鸭不同部位皮下脂肪组织发育差异研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
皮下脂肪组织是脂质沉积的主要部位,在稳定机体代谢平衡中起着重要作用。然而,皮下脂肪组织的整体发育规律缺乏系统的认识,不同部位皮下脂肪组织发育差异的原因也不明确。本研究以北京鸭为研究材料,首先,分别从组织TG沉积能力、脂肪细胞增殖和分化能力及脂滴发育能力来揭示皮下脂肪组织的整体发育规律;其次,通过采用短期禁食和静脉注射LPS建立诱导脂肪代谢异常的模型,初步探讨不同部位皮下脂肪组织发育差异的原因;第三,通过克隆与血管发育、TG水解酶代谢相关的ANGPTL3和ANGPTL4序列,探讨其表达量与不同部位皮下脂肪组织TG含量、脂肪细胞直径间的关系。取得的主要结果和结论如下:
     (1)1-8周龄肉鸭皮下脂肪组织的整体发育规律呈现为4周龄前脂肪组织的脂质沉积由脂肪细胞增殖和肥大共同作用,而4周龄后主要依赖于脂肪细胞的肥大。
     (2)肉鸭不同部位皮下脂肪组织的发育规律存在显著差异,主要体现在脂肪细胞增殖及脂质沉积能力(即脂肪细胞肥大、脂滴合成能力和组织TG含量)方面。其中,颈部皮下脂肪组织(NSF)具有较强的脂肪细胞增殖和脂滴合成能力,胸部皮下脂肪组织(CSF)及背部皮下脂肪组织(BSF)的脂滴合成能力相对较强,腹部皮下脂肪组织(ASF)和腿部皮下脂肪组织(LSF)分别在4-8周龄及3-4周龄时呈现出较强的脂肪细胞肥大和增殖能力。此外,BSF和LSF组织TG含量显著低于NSF, CSF和ASF。
     (3)短期禁食导致肉鸭脂质代谢异常,引起总TG、总TC、NEFA、VLDL、 HDL-C、LDL-C等参数及肝素后总LPL酶活性显著变化。
     (4)静脉注射LPS显著改变肉鸭生长性能和血脂代谢水平,诱使不同部位皮下脂肪组织TG沉积、脂肪细胞增殖与肥大及脂滴发育能力发生变化,这与TG水解酶类的调控有关。NSF中LPL酶活性显著升高,LPL基因mRNA表达水平出现了下调;CSF中LPL酶活性显著升高,LPL、ATGL、ADRP和PLIN基因的mRNA表达水平出现了下调;ASF中LPL、ATGL和PLIN基因mRNA表达水平均出现了下调;BSF中,LPL、ATGL、ADRP和PLIN基因mRNA表达水平均出现了下调;LSF中LPL、ADRP和PLIN基因的mRNA表达水平显著升高。
     (5)本研究成功克隆获得ANGPTL3和ANGPTL4基因部分序列,长度分别为1372bp和726bp。ANGPTL3和ANGPTL4在不同部位皮下脂肪组织中的发育性表达模式存在明显差异。其中,ANGPTL3表达水平与CSF中的细胞直径呈负相关,与NSF中的组织TG含量呈正相关,ANGPTL4表达水平与LSF中的组织TG含量呈正相关,初步证实两者均参与了肉鸭皮下脂肪组织的发育过程,且与不同部位皮下脂肪组织发育差异有关。
The subcutaneous adipose tissue is the main organ for lipid deposition and plays an important role in stabilizing metabolic balance. However, the developmental patterns of subcutaneous adipose tissue during Peking duck (Anas platyrhynchos) early development, as well as the reasons for regional differences were not well known. Therefore, we employed Peking duck as materials to investigate the characteristics of subcutaneous adipose tissue formation, and analysis the growing pattern of subcutaneous adipose tissue during duck early growing stages from week1to8, comparing the morphological characteristics and lipid contents in five regions of subcutaneous adipose tissue including neck area (NSF), chest area (CSF), lower abdomen area (ASF), back area (BSF) and leg area (LSF). The mRNA expressions of three molecular maker genes including47-kDa tail interacting protein (TIP47), adipose differentiation-related protein (ADRP) and Perilipin were also detected using quantitative real-time (qRT)-PCR method. In order to investigate the reasons for regional differences of subcutaneous adipose tissue, we analysis the lipid metabolic disorder by using fasting and LPS injection technique. We use RT-PCR method to clone partial cDNA of duck ANGPTL3and ANGPTL4, as well as to analysis the expressions of these genes during duck growth, to investigate correlations between the gene expressions and regional differences of subcutaneous adipose development. The main results of this study are as follows:
     (1) A combination of adipocyte hyperplasia and hypertrophy is mainly responsible for the development of duck adipose tissue before4weeks of age, after which adipose expansion is accomplished by adipocyte hypertrophy only.
