):9-13..
    [110]曾宪贤,武宝山,吕杰.离子束生物技术在生命科学中的应用[J].核技术,2006,29(2):113.
    [111]袁成凌,余增亮,张宏慧,等.富含花生四烯酸(AA)微生物油脂提取及富集研究[J].粮食与油脂,2001,(5):6.
    [112]梁彦龙,王运吉,张芩花:高产植酸酶酵母Candida Krusei Wz-001的等离子束诱变选育[J].大连轻工业学院学报,2002,21(4):255-258.
    [113]曹友声,刘仲敏.现代工业微生物[M].长沙:湖南科学技术出版社,1998:56-58.
    [114]李瑶.α-淀粉酶的高温菌B.sp—JF1诱变选育[J].大连轻工业学院学报,1997,16(4):45-50.
    [115]蔡晶晶,李季伦.土曲霉产生洛伐他汀的研究[J].微生物学杂志,2000,20(4):1-4.
    [1161唐宝英,曹建民.酸性蛋白酶高产菌株选育[J].食品与发酵工业,1998,24(3):16-19.
    [117]李继衍,尚广东.高产苯基乙酰基甲醇菌株选育[J].氨基酸和生物资源,2001,23(1):16-20.
    [118]王世梅,黄为一.阿扎霉素B产生菌吸水链霉素NND-52的诱变筛选[J].微生物通报,2001,28(1):64-67.
    [119]强华等.抗生素亚硝基胍处理吸水链霉菌FC904原生质体对雷帕霉素查量的影响[J].福建医科大学学报,1999,33(3):289-292.
    [120]涂国全,钟承赞,黄林等.通过获得链霉素抗性基因突变株筛选小诺霉素高产菌株[J].微生物学通报,2004,31(4):19-22.
    [121]胡永兰.梧宁霉素产生菌诱变选育的研究[J].微生物学杂志,1995,15(2):40-44.
    [122]普为民.5'—腺苷酸脱氨酶产生菌选育及发酵生态学研究[J].云南大学学报,1994,16(2):184-188.
    [123]齐秀兰等.L-赖氨酸产生菌钝齿棒杆菌高产突变EBO.04-14的选育[J].沈阳药科大学学报,1994,14(2):103-106.
    [124]张怡轩等.氨甲酰-妥布霉素产生菌的高产菌株筛选[J].沈阳药科大学学报,1999,16(1):53-57.
    [125]李环,韦萍,顾海红等.D-苯丙氨酸产生菌的诱变育种[J].工业微生物,2003,33(3):6-10.
    [126]郭爱莲,郭廷巍,孙先锋等.紫外激光等选育生淀粉糖化酶高产菌株及其应用[J].光子学报,1999,28(9):780-784.
    [127]贾建萍,裘娟萍.谷光甘肽高产菌株的选育[J].微生物学通报,2003,30(4):24-29.
    [128]沈卫荣,沈俭,韩丽萍等.曲酸生产菌的复合诱变选育[J].微生物学通报,2003,30(4):60-64
    [129]Ki-H O, Nam S H, Kim H S. Directed Evolution of N-Carbamyl-D-amino Acid Amidohydrolase for Simultaneous Improvement of Oxidative and Thermalstability[J], Biotechnol. Prog,2002,18:413-417
    [130]武丽敏,王王武,郝文媛等.基因工程育种的进展、风险与对策[J].吉林农业大学学报,2003,25(2):143-147.
    [131]蔡芷荷,吴清平,钟前林.酶测定在微生物快速鉴定中的应用[J].微生物学通报,2004,31(4):97-100.
    [132]Enne de Boer, Rijklt R. Int.Methodology for detection and typing of foodborne microorganisms[J].Food Microbiol,1999,50:119-130.
    [133]Chilvers K, Perry J, lames A. et al Synthesis and evaluation of novel fluorogenic substrates for the detection of bacterial beta-galactosidase[J]. App.Microbiol,2001,91 (6):1118-1130.
    [134]陈天寿.微生物培养基的制造与应用[M].北京:中国农业出版社,1995.
    [135]许激扬,马飞,李隽,等.双酶法合成中D-对羟基苯甘氨酸及其中间体的测定[J].药物生物技术,2003,10(4):248-250.
