烟粉虱对毒死蜱的抗性机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
烟粉虱(Bemisia tabaci)是一种世界性重要害虫,为害包括棉花在内的多种作物。近年,烟粉虱已在我国22个省、自治区、直辖市严重发生与为害,且仍在快速扩散。目前,在我国B型烟粉虱已逐渐取代了本地烟粉虱,但另一种危害性更高的Q型烟粉虱有进一步取代B型的趋势。烟粉虱在适宜的气候条件下,一般一年可发生11-21代,有明显的世代重叠现象;每年的7-9月份是为害高峰期,高温干旱有助于暴发危害;烟粉虱的防治主要依赖于化学防治,其中毒死蜱等有机磷农药已有多年使用历史,且抗药性问题日益突出。为了弄清烟粉虱对毒死蜱等有机磷农药的抗性机理和抗性现状,建立有效的抗性治理措施,提高现有的农药品种的防治效果,本研究在室内筛选了毒死蜱的烟粉虱抗感品系;研究了该抗性品系的代谢及靶标抗性机制;调查了田间烟粉虱不同地理种群的生物型和靶标突变等位基因的频率;最后,探讨了烟粉虱抗感AChE基因的体外真核表达。主要结果如下:
     1.烟粉虱对毒死蜱敏感和抗性品系的室内选育
     对采自于南京郊区的B型烟粉虱田间种群,利用群体筛选方法进行了抗感毒死蜱品系的室内筛选。筛选26代后获得一个33.94倍的相对抗性品系NJ-R。从抗性发展动态看,前9代筛选中抗性上升较慢,9代后上升很快,到13代筛选后抗性达到33.9倍。此时停止4代筛选,烟粉虱对毒死蜱的敏感性快速恢复,抗性降至约17倍。但继续筛选3代后,抗性又重新上升到33倍左右,此后继续筛选5代,抗性保持稳定。由此可见,烟粉虱对毒死蜱易产生中等水平抗性,但停止用药后抗药性可明显下降。
     2.烟粉虱对毒死蜱抗感品系解毒代谢抗性机制的研究
     测定并比较了相对敏感品系NJ-S和抗性品系NJ-R(抗性倍数34倍)间酯酶(Estersae)、谷胱甘肽-S-转移酶(GST)和多功能氧化酶(MF0)的酶活差异。结果发现,抗性品系的酯酶活力是敏感品系的1.53倍,差异显著; GST和MFO酶活力在抗性和敏感品系间,没有显著差异。进一步的增效剂试验表明,增效剂TPP在抗感品系中对毒死蜱都有增效作用,但抗性品系中的增效比为4.46,明显大于敏感品系的2.43;增效剂DEM和PBO在抗感品系中均未有明显的增效作用。结果证明,在烟粉虱对毒死蜱抗性品系NJ-R中,就代谢抗性而言,酯酶解毒代谢能力的提高是起主要作用的,GST和MF0只起辅助作用或不起作用。
     3.烟粉虱对毒死蜱抗感品系靶标抗性机制的研究
     利用室内筛选得到的33倍的抗性品系,在明确了酯酶活力升高是其主要的代谢抗性机制后,进一步研究了该烟粉虱抗性品系对毒死蜱的靶标抗性。对乙酰胆碱酯酶(AChE)酶活力及酶动力学测定结果表明,两者在抗感品系间均未有显著差异,说明靶标抗性在此相对抗性中不起作用。然而对AChE-1基因(acel)的序列分析发现,无论抗性品系还是敏感品系都发生了F392W的点突变。由于该位点的突变与多种害虫对有机磷和氨基甲酸酯农药的抗性相关,本研究筛选得到的敏感品系实际上是携带了靶标抗性的相对敏感品系,而得到的抗性品系是基于靶标抗性背景的抗性品系,其34倍的抗性主要由代谢抗性引起。同时推测,当初用于抗感品系筛选的南京田间种群,已经是携带了F392W点突变acel的有机磷药剂抗性种群。
     4.不同地理种群烟粉虱生物型鉴定及AChE抗性突变频率的检测
     对采自我国北京、南京、武汉、广东、广西和新疆的6个地区的烟粉虱种群,利用mtDNA COI基因序列鉴定法进行了生物型鉴定,发现广东、广西、新疆三地烟粉虱均为B型,而南京、武汉两地烟粉虱均为Q型,北京品系也以Q型烟粉虱为主。同时,应用基于RFLP-PCR的分子检测技术,对上述6个烟粉虱地理种群共101头个体进行了F392W突变的快速检测。结果显示,各地区烟粉虱田间种群的抗性等位基因频率都已经很高。其中,北京种群最高,为100%;广西种群为94.44%;新疆、武汉和广东种群均为93.75%;南京种群最低,也达到了88.23%。被检测的101头个体中,抗性纯合子有93头,占92.07%;抗性杂合子和敏感纯合子各4头,仅分别占3.96%。这一结果表明,我国田间烟粉虱对有机磷和氨基甲酸酯类杀虫剂的靶标抗性,已处于发展后期。
     5.烟粉虱抗感乙酰胆碱酯酶基因的体外真核表达
     利用定点突变技术及昆虫杆状病毒表达系统,构建烟粉虱抗感品系ace1基因的表达质粒,并在昆虫Sf9细胞系中进行表达。重组病毒转染Sf9细胞后,以细胞及培养液进行SDS-PAGE检测,未发现明显的目标蛋白条带;酶活测定显示,表达组培养液或细胞与对照组间的活性也没有明显差异。但在转染重组GFP病毒对照的昆虫细胞中,可以看到明显的蛋白表达信号。分析原因,可能是acel的表达量太低,有待从昆虫细胞系等方面进一步筛选改进,以获得大量有活性的烟粉虱AChEl,探讨重要位点氨基酸突变与酶学特性的关系。
The tobacco whitefly (Bemisia tabaci) is one of the most important insect pests all over the world. It feeds many crop and economic plants including cotton and vegebables. In recent years, the occurrance of tobacco whitefly was reported in at least22provinces, autonomous regions and municipalities across China, and is stilll diffusing to other areas. B-boitype is the main type of whitefly now in China, but is being dominated by the Q-biotype, a biotype with even higher damage inducing capacity than the B-biotype. The tobacco whitefly reproduces11-21generations anually, resulting in a heavy generation overlapping. The occurance and damage of the whitefly in the open fields is most serious between July to September, and higher temprature and drought are favorable for its occurance. For decades, the control of the whitefly is heavily dependent on chemical insecticides including orgnophosphorous and carbamates, which leads to the pest resistance problem and makes more and more control failures in fields. In order to develop a rational resistance management strategy and to obtain higher control efficacy, the mechanisms of resistance to chlorpyrifos by the whitefly was explored in this paper. The main results were summarized as follows:
     1. Selection of resistant and susceptible strains of B. tabaci to chlorpyrifos in laboratory
     Based on a B-biotype whitefly population collected from Nanjing fields in2005, a chlorpyrifos resistant strain (NJ-R) and a susceptible strain (NJ-S) were selected by using group screening method. After26generations'selection, a33.9-fold resistance was obtained compared to NJ-S strain. During the early9generations of selection, the resistance increased very slowly, while much faster in the subsequent4generations, obtaining a33.9-fold resistance after the13th generation's selection. However, this resistance was not stable, as it quickly descreased to18-folds after4generation's suspending of selection, and same quickly the resistance increased from18-folds to33-folds when selection was resorted for3generations. Hereafter, continued selection could not significantly increase the resistance. It is concluded that the resistance of whitefly to chlorpyrifos can be easily selected, but the resistance may decrease significantly when the selection is suspended.