     (2) There are many regional differences in adipocyte hyperplastic capacity, as well as fat storage capacities (capacities from adipocyte hypertrophy, lipid synthesis and lipid deposition). Adipocytes in NSF have a higher hyperplastic and lipogenic activity compared with these from other regions. Adipocytes in CSF also have a higher lipogenic activity than that in other regions during the early stage of development. Adipocytes in ASF have a higher hypertrophy capacity at week4to8. The greater fat storage capacity in NSF, CSF, ASF are observed compared with these in BSF, LSF at week1to8. In contrast, adipocytes in BSF region have a higher lipogenic activity than other regions during the early stage of development. Adipocytes in LSF region have a higher hyperplastic capacity at week3to4, a higher hypertrophy capacity at week4to8, and a higher metabolic activity at week3to5, whereas the lower performance in fat storage capacity.
     (3)12hours fasting could induce lipid metabolic disorder. The duck serum total TG, total TC, NEFA, VLDL, HDL-C, LDL-C levels and post-heparin plasma LPL activity showed significant change.
     (4) Intravenous injection of LPS may have an adverse effect on the duck growth performance and lipid metabolism and could induce regional differences of subcutaneous adipose tissue in fat storage capacity, adipocyte hyperplasia and hypertrophy activity, as well as lipid metabolic activity. TG hydrolases may take part in this metabolic process. Compared with control groups, NSF region in LPS injection groups had a higher LPL activity and lower LPL mRNA levels. CSF region had a higher LPL activity and lower LPL, ATGL, ADRP and PLIN mRNA levels. CSF region had a lower LPL, ATGL and PLIN mRNA levels. BSF region had a lower LPL, ATGL, ADRP and PLIN mRNA levels. However, LSF had a higher LPL, ATGL, ADRP and PLIN mRNA levels.
     (5) We have got partial cDNA sequences. Results showed that duck ANGPTL3contained1372bp nucleotide and ANGPTL4contained726bp nucleotide. There are significant differences in developmental expression patterns of ANGPTL3and ANGPTL4. The ANGPTL3mRNA levels were negatively correlated with adipocyte diameter in CSF and were positively correlated with the lipid content in NSF. The ANGPTL4mRNA levels were positively correlated with the lipid content in LSF. Results suggested that both ANGPTL3and ANGPTL4coule be related to the development of subcutaneous adipose tissue and contribute to regional differences during duck growth.
引文
[1]吕刚.不同饲喂方式下肉鸭体脂沉积规律及机制研究[D].雅安,四川农业大学.2011.
    [2]Guo L, Sun B, Shang Z, et.al. Comparison of adipose tissue cellularity in chicken lines divergently selected for fatness. Poult Sci.2011,90(9):2024-34.
    [3]Butterwith SC. Regulators of adipocyte precursor cells. Poult Sci 1997;76:118.
    [4]Hermier D, Quignard-Boulange A, Dugail I, et.al. Evidence of enhanced storage capacity in adipose tissue of genetically fat chickens. J Nutr.1989,119(10):1369-75.
    [5]赵小玲,刘益平,罗轶,等.鸡多个组织Perilipin基因表达的发育性变化与脂肪性状的相关研究[J].畜牧兽医学报.2009,40(2):149-154.
    [6]孙世铎,袁志发,宋世德,等.艾维茵肉鸡和黄羽肉鸡脂肪和肌肉细胞生长发育规律研究艾维茵肉鸡和黄羽肉鸡脂肪和肌肉细胞生长发育规律研究[J].畜牧兽医学报.2003,34(4):331-335.