    [136]宋慧敏,屠春燕,欧阳平凯.高效液相色谱法测定D-对羟基苯甘氨酸[J].南京工业大学学报,2002,24(4):97-99.
    [137]罗贵民,曹淑桂,张今.酶工程[M].北京:化学工业出版社,2002.
    [138]袁勤生,赵健,王维育.应用酶学[M].北京:化学工业出版社,1994.
    [139]卓仁禧,罗毅,陶国良.固定化酶技术及进展[J].离子交换与吸附,1994,25,447-450.
    [140]黎刚.固定化技术进展[J].中国生物工程杂志,2002,22(5):45-48.
    [141]徐岩,李健波.微生物脂肪酶的固定化及其在非水相催化中的应用研究[J].工业微生物,2001,31(1):46-48.
    [142]王蕾.固定化细胞厌氧-好氧工艺处理四环素结晶母液的实验研究[J].环境科学,1995,16(1):29.
    [143]Tischer W, Kasche V. Immobilized enzyme:Crystals or carriers[J]. Tibtech, 1999,17:326-335.
    [144]Butterfield D A. Biofunctional Membrane[M]. Plenum Press,NewYork,2001.
    [145]Butterfield D A, Lee J, Ganapathi S, et al. Biofunctional membranes Ⅳ. Active site structure and stability of an immobilized enzyme, papain, on modified polysulfone membranes studies by electron paramagnetic resonance and kinetics[J]. Membr Sci, 1994,91:47-52.
    [146]Ganapathi S, Butterfield D A, Bhattacharyya D. Flat sheet and hollow fiber membrane bioreactors:a study of the kinetics and active site conformational changes of immobilized papain including sorption studies of reaction constituents[J].Chem Technol Biotechnol, 1995,64:157-162.
    [147]Zhuang P, Butterfield D A. Structural and enzymatic characterizations of papain immobilized onto vinyl alcohol Pvinyl butyral copolymer membrane[J]. Membr Sci, 1992,66:247-251.
    [148]Ganapathi S,Butterfield D A,Bhattacharyya D. Kinetics and active fraction determination of a protease enzyme immobilized on functionalized membranes[J]. Appl Polym Sci, 1998,14:865-860.
    [149]Wang J, Bhattacharyya D, Bachas L G. Improving the activity of immobilized subtilisin by site-directed attachment through a genetically engineered affinity tag[J]. Fresenius J Anal. Chem,2001,369:280-286.
    [150]Persson M, Bulow L, Mosbach K. Purification and site specific immobilization of genetically engineered glucose dehydrogenase on thiopropyl sepharose[J]. FEBS Lett, 1990,270:41-49.
    [151]Kallwas H, Parris W, McFarlane E, et al.Site specific immobilization of an L-lactate dehydrogease via an engineered surface cysteineresidue[J]. Biotechnol Lett, 1993,15:29-35.
    [152]McLean M A, Stayton P S, Sligar S G. Engineering protein orientation at surfaces to control macromolecular recognition events[J]. Anal Chem,1993,65:2676-2683.
    [153]Chilkoti A, Chen G,Stayton P S,et al. Site-specific conjugation of a temperature sensitive polymer to a genetically engineered protein[J]. Bioconjugate Chem,1994,5:504-510.
    [154]Carlsson J,Mosbach K,Bulow L. Affinity precipitation and site specific immobilization of proteins carrying polyhistidine tails[J]. Biotechnol Bioeng,1996,51:221-227.
    [155]Gekas V C. Artificial membranes as carriers for the immobilization of biocatalysts[J]. Enzyme and Microbial Technol.,1986,8:450-460.
    [156]Giorno L, Molinari R, Drioli E, et a. Performance of biphasic organic/aqueous hollow fiber reactor using immobilized lipase [J]. Chem Technol Biotechnol,1995,64:345-352.
    [157]孙志浩.生物催化工艺学[M]北京:化学工业出版社.2005:308-311.
    [158]Jancsik V, Beleznai Z, Keleti T. Enzyme immobilization by poly(vinylalcohol) gel entrapment[J]. Mol Cat,1982,14:297-306.
    [159]Arica M Y, Kacar Y, Ergene A, et al. Reversible immobilization of lipase on phenylalanine containing hydrogel membranes[J]. Process Biochem,2001,36:847-845.