     2. Detoxification mechanisms for resistance of B. tabaci to chlorpyrifos
     The activities on3detoxification enzymes (Estersae, GST and MFO) of NJ-S and NJ-R strains were determined. Th results showed that esterase activity of NJ-R was1.53times of that in NJ-S, significantly different between two strains, while the GST and MFO enzyme activities between resistant and susceptible strains were not significantly different. To verify the enzyme activity assay, experiments with synergist TPP, DEM and PBO were carried out. TPP showed high synergy effect to chlorpyrifos in both NJ-S and NJ-R strains, but the synergy rate (SR) in NJ-R is4.46much higher than that in NJ-S (2.43). DEM and PBO displayed no obvious synergy effect to chlorpyrifos in resistant and susceptible strains. All aboved results together show that enhenced esterase activity plays key role, while the GST and MFO play minor roles, in the metabolic resistance of B. tabaci to chlorpyrifos.
     3. Target mechanisms for resistance of B. tabaci to chlorpyrifos
     AChE activities and enzyme kinetic parameters of NJ-S and NJ-R strains were compared, and the results showed no significant differenec between NJ-R and NJ-S. This indicated no contribution by target mechanism to the33.9-folds resistance in NJ-R. However, after cloning and analysing the ace1gene sequences, it was found that both resistant and susceptible individuals of B. tabaci had the F392W point mutation in ace1, which was somewhat unexpected. As F392W mutation was found to correlate to resistance to organophosphorous and carbamate insecticides in many insect pests, NJ-S actually was a susceptible strain bearing the target resistance, and NJ-R was a resistant strain of33-folds beside the target resistance. Obviously, the33-fold resistance in NJ-R was mostly (if not completely) resulted by metabolic mechanisms. These also imply that the field whitfly population collected in Nanjing fields in2005for sellecting the NJ-R and NJ-S strains, was already a resistant population with F392W mutation in acel genes.
     4. The biotype identification and resistant AChE-1allele frequencies of six geographical B. Tabaci populations across China
     The biotypes of six tabacco whiteflies populations collected from Beijing, Nanjing, Wuhan, Guangdong, Guangxi and Xinjiang were identified by analysing the mtDNA COI gene sequence. As a result, Guangdong, Guangxi and Xinjiang populations were all B biotype, while Nanjing and Wuhan populations were Q biotype, and Beijing population was mostly Q biotype. At meantime, the mutant ace1alleles carrying F392W mutation were detected in101whiteflies from six populations, by using the molecular-based RFLP-PCR method. The result showed that around90%frequencies of resistant ace1allele were found in all six whitefly populations. Among those populations, Beijing populaion had the highest frequency of resistant ace1allele (100%), while the Nanjing population had the lowest of88.23. The frequencies in Guangxi, Xinjiang, Wuhan and Guangdong populations were94.44%,93.75%,93.75%and93.75%, respectively. Among the101tested individuals,93whiteflies were resistant homozygote,4whiteflies were susceptible homozygote and4were heterozygotes, counting for92.07%,3.96%and3.96%, respectively.
     5. Eukaryotic expression of the resistant and the wild AChE-1in vitro
     Site-directed mutagenesis and baculovirus expression system were used to construct the expression plasmid with resistant and wild type of acel, and Sf9insect cells were used for expression of the recombinant plasmids. Three days after the transfecting the insect cells with recombinant bacmid virus, the culture medium and cells were detected for the expressed AChE-1by SDS-PAGE, but no obvious expected band was found in the jel, and the AChE activity measurement also showed no significant activity found in transfected medium and cells than those in control. However, obvious signal of expressed GFP protein was detected in insect cells tranfected with GFP recombinant virus, which showed that the transfection was succesful. The reason might be that the amount of expressed AChE-1was too low to be detected, which will be improved in the ongoing experiments.
引文
1.董双林,韩召军,Williamson, M. S.,2006利用Bac-to-Bac系统表达棉蚜的乙酰胆碱酯酶.动物学研究,27(1):75-80.
    2.陈斌,管卫兵,周凤珠等,2009.棚栽蔬菜烟粉虱发生原因及防治技术.现代农业科技.
    3.陈冲,马娟,王欣茹等,2011.湖北省烟粉虱生物型鉴定.应用昆虫学报,48(1):22-26.
    4.陈连根,1997.烟粉虱在园林植物上的为害及其形态变异.上海农学院学报,15(3):186-189.
    5.冯亚军,张开朗,郭林永,2008.烟粉虱发生规律及综合治理对策.现代农业科技.
    6.韩招久,2002.二化螟对杀虫单和甲胺磷的抗性机理及神经靶标乙酰胆碱受体的基因克隆.南京农业大学博士论文.
    7.何玉仙,黄建,杨秀娟等,2007.烟粉虱对拟除虫菊酯杀虫剂的抗性机理.昆虫学报,50(3):241-247.
    8.何玉仙等,2007.烟粉虱田间种群的抗药性.应用生态学报,18(7):1578-1582.
    9.柳斌,吐尔逊,郭文超等,2008.环境因子对新疆B型烟粉虱发育与繁殖的影响.新疆农业科学,45(6):1121-1125.
    10.刘立云,2002.海南发现B型烟粉虱,28(1):61.
    11.罗晨,姚远,王戎疆等,2002.利用mtDNA COI基因序列鉴定我国烟粉虱的生物型.昆虫学报,45(6):759-763.
    12.马德英,Ian,Kevin等,2007.新疆B型烟粉虱对不同类型杀虫剂的抗性及分析.植物保护学报,34(3):311-315.
    13.马绍国,哈金华,朱建祥等,2004.宁夏地区烟粉虱生活习性及发生规律研究.宁夏农林科技,4:9-10.
    14.马玉乾,刘裕岭,2008.大棚蔬菜烟粉虱的发生原因及其防治.上海蔬菜,(3):74.