    [7]Evans AJ. Changes in adipocyte size during post-embryonic growth in the female Aylesbury duck. Br Poult Sci.1972,13(6):615-8.
    [8]Foglia TA, Cartwright AL, Gyurik RJ, et.al. Fatty acid turnover rates in the adipose tissues of the growing chicken (Gallus domesticus). Lipids.1994,29(7):497-502.
    [9]张美莉,魏忠义.艾维茵肉种母鸡骨骼、肌肉、脂肪组织生长发育规律研究[J].安徽农业科学,2007,35(24):7480-7481.
    [10]李忠荣,刘景,叶鼎承等.河田鸡脂肪沉积规律的研究[J].福建农业学报,2010,25(2):135-141.
    [11]刘晓玲,文重远,李凝旭等.追赶性生长大鼠血清瘦素的变化及对内脏脂肪形成的影响[J].营养学报,2010,32(2):203-204.
    [12]Deaton J W. The effect of dietary energy level and broiler body weight on abdominal fat. Poultry Science,1983,62(12):2394-2397.
    [13]Crespo N. Dietary polyunsaturated fatty acids decrease fat deposition in separabie fat depots but not in the remainder carcass. Poultry Science,2002,81:512-518.
    [14]Villaverde C. Chemical composition and energy content of chickens in response to different levels of dietary polyunsaturated fatty acids. Archives of Animal Nutrition,2005,59(4):281-292.
    [15]Villa B, Esteve-Garcia E. Studies of acid oils and fatty acid for chickens. British Poultry Science,1996,37:105-117.
    [16]胡骁飞,魏凤仙,呙于明.脂多糖(LPS)刺激对肉仔鸡生产性能及肌肉品质影响[J].中国农业大学学报.2011,16(1):60-65.
    [17]董晓玲,刘国华,蔡辉益,等.LPS诱导的慢性免疫应激对肉仔鸡肉品质的影响.第二届全国家禽营养与饲料科技研讨会论文集.2007.
    [18]BJ Tan, S Ohtani. Effect of Different Early Feed Restriction Regimens on Performance, Carcass Composition, and Lipid Metabolism in Male Ducks. Animal Science Journal.2000,71(6): 586-593.
    [19]连涂发.任饲与禁食情况下菜鸭之脂质代谢[学位论文].台湾,国立中兴大学,1999.
    [20]Y MMA-R. Gorging and plasma HDL-cholesterol--the Ramadan model. Eur J Clin Nutr.1998, 52(2):127-130.
    [21]Lamine F, Bouguerra R, Jabrane J, et.al. Food intake and high density lipoprotein cholesterol levels changes during ramadan fasting in healthy young subjects. Tunis Med.2006,84(10): 647-50.
    [22]陈小军.血管生成素样蛋白促羊妊娠毒血症形成及药物调控研究.[D].湖南农业大学2012.
    [23]Aksungar FB, Topkaya AE, Akyildiz M.Interleukin-6, C-reactive protein and biochemical parameters during prolonged intermittent fasting. Ann Nutr Metab.2007,51(1):88-95.
    [24]Dikensoy E, Balat O, Cebesoy B, et.al. The effect of Ramadan fasting on maternal serum lipids, cortisol levels and fetal development. Arch Gynecol Obstet.2009,279(2):119-23.
    [25]Roky R, Houti I, Moussamih S, et.al. Physiological and chronobiological changes during Ramadan intermittent fasting. Ann Nutr Metab.2004,48(4):296-303.
    [26]Piya MK, McTernan PG, Kumar S. Adipokine inflammation and insulin resistance:the role of glucose, lipids and endotoxin. J Endocrinol.2013,216(1):T1-T15.
    [27]Picard F, Arsenijevic D, Richard D, et.al. Responses of adipose and muscle lipoprotein lipase to chronic infection and subsequent acute lipopolysaccharide challenge. Clin Diagn Lab Immunol. 2002,9(4):771-6.