    [160]Masry M M, Demaio A, Martelli P L, et al. Influence of the immobilization process on the activity of β-galac-tosidase bound to nylon membranes grafted with glycidylmethacrylate[J]. Mol Cat B:Enzymatic,2001,16:175-189.
    [161]Hicke H G, Bohme P, Becker M, et al.Immobilization of enzymes onto modified polyacrylonitrile membranes:Appli cation of the acryl azide method [J]. Appl Polym Sci, 1996,60:1147-1161.
    [162]El-Masry M M, De Maio A, Di Martino S,et al.Modulation of immobilized enzyme activity by altering the hydrophobicity of nylon-grafted membranes[J]. Mol Cat B Enzymatic,2000,9:219-230.
    [163]邓红涛,吴键,徐志康,等.酶的膜固定化及其应用的研究进展[J].膜科学与技术,2004,24(3):47-53.
    [164]张伟,杨秀山.酶的固定化技术及应用[J].自然杂志,2000,22(5):282-286.
    [165]Arica M Y, Baran T, Denizli A β-Galactosidase immobilization into poly (hydroxy-ethylmethacrylate) membrane and performance in a continuous system[J]. Appl Polym Sci,1999,72:1367-1373.
    [166]Mohy Eldin M S, Bencivenga U, Rossi S, et al. Characterization of the activity of penicillin G acylase immobilized onto nylon membranes grafted with different acrylic monomers by means of y-radiation[J]. Mol Cat B:Enzymatic,2000,233-244.
    [167]Miura S, Kubota N, Kawakita H,et al. High-through put hydrolysis of starch during permeation across α-amylase-immobilized porous hollw-fiber membranes[J]. Radiation Phys Chem,2002,63:143-149.
    [168]Jun I, Matsuyama T, Yamamato H, et al. Immobilization of glucoamylase on ceramic membrane surfaces modified with a new method of treatment utilizing SPCP-CVD [J]. Biochem Eng,2000,50:179-184.
    [169]Tanioka A, Yokoyama Y, Miyasaka K. Preparation and properties of enzyme immobilized porous polypropylene films[J]. Colloid Interface Sci,1998,200:185-187.
    [170]曹黎明,陈欢林.酶的定向固定化方法及其对酶生物活性的影响[J].中国生物工程杂志,2003,23(1):22-28.
    [171]Turkova J, Fusek M, Maksimov J J,et al. Reversible and irreversible immobilization of carboxypeptide Yusing biosepcific adsorption[J]. Chromatogr,1986,376:315-320.
    [172]Schmid E L, Keller T A,Dienes Z, et al. Reversible oriented surface immobilization of functional protein on oxide surface[J]. AnalChem,1997,69:1979-1985.
    [173]Butterfield D A, Bhattacharyya D, Daunert S, et al. Catalytic biofunctional membranes containing sitespecifically immobilized enzyme arrays[J]. Membr Sci,2001,191:29-34.
    [174]Lin S S,Miyawaki O,Nakamura K. Continuous production of L-alanine with NADH regeneration by a nanofiltration membrane reactor[J].BiosciBiotechBioch, 1997,61:2029-2033.
    [175]Spohn U, Preuschoff F,Blankenstein G, et al. Chemiluminometric enzyme sensors for flaw-injection analysis [J]. Anal Chim Acta,1995,303:109-120.
    [176]Conrath N, Grundig B,Huwel St, et al. A novel enzyme sensor for the determination of inorganic phosphate [J].Anal Chim Acta,1995,309:47-52.
    [177]梅建凤,王普,王敏.固定化酶催化合成头孢羟氨苄[J].浙江工业大学学报,2005,33(2):134-136.
    [178]姚曼华.用固定化牛胰核糖核酸酶催化合成寡核苷酸[J].生物化学与生物物理学报,1984,16(2):193.
    [179]宋扬,赵辉,侯司,等.超滤技术在一步法制备抑肽酶工艺中的应用[J].中国生化药物杂志,1999,20(4):180.
    [180]应国清,杨汉强.胰蛋白酶的固定化及其在玻璃酸制备中的应用[J].中国医药工业杂志,1999,30(6):243.
    [181]Li Y F, Mang Y F, Fu L D,et al. Wuhan International Symposium on Biomaterials and Reactive Polymers (Preprints)[M], Wuhan:Chinese Chem Soc,1994,214.