    15.孟瑞霞,张青文,刘小侠等,2008.烟粉虱生物防治应用现状.中国生物防治,24(1):80-84.
    16.潘云平,臧运政,黄艳萍等,2002.潍坊市烟粉虱大发生原因及防治对策.广西植保,15(3):19.
    17.邱宝利,任顺祥,林莉等,2004.广东省烟粉虱蚜小蜂种类及种群动态调查初报.昆虫知识,41(4):333-335.
    18.饶琼,罗汉钢,汪细桥等,2009.武汉地区烟粉虱的危害及其生物型鉴定.华中农业大学学报,28(5):535-539.
    19.饶琼,张宏宇,罗晨,2008.2007湖北省烟粉虱生物型调查及入侵型B型和Q型的扩散.第一届全国生物入侵学术研讨会论文集.19.
    20.孙爽艳,胡敦孝,2001.几种药剂对B型烟粉虱的毒力及药效测定.植物保护,27(4):23-25.
    21.唐振华,1993.昆虫抗药性及其治理.农业出版社,72-79.
    22.陶黎明,2005.昆虫抗药性及其治理对策的研究.中国科学院上海生命科学研究院植物生理生态研究所博士论文.
    23.万方浩,郭建英,张峰等,2009.中国生物入侵研究.科学出版社.
    24.王利华,吴益东,2004.与拟除虫菊酯抗性相关的烟粉虱钠离子通道基因突变极其抗性检测.昆虫学报,47(4):449-453.
    25.王少丽,张友军,李如美等,2011.北京和湖南烟粉虱生物型及其抗药性监测.昆虫学报,48(1):27-31.
    26.王树芹,郭玉玲,庞淑婷等,2008.不同类型药剂对B型烟粉虱的毒力作用评价.浙江农业学报,20(5):367-371.
    27.王中武,孟庆珍,王炳风等,2004.吉林市烟粉虱严重为害温室花卉.吉林蔬菜,1:34.
    28.吴孔明,刘芹轩.1994.棉蚜抗杀灭菊酯品系的某些生物学特性.昆虫学报,37(2):137-144.
    29.吴青君,张文吉,张友军等,2002.表皮穿透和GABAA受体不敏感性在小菜蛾对阿维菌素抗性中的作用.昆虫学报,45(3):336-340.
    30.吴益东,沈晋良,谭福杰等,1996.棉铃虫对氰戊菊酯抗药性品系和敏感品系的相对适合度.昆虫学报,39(3):233-236.
    31.伍一军,冷欣夫,2003.杀虫药剂的神经毒理学研究进展.昆虫学报,46(3):382-389.
    32.夏冰,姜玉英,张跃进,2008.近年我国棉田烟粉虱发生为害特点及原因浅析.中国植保导刊.
    33.徐德进,金昱琦,顾中言等,2007.毒死蜱在水稻害虫防治中的应该用概述.现代农药,4(2):6-9.
    34.徐金妹,张国林,陈海新等,2006.高邮地区烟粉虱的发生及防治.植物检疫,vo1.20 No.2.
    35.徐静,张青文,邓曙东等,2003.湖北棉区转Bt基因棉对烟粉虱种群动态的影响研究.植物保护,29(5):38-40.
    36.徐婧,栾军波,刘树生,2008.重大外来害虫B型烟粉虱的入侵行为和生态机制.昆虫知识,45(3):347-352.
    37.袁林泽,王少丽,陈雪林等,2011.江苏Q型烟粉虱抗性监测及其靶标基因克隆.应用昆虫学报,48(1):48-53.
    38.张宏宇,饶琼,周国珍,2010.烟粉虱及其防治.金盾出版社.
    39.张丽萍,张文吉,张贵云等,2005.山西烟粉虱寄主植物及其被害程度调查.植物保护,31(1):24-27.
    40.张世泽,李建军,许向利等,2007.西安地区烟粉虱寄主植物及其危害程度调查.西北农业学报,16(4):231-234.
    41.张兴华,李捷等,2008.2007年烟粉虱在江西棉区大发生及其原因分析.江西农业学报,20(6);62-64.
    42.褚栋,毕玉平,张友军等,2005.烟粉虱生物型研究进展.生态学报,25(12):3398-3403.
    43.褚栋,张友军,丛斌等,2005.云南Q型烟粉虱种群的鉴定.昆虫知识,42(1):54-56.
    44.褚栋,张友军,丛斌等,2005.烟粉虱不同地理种群的mt DNA COI基因序列分析及其系统发育.中国农业科学,38(1):76-85.
    45. Abdallah E.A.M., Eldefrawi M.E., Eldefrawi A.T.1991, Pharmacological characterization of muscarinic receptors of insect brains. Archs Insect Biochem Physiol,17:107-118.
    46. Ahamad M, Afrif MI, Ahmad Z, Denholm I,2001. Cotton whitefly(Bemisia tabaci) resisitance to oganophate and pethriod insecticides in Pakistan. Pest Manag. Sci.,58:203-208.
    47. Alout, H., and Weill, M.2008. Amino-acid substitutions in acetylcholinesterase 1 involved in insecticide resistance in mosquitoes. Chem Biol Interact 175,138-141.
    48. Anand R, Peng X, Lindstrom J.1993, Homomeric and native α7 acetylcholine receptors exhibit remarkably similar but nonidentical pharmacological properties, suggesting that the native receptor is a heteromeric protein complex. Febs Letters,327:241-246.
    49. Anthony, N., Rocheleau, T., Mocelin, G., Lee, H. J., and ffrench-Constant, R.1995. Cloning, sequencing and functional expression of an acetylcholinesterase gene from the yellow fever mosquito Aedes aegypti. FEBS Lett 368,461-465.
    50. Apel E D, Roberds S L, Campbell K P, Merlie J P.1995, Rapsyn may function as a link between the acetylcholine-receptor and the Afrin-binding dystrophin-associated glycoprotein complex. Neuron, 15:115-126.
    51. Ariel, N., Ordentlich, A., Barak, D., Bino, T., Velan, B., and Shafferman, A.1998. The 'aromatic patch'of three proximal residues in the human acetylcholinesterase active centre allows for versatile interaction modes with inhibitors. Biochem J 335,95-102.
    52. Ashani, Y., Grunwald, J., Kronman, C., Velan, B., and Shafferman, A.1994. Role of tyrosine 337 in the binding of huperzine A to the active site of human acetylcholinesterase. Mol Pharmacol 45, 555-560.
    53. Baek, J. H., Kim, J. I., Lee, D. W., Chung, B. K., Miyata, T., and Lee, S. H.2005. Identification and characterization of acel-type acetylcholinesterase likely associated with organophosphate resistance in Plutella xylostella. Pestic Biochem Physiol 81,164-175.