    [182]Jancsik V, Beleznai Z, Keleti T. Enzyme immobilization by poly(vinyl alcohol) gel entrapment[J].J Mol Cat,1982,14:297-306.
    [183]王旭,张学忠,陈松明,等.在有机介质中用固定化木瓜蛋白酶合成生物活性短肽的研究[J].生物化学杂志,1995,11(5):622.
    [184]李彦锋,陶国良,卓仁禧.聚丙烯酰胺肟-聚乙烯醇大孔球状载体的合成及固定化嗜热菌蛋白酶的研究[J].分子催化,1992,6(6):440.
    [185]陶国良,卓仁禧,陈震华.用嗜热菌蛋白酶催化合成天冬甜精并同时进行DL-苯丙氨酸甲酯的光学拆分[J].高等学校化学学报,1993,14(4):574.
    [186]刘持标,黄葵,佘益民等.微胶囊固定化过氧化氢酶的制取及对H2O2的分解作用[J].生物化学杂志,1997,13(4):478.
    [187]Zhuang P,Butterfield D A. Spin labeling and kinetic studies of a membrane-immobilized proteolytic enzyme[J]. Biotechnol Prog,1992,8:204-210.
    [188]徐慧显,李民勤,潘再群等.葡聚糖磁性毫微粒固定化L-天冬酰胺酶的研究[J].生物化学杂志,1996,12(6):744.
    [189]马建标.高分子对酶、抗体、DNA的修饰、固定化及其生物医学应用[J].高等学校化学学报,1997,18(7):1127.
    [190]Kalia A,Goyal L,Pundir C S.烷基胺玻璃固定化葡萄糖氧化酶测定血糖[J].生物工程 学报,1998,14(3):336.
    [191]方跃,邵正中,邓家祺,等.利用桑蚕丝素蛋白制葡萄糖氧化酶传感器的研究[J].科学通报,1992,(4):327.
    [192]蔡称心,鞠煜先,陈洪渊.纳米级微带金电极上葡萄糖氧化酶的固定、性质及应用[J].化学学报,1995,53(3):281.
    [193]程发良,莫金垣,戴晓云.聚吡咯为基质的脲酶传感器生物电化学响应[J].高分子学报,1999,(4):417.
    [194]Giomo L. Drioli E. Biocatalytic membrane reactors:Applications and perspectives [J].Trends Biotechnol,2000,18:339-349.
    [195]谢志东,暴奉维,李民勤,等.聚丙烯酸甲酯类大孔树脂对猪胰脂肪酶的固定化研究[J].离子交换与吸附,1995,11(1):24.
    [196]曹国民,黄杰,高广达.蚕丝固定化脂肪酶的研究[J].生物工程学报,1997,13(1):88.
    [197]徐慧显,李民勤,何炳林.高分子载体固定化酵母脂肪酶的研究[J].生物化学杂志,1996,12(2):201.
    [198]邱广亮,栗淑媛,郝翠秀,等.磁性聚乙二醇载体固定化α淀粉酶的研究[J].生物化学杂志,1997,13(2):240.
    [199]张所信,王为国,江龙法,等.球形交联壳聚糖的制备及其在固定化α-淀粉酶方面的应用[J].现代化工,1997,17(4):29.
    [200]郭桥,罗贵民,孙启安等.α淀粉酶与糖化酶的共固定化研究[J].生物化学杂志,1994,10(3):259.
    [201]李振华,唐晓松.明胶-戊二醛固定化双酶体系的研究[J].四川大学学报(自然科学版),1990,27(1):73.
    [202]黄月文,罗宣干,卓仁禧.蜗牛酶在聚(N-异丙基丙烯酰胺)中的固定化及应用[J].功能高分子学报,1996,9(4):523.
    [203]郭胜清,曹树桂,马林等.疏水载体固定化胆碱酯酶的研究[J].生物化学杂志,1994,10(4):439.
    [204]林健巧,王炜军,穆虹等.烟草多酚氧化酶的分离与固定化技术研究[J].中国生物化学与分子生物学报,1999,15(4):663.
    [205]李家磺,李苏平,严明等Burkholderia cepecia.njutl中的海因酶的纯化及性质[J].高校化学工程学报,2005,19(3):353.
    [206]李家磺,李苏平,严明等.N—氨甲酰水解酶的纯化及性质[J].工业微生物,2005,35(1):40.