    54. Balestra B, Vailati S, Moretti M, Hanke W, Clementi F, Gotti C. Chick optic lobe contains a developmentally regulated α2α5β2 nicotinic receptor subtype. Molecular Pharmacology,2000,58: 300-311.
    55. Barak, D., Kronman, C., Ordentlich, A., Ariel, N., Bromberg, A., Marcus, D., Lazar, A., Velan, B., and Shafferman, A.1994. Acetylcholinesterase peripheral anionic site degeneracy conferred by amino acid arrays sharing a common core. J Biol Chem 269,6296-6305.
    56. Bautisa, M. A. M., Tanaka, T., and Miyata, T.2007. Identification of permethrin-inducible cytochrome P450s from the diamondback moth, Plutella xylostella (L.) and the possibility of involvement in permethrin resistance. Pestic Biochem Physiol 87,85-93.
    57. Baumann A, Jonas P, Gundelfinger E D. Sequence of Da2, a novel alpha-like subunit of Drosophila nicotinic acetylcholine receptors. Nucleic Acids Research,1990,18:36-40.
    58. Bautista, M. A., Miyata, T., Miura, K., and Tanaka, T.2009. RNA interference-mediated knockdown of a cytochrome P450, CYP6BG1, from the diamondback moth, Plutella xylostella, reduces larval resistance to permethrin. Insect Biochem Mol Biol 39,38-46.
    59. Baylis H A, Matsuda:K, Squire M D, Fleming J T, Harvey R j, Darlison M G, Barnard E A, SattelleD B. ACR-3, a Caenorhabditis elegans nicotinic acetylcholine receptor subunit:Molecunit cloning and functional expression. Receptors & Channels,1997,5:149-158.
    60. Bellows T, PERRING T, Gill R, Headrick D.1994. Description of a species of Bemisia (Homoptera: Aleyrodidae). Annals of the Entomological Society of America,87,195-206.
    61. Berrada S., Fournier D. Transposition mediated transcriptionalove rexpression as a mechanism of insecticide resistance. MolGen Gene t,1997,256:3482354.
    62. Bertrand D, Balliver M, Gomez M, Bertrand S, Phannavong B, Gundelfinger E D. Physiological properties of neuronal nicotinic receptors reconstituted from the vertebrate β2 subunit and Drosophila alpha subunits. European Journal of neuroscience,1994,6:869-875.
    63. Bhalla, S., Panda, N. and Khullar, M. (2007) PCR-RFLP assay for 235delC mutation detection in non-syndromic hearing loss subjects. Am J Med Genet A,143A,1810-1811.
    64. Bossy, B., Ballivet, M., and Spierer, P.1988. Conservation of neural nicotinic acetylcholine receptors from Drosophila to vertebrate central nervous systems. EMBO J 7,611-618.
    65. Bloch G., Wool D.1994.Methidathion resistance in the sweet potato whitefly (Aleyrodidae: Homoptera) in Israel:Selection, heritability, and correlated changes of esterase activity. J Econ Ent., 87(5):1147-1156.
    66. Bradford M.M.,1976, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry.72:248-254.
    67. Bull D.L.1992, Target site and enzyme changes associated with selection of subcolonies of multi-resistant house fly strain with methylparathion or permethrin. Pestic. Biochem. Physiol,42: 211-226.
    68. Byrne F J, Cahill M, Denholm I, Devonshire A L.1995. Biochemical identification of interbreeding between B-type and non B-type strains of the tobacco whitefly Bemisia tabaci. Biochem Genet,33, 13-23.
    69. Cahill M., Gorman K., Day S., et al.1996, Baseline determination and detection of resistance to imidacloprid in Bemisia tabaci (Hemiptera:A leyrodidae). Bull. Entomol. Res.,86:343-349.
    70. Cahill M, Byrne FJ,1995. Pyrethroid and organophosphate resistance in the tobacco whitefly Bemisia tabaci. Bull Entomol. Res.,85:181-187.
    71. Cahill M, Jarvis W, Gorman K,1996. Resolution of baseline response and documentation of resistance to buprofezin in Bemisia tabaci (Homoptera:Aleyrodidiae). Bull Entomol Res, 86:117-122.
    72. Campbell, C. S.1998. Resistance and meaning:religious communities and human cloning. Valparaiso Univ Law Rev 32,607-631.
    73. Changeux J.P. 1991, Functional Architecture and Dynamics of the Nicotinic Acetylcholine Receptor: A Ligand Gated Ion Channel [J]. Fidia. Res. Found Neurosi Award Lect,4:21-168.
    74. Charpentier A., Fournier D.2001, Levels of total acetylcholinesterase in Drosophila melanogaster in relation to insecticide resistance. Pestic. Biochem. Physiol,70:100-107.
    75. Cassanelli S, Reyes M, Rault M, Carlo Manicardi G, Sauphanor B.2006. Acetylcholinesterase mutation in an insecticide-resistant population of the codling moth Cydia pomonella (L.). Insect biochemistry and molecular biology,36,642-653.
    76. Chen QY, Jiang JL, Lin GF, Liu WD1980,. Study on the resistance of dipterex resistant mosquitoc Culex pipiens pallens on the relationship between hydrolase and resistance. Acta Entomologica Sinic (in Chinese) 23(4):350-357.
    77. Choi B.R., Lee S.W., Yoo J.K.2001, Resistance mechanisms of green peace aphid Myzus pericae (Homoptera:Aphididae) to imidacloprid Kor. Appl. Entomol,40:265-271.
    78. Claudianos, C., Russell, R. J., and Oakeshott, J. G.1999. The same amino acid substitution in orthologous esterases confers organophosphate resistance on the house fly and a blowfly. Insect Biochem Mol Biol 29,675-686.
    79. Devine G.J., Harling, Z.K., Scarr, A.W., et al.1996, Lethal and sublethal effects of imidacloprid on nicotine tolerant Myzus nicotianae and Myzus pericae. Pstic Sci.,48:57-621.
    80. Dittrich V, Ernst GH, Ruesch 0,1990. Resistance Mechanisms in Sweetpotato Whitefly (Homoptera: Aleyrodidae) populations from Sudan, Turkey, Guatemala, and Nicaragua. Journal of Economic Entomology.83(5):1665-1670.
    81. Elbert A., Nauen R., Cahill M., Devonshire A.L., Scarr A.W., Sone S., Steffens R.1996, Resistance management with chloronicotinyl insecticides using imidacloprid as an example. Pflanzenschutz Nachrichten Bayer,49:5-54.
    82. Elbert N, Nauen R,2000. Resistance of Bemisia tabaci (Homoptera:Aleyrodidae) to insecticides in southern Spain with special reference to neonicotinoides. Pest Management Science 56:60-64.
    83. Elgoyhen A.B., Johnson D.S., Boulter J., Vetter D.E.,1994, Heinemann S. a9:an acetylcholine receptor with novel pharmacological properties expressed in rat cochlear hair cells. Cell,79: 705-715.
    84. Emmanouil R., Nikos E.R., Anastasia Tsagkarakou. Insecticide resistance in Bemisia tabaci (Hemiptera:Aleyrodidae) populations from Crete. Pest Management Science,2005,61(6):577-582.
    85. Enayati, A. A., Ranson, H., and Hemingway, J.2005. Insect glutathione transferases and insecticide resistance. Insect Mol Biol 14,3-8.
    86. Fournier D., Mutero A.1994, Modification of acetylcholinesterase as a mechanism of resistance to insecticides [J]. Comp Biochem. Physiol,108:19-31.
    87. Ffrench-Constant, R. H., Rocheleau, T. A., Steichen, J. C., and Chalmers, A. E.1993. A point mutation in a Drosophila GAB A receptor confers insecticide resistance. Nature 363,449-451.
    88. Field, L. M., Blackman, R. L., Tyler-Smith, C., and Devonshire, A. L.1999. Relationship between amount of esterase and gene copy number in insecticide-resistant Myzus persicae (Sulzer). Biochem J 339,737-742.
    89. Fournier, D., Bride, J. M., Hoffmann, F., and Karch, F.1992. Acetylcholinesterase:Two types of modifications confer resistance to insecticide. J Biol Chem 267,14270-14274.
    90. Ghanim M, Morin S, Zeidan M, Czosnek H.1998. Evidence for transovarial transmission of tomato yellow leaf curl virus by its vector, the whitefly Bemisia tabaci. Virology,240,295-303.
    91. Gorman K., Wren J., Devine G., et al.2003, Characterisation of neonicotinoid resistance in Bemisia tabaci from Spain[C] The BCPC international congress of the crop science&technology, 783-788.
    92. Grant, D. F., Dietze, E. C., and Hammock, B. D.1991. Glutathione S-transferase isozymes in Aedes aegypti:purification, characterization, and isozyme specific regulation. Insect Biochem 4,421-433.
    93. Grutter T., Bertrand S., Kotzyba-Hibert F., Bertrand D., Coeldner M.2002, Structural reorganization of the acetylcholine binding site of the torpedo nicotinic receptor as revealed by dynamic photoaffinity labeling. Chembiochem,3(7):652-658.
    94. Guillemaud, T., Lenormand, T., Bourguet, D., Chevillon, C.,Pasteur, N., Raymond, M.,1998. Evolution of resistance in Culex pipiens:allele replacement and changing environment. Evolution. Evolution 52,443-453.
    95. Gunning R, Balfe M, Easton C.1992. Carbamate resistance in Helicoverpa armigera (Hubner) (Lepidoptera:Noctuidae) in Australia. J Aust Ent Soc,31,97-103.
    96. Gunning R V, Moores G D, Devonshire A L.1996. Insensitive Acetylcholinesterase and Resistance to Thiodicarb in Australian Helicoverpa armigera Hubner (Lepidoptera:Noctuidae). Pestic Biochem Physiol,55,21-28.
    97. Han ZJ, Moorses G.D., Devonshire A.L., Denholm I., Association between biochemical markers and insecticide resistance in the cotton aphid, Aphis gossypi. Pesticide Biochemistry and Physiology. 1998:164-171.
    98. Harel, M., Schalk, I., Ehret-Sabatier, L., Bouet, F., Goeldner, M., Hirth, C., Axelsen, P. H., Silman, I., and Sussman, J. L.1993. Quaternary ligand binding to aromatic residues in the active-site gorge of acetylcholinesterase. Proc Natl Acad Sci U S A 90,9031-9035.
    99. Harel, M., Sussman, J. L., Krejci, E., Bon, S., Chanal, P., Massoulie, J., and Silman, I.1992. Conversion of acetylcholinesterase to butyrylcholinesterase:modeling and mutagenesis. Proc Natl Acad Sci U S A 89,10827-10831.
    100. Hansen L G, Hodgson E.1971. Biochemical characteristics of insect microsomes. N-and O-demethylation. Biochem Pharmacol,20,1569-1578.
    101. Hemingway, J., Hawkes, N. J., McCarroll, L., and Ranson, H.2004a. The molecular basis of insecticide resistance in mosquitoes. Insect Biochem Mol Biol 34,653-665.
    102. Hemingway, J.2004b. Taking aim at mosquitoes. Nature 430(7002),936.
    103. Horowita AR, Denholm I, Groman K, et al.1999. Insecticide resistance in whithflies:current status and implication for management In:Denholm 1, loannidis P. eds. Proc ENMARIA Sympos: Comabation Insecticide Resistance. Thessalonikis, Greece,8896-8898.
    104. Horowtiz AR, Ishaaya I,1994. Managing resistance to insect growth regulators in sweetpotato whitefly (Homoptera:Aleyrodidae). J Econ Entoml,87(4):866-871.
    105. Horowitz AR, Mendelson Z, Cahill M, Denholm I, Ishaaya I,1999. Managing resistance to the insect growth regulator, pyriproxyfen, in Bemisia tabaci. Pestici. Sci.55:272-276.
    106. Horowitz AR, Toscano NC, Youngman RR, Geroghiou GP,1988. Synergism of insecticides with DEF in sweetpotato whitefly (Homoptera:Aley rodidae). J.Econom. Entomol.81:110-114.
    107. Huang, H. S., Hu, N. T., Yao, Y. E., Wu, C. Y., Chiang, S. W., and Sun, C. N.1998. Molecular cloning and heterologous expression of a glutathione S-transferase involved in insecticide resistance from the diamondback moth, Plutella xylostella. Insect Biochem Mol Biol 28,651-658.
    108. Jiang, X., Qu, M., Denholm, I., Fang, J., Jiang, W., and Han, Z.2009. Mutation in acetylcholinesterasel associated with triazophos resistance in rice stem borer, Chilo suppressalis (Lepidoptera:Pyralidae). Biochem Biophys Res Commun 378,269-272.
    109. Jones, A. K., Grauso, M., and Sattelle, D. B.2005a. The nicotinic acetylcholine receptor gene family of the malaria mosquito, Anopheles gambiae. Genomics 85,176-187.
    110. Jones, A. K., Marshall, J., Blake, A. D., Buckingham, S. D., Darlison, M. G., and Sattelle, D. B. 2005b. Sgbetal, a novel locust (Schistocerca gregaria) non-alpha nicotinic acetylcholine receptor-like subunit with homology to the Drosophila melanogaster Dbetal subunit. Invert Neurosci 5,147-155.
    111. Kady H.E., Denholm I., Devine J.2002, Insecticide resistance in Egytian strains of Bemisia tabaci [C] The BCPC conference pests & diseases,2:787-792.
    112. Kang, S.H., Cho, S.I., Chae, J.H., Chung, K.N., Ra, E.K., Kim, S.Y., Seong, M.W., Kim, J.Y. and Park, S.S. (2009) False homozygous deletions of SMN1 exon 7 using Dra I PCR-RFLP caused by a novel mutation in spinal muscular atrophy. Genet Test Mol Biomarkers,13,511-513.
    113. Karunker, I., Benting, J., Lueke, B., Ponge, T., Nauen, R., Roditakis, E., Vontas, J., Gorman, K., Denholm, I., and Morin, S.2008. Over-expression of cytochrome P450 CYP6CM1 is associated with high resistance to imidacloprid in the B and Q biotypes of Bemisia tabaci (Hemiptera:Aleyrodidae). Insect Biochem Mol Biol 38,634-644.
    114. Kasai, S., and Scott, J. G.2000. Over expression of cytochrome P450 CYP6D1 is associated with monooxygenase-mediated pyrethroid resistance in housflies from Geogia. Pestic Biochem Physiol 68, 34-41.
    115. Kasai, S., Weerashinghe, I. S., Shono, T., and Yamakawa, M.2000. Molecular cloning, nucleotide sequence and gene expression of a cytochrome P450 (CYP6F1) from the pyrethroid-resistant mosquito, Culex quinquefasciatus Say. Insect Biochem Mol Biol 30,163-171.
    116. Kim, H. J., Yoon, K. S., and Clark, J. M.2007. Functional analysis of mutations in expressed acetylcholinesterase that result in azinphosmethyl and carbofuran resistance in Colorado potato beetle. Pestic Biochem Physiol 88,181-190.
    117. Kim, J. I., Jung, C. S., Koh, Y. H., and Lee, S. H.2006. Molecular, biochemical and histochemical characterization of two acetylcholinesterase cDNAs from the German cockroach Blattella germanica. Insect Mol Biol 15,513-522.
    118. Kono, Y, and Tomita, T.2006. Amino acid substitutions conferring insecticide insensitivity in Ace-paralogous acetylcholinesterase. Pestic Biochem Physiol 85,123-132.
    119. Kozaki, T., Shono, T., Tomita, T., and Kono, Y.2001. Fenitroxon insensitive acetylcholinesterases of the housefly, Musca domestica associated with point mutations. Insect Biochem Mol Biol 31, 991-997.
    120. Kranthi KR, Jadhav DR, Kranthi S, Wanjari RR, Ali SS, Russell DA,2002. Insecticide resistance in five major insect pests of cotton in India. Crop Protection 21:449-460.
    121. Kranthi KR, Jadhaw DR, Wanjari RR, Ali SS, Russell D,2001. Carbamate and organophosphate resistance in cotton pests in India,1995 to 1999. Bull. Entomol. Res.91:37-46.
    122. Kulkarni, A. P., and Hodgson, E.1980. Metabolism of insecticides by mixed function oxidase systems. Pharmacol Ther 8,379-475.
    123.Kwon, D. H., Choi B. R., Lee S. W., Clark J. M, and H., L. S.2009. Characterization of carboxylesterase-mediated pirimicarb resistance in Myzus persicae. Pesticide Biochemistry and Physiology 93,120-126.
    124. Lee, D. W., Kim, S. S., Shin, S. W., Kim, W. T., and Boo, K. S.2006. Molecular characterization of two acetylcholinesterase genes from the oriental tobacco budworm, Helicoverpa assulta (Guenee). Biochim Biophys Acta 1760,125-133.
    125. Lee, H. J., Rocheleau, T., Zhang, H. G., Jackson, M. B., and ffrench-Constant, R. H.1993. Expression of a Drosophila GABA receptor in a baculovirus insect cell system. Functional expression of insecticide susceptible and resistant GABA receptors from the cyclodiene resistance gene Rdl. FEBS Lett 335,315-318.
    126. Li, A., Yang, Y., Wu, S., Li, C., and Wu, Y.2006. Investigation of resistance mechanisms to fipronil in diamondback moth (Lepidoptera:Plutellidae). J Econ Entomol 99,914-919.
    127. Li AY, Dennehy TJ, Li S, et al.2001.Sustaining Arizona s fragile success in whitefly resistance management In:Dugger P, Richter D. eds. Proc Beltwide Cotton Conf. National Cotton Council, Memphis, TN,1108-1114.
    128. Li, F., and Han, Z.2004. Mutations in acetylcholinesterase associated with insecticide resistance in the cotton aphid, Aphis gossypii Glover. Insect Biochem Mol Biol 34,397-405.
    129. Li Yongsheng, Timothy J.D., Li Xiaohua. Susceptibility of Arizona whiteflies to choronicotinyl insecticides and IGRs:new developments in the 1999 season 2000.
    130. Liu, N., and Scott, J. G.1996. Genetic analysis of factors controlling high-level expression of cytochrome P450, CYP6D1, cytochrome b5, P450 reductase, and monooxygenase activities in LPR house flies, Musca domestica. Biochem Genet 34,133-148.
    131. Liu S S, De Barro P J, Xu J, Luan J B, et al.2007. Asymmetric mating interabtions drive widespread invasion and displacement in a whitefly. Science,318:1769-1772.
    132. Liu, Z., Williamson, M. S., Lansdell, S. J., Denholm, I., Han, Z., and Millar, N. S.2005. A nicotinic acetylcholine receptor mutation conferring target-site resistance to imidacloprid in Nilaparvata lugens (brown planthopper). Proc Natl Acad Sci U S A 102,8420-8425.
    133. Ma D, Gorman K, Devine G, Denholm I,2008. Insecticide resistance and biotype status of whiteflies (Bemisia tabaci) from Xinjiang Uygur Autonomous Region, China. Crop protection, 27:600-605.
    134. Mansuy, D.1998. The great diversity of reactions catalyzed by cytochromes P450. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol 121,5-14.
    135. Mo JC, Tang ZH.,1997. Application of quantitative genetics on research of evolution of insect resistance. Ent. Knowl.,34 (3):183-186.
    136. Molberg, W. K.1990. Understanding and combating agrochemical resistance.In:Green M B, Lebaron H M, Moberg M Keds. Managing Resistance to Agrochemicals. Washington:American Chemical Society.,1-15.
    137. Moores G, Gao X, Denholm I, Devonshire A.1996. Characterisation of Insensitive Acetylcholinesterase in Insecticide-Resistant Cotton Aphids, Aphis gossypuGlover (Homoptera: Aphididae). Pesticide Biochemistry and Physiology,56,102-110.
    138. Morin, S., Williamson, M. S., Goodson, S. J., Brown, J. K., Tabashnik, B. E., and Dennehy, T. J. 2002. Mutations in the Bemisia tabaci para sodium channel gene associated with resistance to a pyrethroid plus organophosphate mixture. Insect Biochem Mol Biol 32,1781-1791.
    139. Mouches C, Pasteur N, Berge J B, Hyrien O, Raymond M, de Saint Vincent B R, de Silvestri M, Georghiou G P.1986. Amplification of an esterase gene is responsible for insecticide resistance in a California Culex mosquito. Science,233,778-780.
    140. Mutero A., Pralavorio M., Bride IM, et. al.1994, Resistance associated point mutations in insecticide insensitive acetylcholinesterase. Proc. Natl. Acad. Sci. USA,91 (13):5922-5926.
    141. Nabeshima, T., Kozaki, T., Tomita, T., and Kono, Y.2003. An amino acid substitution on the second acetylcholinesterase in the pirimicarb-resistant strains of the peach potato aphid, Myzus persicae. Biochem Biophys Res Commun 307,15-22.
    142. Nagata T., Masuda T., Moriya S. Development of insecticide resistance in the brown planthopper, Nilaparvata lugens (Stal) (Homoptera:Delphacidae). Appl EntZool,1979,14(3):264-269.
    143.Nauen R., Strobel J., Tietjen K., Otsu Y., Erdelen C., Elbert A.1996, Aphicidal activity of imidacloprid against a tobacco feeding strain of Myzus persicae (Homoptera:Aphididae) from Japan closely related to Myzus nicotianae and highly resistance to carbamates and oraganophosphates. Bulletin of Entomological Research,86:165-171.
    144. Nauen R., Stumpf N., Elbert A.2002,Toxicological and mechanistic studies on neonicotinoid cross resistance in Q-type Bemisia tabaci (Hemiptera:Aleyrodidae). Pest Manag Sci,58:868-874.
    145. Nauen R., Elbert A. European monitoring of resistance to insecticides in Myzus persicae and Aphis gossypii (Hemiptera:Aphididae) with special reference to imidacloprid. Bulletin of Entomological Reseach,2003,93:47-54.
    146. Newcomb, R. D., Campbell, P. M., Ollis, D. L., Cheah, E., Russell, R. J., and Oakeshott, J. G.1997a. A single amino acid substitution converts a carboxylesterase to an organophosphorus hydrolase and confers insecticide resistance on a blowfly. Proc Natl Acad Sci U S A 94,7464-7468.
    147. Newcomb, R. D., Campbell, P. M., Russell, R. J., and Oakeshott, J. G.1997b. cDNA cloning, baculovirus-expression and kinetic properties of the esterase, E3, involved in organophosphorus resistance in Lucilia cuprina. Insect Biochem Mol Biol 27,15-25.
    148. Nikou, D., Ranson, H., and Hemingway, J.2003. An adult-specific CYP6 P450 gene is overexpressed in a pyrethroid-resistant strain of the malaria vector, Anopheles gambiae. Gene 318, 91-102.
    149. Oakeshott, J. G., Devonshire, A. L., Claudianos, C., Sutherland, T. D., Home, I., Campbell, P. M., Ollis, D. L., and Russell, R. J.2005. Comparing the organophosphorus and carbamate insecticide resistance mutations in cholin-and carboxyl-esterases. Chem Biol Interact 157,269-275.
    150. Ohkubo, Y., Ueta, A., Ando, N., Ito, T., Yamaguchi, S., Mizuno, K., Sumi, S., Maeda, T., Yamazaki, D., Kurono, Y., Fujimoto, S. and Togari, H. (2006) Novel mutations in the cytochrome P450 2C19 gene:a pitfall of the PCR-RFLP method for identifying a common mutation. J Hum Genet,51, 118-123.
    151. Oppenoorth, F. J., and van, A.1960. Allelic genes in the housefly producing modified enzymes that cause organophosphate resistance. Science 132,298-299.
    152. Oppenoorth F.J., Welling W.1976, Biochemistry and physiology of resistance Insecticide Biochemistry and Physiology. Wilkinson C Feds, Plenum Press, New York.507-551.
    153. Oppenoorth F.J.,1979, Glutathione-S-transferase and hydrolytic activity in a tetrachlorvinphos resistant strain of house fly and their influence on resistance. Pesticide Biochemistry and Physiology 176-178.
    154. Ordentlich, A., Barak, D., Kronman, C., Ariel, N., Segall, Y., Velan, B., and Shafferman, A.1995. Contribution of aromatic moieties of tyrosine 133 and of the anionic subsite tryptophan 86 to catalytic efficiency and allosteric modulation of acetylcholinesterase. J Biol Chem 270,2082-2091.
    155. Sironi, L., Ramelli, P., Williams, J.L. and Mariani, P. PCR-RFLP genotyping protocol for chicken Mx gene G/A polymorphism associated with the S631N mutation. Genet Mol Res,9,1104-1108.
    156. Palumbo JC, Horowitz AR, Prabhaker N,2001. Insecticidal control and resistance management for Bemisia tabaci. Crop protection 20:739-765.
    157. Paton, M. G., Karunaratne, S. H., Giakoumaki, E., Roberts, N., and Hemingway, J.2000. Quantitative analysis of gene amplification in insecticide-resistant Culex mosquitoes. Biochem J 346, 17-24.
    158. Prabhaker AW, Coudriet DL, Megerdick DE,1985. Insecticide resistance in the sweetpotato whitefly, Bemisia tabaci (Homoptera:Aleyrodidae).J Appl Entomol,103:447-451.
    159. Prabhaker N, Toscano NC, Castle SJ, et al.1997. Selection for imidacloprid resistance in silverleaf whiteflies from the Imperial Valley and development of a hydroponic bioassay for resistance monitoring. Pestic Sci.,51:419-428.
    160. Prabhaker N, Toscano NC, Henneberry TJ,1998. Evaluation of insecticide rotations and mixtures as resistance management strategies for Bemisia argentifolii (Homoptera:Aleyrodidae). J. Econ. Entomol.91:820-826.
    161. Prapanthadara, L. A., and Ketterman, A. J.1993. Qualitative and quantitative changes in glutathione S-transferases in the mosquito Anopheles gambiae confer DDT-resistance. Biochem Soc Trans 21, 304.
    162. Prapanthadara, L. A., Koottathep, S., Promtet, N., Hemingway, J., and Ketterman, A. J.1996. Purification and characterization of a major glutathione S-transferase from the mosquito Anopheles dirus (species B). Insect Biochem Mol Biol 26,277-285.
    163. Qiu B L, Ren S X, Wen S Y, et al.2006. Population differentiation of three biotypes of Bemisia tabaci in China by DNA polymorphism. Journal of South China Agricultural University,27:29-33.
    164. Qu, M. J., Han, Z. J., Xu, X. J., and Yue, L. N.2003. Triazophos resistance mechanisms in the rice stem borer (Chilo suppressalis Walker). Pestic Biochem Physiol 77,99-105.
    165. Radic, Z., Pickering, N. A., Vellom, D. C., Camp, S., and Taylor, P.1993. Three distinct domains in the cholinesterase molecule confer selectivity for acetyl-and butyrylcholinesterase inhibitors. Biochemistry 32,12074-12084.
    166. Radic, Z., Reiner, E., and Taylor, P.1991. Role of the peripheral anionic site on acetylcholinesterase: inhibition by substrates and coumarin derivatives. Mol Pharmacol 39,98-104.
    167. Rauch N., Nauen R. Biochemical markers linked to neonicotinoid cross-resistance in Bemisia tabaci (Hemiptera:Aleyrodidae). Arch Insect Biochem. Physiol.,2003,54:165-176.
    168. Rendic, S., and Di Carlo, F. J.1997. Human cytochrome P450 enzymes:a status report summarizing their reactions, substrates, inducers, and inhibitors. Drug Metab Rev 29,413-580.
    169. Roditakis E, Roditakis NE, Tsagkarakou A,2005. Insecticide resistance in Bemisia tabaci (Homoptera:Aleyrodidae) populations from Crete. Pest Management Science 61:577-582.
    170. Sabourault, C., Guzov, V. M., Koener, J. F., Claudianos, C., Plapp, F. W., Jr., and Feyereisen, R. 2001. Overproduction of a P450 that metabolizes diazinon is linked to a loss-of-function in the chromosome 2 ali-esterase (MdalphaE7) gene in resistant house flies. Insect Mol Biol 10,609-618.
    171. Shafferman, A., Velan, B., Ordentlich, A., Kronman, C., Grosfeld, H., Leitner, M., Flashner, Y., Cohen, S., Barak, D., and Ariel, N.1992. Substrate inhibition of acetylcholinesterase:residues affecting signal transduction from the surface to the catalytic center. EMBO J 11,3561-3568.
    172. Small G.J., Hemingway J.2000, Molecular characterization of the amplified carboxylesterase gene associated with organophosphorus insecticide resistance in the brown planthopper, Nilaparvata lugens. Insect Molecular Biology,9(6):647-653.
    173. Smmisaert, H. R.1964. Cholinesterase inhibition in spider mites susceptible and resistant to organophosphates. Science 143,129-131.
    174. Sun CN, Chen WL.1993, Carboxylesterase of susceptible and resistant brown planthopper. Resistance, Pest Management,5(2):9-10.
    175. Taylor, P., and Radic, Z.1994. The cholinesterases:from genes to proteins. Annu Rev Pharmacol Toxicol 34,281-320.
    176. Toscano N C, Prabhaker N, Castle S J, et al.2001.Inter-regional differences in baseline toxicity of Bemisia tabaci (Homoptera:Aleyrodidae) to two insect growth regulators, buprofezin and pyriproxyfen. J Econ Enotmol,94(6):1538-1546.
    177. Tomita, T., and Scott, J. G, 1995. cDNA and deduced protein sequence of CYP6D1:the putative gene for a cytochrome P450 responsible for pyrethroid resistance in house fly. Insect Biochem Mol Biol 25,275-283.
    178. Tranter B.C., Emden H.F.1984, Esterase variation in the brown planthopper Nilaparvata lugens and its involvement in resistance to organophosphorus insecticides. British Crop Production Conference,2:521-526.
    179. Tsagkarakou, A., Nikou, D., Roditakis, E., Sharvit, M., Morin, S. and Vontas, J. (2009) Molecular diagnostics for detecting pyrethroid and organophosphate resistance mutations in the Q biotype of the whitefly Bemisia tabaci (Hemiptera:Aleyrodidae). Pestic Biochem Phys,94,49-54.
    180. Valles S M, Woodson W D.2002. Insecticide susceptibility and detoxication enzyme activities among Coptotermes formosanus Shiraki workers sampled from different locations in New Orleans. Comp Biochem Physiol C Toxicol Pharmacol,131,469-476.
    181.Vaughan, A., Hawkes, N., and Hemingway, J.1997. Co-amplification explains linkage disequilibrium of two mosquito esterase genes in insecticide-resistant Culex quinquefasciatus. Biochem J 325,359-365.
    182. Villatte, F., and Bachmann, T. T.2002. How many genes encode cholinesterase in arthropods? Pesticide Biochem. Physiol 73,122-129.
    183. Vontas J, Small G, Hemingway J.2001. Glutathione S-transferases as antioxidant defence agents confer pyrethroid resistance in Nilaparvata lugens. Biochemical Journal,357,65.
    184. Vontas, J. G., Small, G. J., Nikou, D. C., Ranson, H., and Hemingway, J.2002. Purification, molecular cloning and heterologous expression of a glutathione S-transferase involved in insecticide resistance from the rice brown planthopper, Nilaparvata lugens. Biochem J 362,329-337.
    185. Walsh S, Dolden T, Moores G, Kristensen M, Lewis T, Devonshire A, Williamson M.2001. Identification and characterization of mutations in housefly (Musca domesticd) acetylcholinesterase involved in insecticide resistance. Biochemical Journal,359,175.
    186. Wang L, Wu Y.2007. Cross-resistance and biochemical mechanisms of abamectin resistance in the B-type Bemisia tabaci. Journal of Applied Entomology,131,98-103.
    187. Wei, S. H., Clark, A. G, and Syvanen, M.2001. Identification and cloning of a key insecticide-metabolizing glutathione S-transferase (MdGST-6A) from a hyper insecticide-resistant strain of the housefly Musca domestica. Insect Biochem Mol Biol 31,1145-1153.
    188. Weill M, Lutfalla G, Mogensen K, Chandre F, Berthomieu A, Berticat C, Pasteur N, Philips A, Fort P, Raymond M.2003. Comparative genomics:Insecticide resistance in mosquito vectors. Nature, 423,136-137.
    189. Zhu, F., Li, T., Zhang, L., and Liu, N.2008. Co-up-regulation of three P450 genes in response to permethrin exposure in permethrin resistant house flies, Musca domestica. BMC Physiol 8,18.
    190. Zhu K., Lee S, Clark J.1996. A point mutation of acetylcholinesterase associated with azinphosmethyl resistance and reduced fitness in Colorado potato beetle. Pesticide Biochemistry and Physiology,55,100-108.