    [28]Osto M, Zini E, Franchini M, et.al. Subacute endotoxemia induces adipose inflammation and changes in lipid and lipoprotein metabolism in cats. Endocrinology.2011,152(3):804-15
    [29]Kern PA, Saghizadeh M, Ong JM, et.al. The expression of tumor necrosis factor in human adipose tissue. Regulation by obesity, weight loss, and relationship to lipoprotein lipase. J Clin Invest.1995,95(5):2111-9.
    [30]Kawakami M, Cerami A. Studies of endotoxin-induced decrease in lipoprotein lipase activity. J Exp Med.1981,154(3):631-9.
    [31]I. Gouni KO, J. Etienne, L. Chan. Endotoxin-induced hypertriglyceridemia is mediated by suppression of lipoprotein lipase at a post-transcriptional level. J. Lipid Res.1993,34:139-146.
    [32]Harada N, Kusuyama A, Morishima M, et.al. Bezafibrate improves bacterial lipopolysaccharide-induced dyslipidemia and anorexia in rats. Metabolism.2007,56(4): 517-22.
    [33]齐仕立,解芸非,孙婵,等.大肠埃希菌LPS感染对乌鸡脂肪代谢及相关调控基因表达的影响[J].西北农林科技大学学报:自然科学版.2011,39(8):1-8.
    [34]Zu L, He J, Jiang H, et.al. Bacterial endotoxin stimulates adipose lipolysis via toll-like receptor 4 and extracellular signal-regulated kinase pathway. J Biol Chem.2009,284(9):5915-26.
    [35]Spitzer JA, Fish RE. Lipolytic patterns in isolated adipocytes of continuously endotoxemic rats. Circ Shock.1986,18(1):21-9.
    [36]Spitzer JA, Deaciuc IV. Endotoxicosis modulates cytosolic free calcium and basal and ACTH-stimulated lipolysis in rat adipocytes. Cell Calcium.1990,11(6):405-11.
    [37]Feingold KR, Marshall M, Gulli R, et.al. Effect of endotoxin and cytokines on lipoprotein lipase activity in mice. Arterioscler Thromb.1994,14(11):1866-72.
    [38]Ajuwon KM, Spurlock ME. Direct regulation of lipolysis by interleukin-15 in primary pig adipocytes. Am J Physiol Regul Integr Comp Physiol.2004,287(3):R608-11.
    [39]Arner P. Human fat cell lipolysis:biochemistry, regulation and clinical role. Best Pract Res Clin Endocrinol Metab.2005,19(4):471-82.
    [40]Fried SK, Bunkin DA, Greenberg AS. Omental and subcutaneous adipose tissues of obese subjects release interleukin-6:depot difference and regulation by glucocorticoid. J Clin Endocrinol Metab.1998,83(3):847-50.
    [41]Khatchadourian A, Bourque SD, Richard VR, et.al. Dynamics and regulation of lipid droplet formation in lipopolysaccharide (LPS)-stimulated microglia. Biochim Biophys Acta.2012, 1821(4):607-17.
    [42]Feingold KR, Kazemi MR, Magra AL, et.al. ADRP/ADFP and Mall expression are increased in macrophages treated with TLR agonists. Atherosclerosis.2010,209(1):81-8.
    [43]Penfornis P, Marette A. Inducible nitric oxide synthase modulates lipolysis in adipocytes. J Lipid Res.2005,46(1):135-42.
    [44]Ding F, Pan Z, Kou J, et.al. De novo lipogenesis in the liver and adipose tissues of ducks during early growth stages after hatching. Comp Biochem Physiol B Biochem Mol Biol 2012,163(l):154-60.
    [45]Hausman GJaR, R.L. Adipose tissue angiogenesis. J. Anim. Sci.204,82:925-934.
    [46]Nishimura S MI, Nagasaki M, Hosoya Y, et.al. Adipogenesis in obesity requires close interplay between differentiating adipocytes, stromal cells, and blood vessels. Diabetes.2007,56: 11517-1526.
    [47]Daquinag AC ZY, Kolonin MG. Vascular targeting of adipose tissue as an anti-obesity approach. Trends Pharmacol Sci.2011,32(5):300-7.
    [48]Gibbons GH, Dzau VJ. The emerging concept of vascular remodeling. N Engl J Med.1994, 330(20):1431-8.
    [49]Pang C GZ, Yin J, Zhang J, et.al. Macrophage infiltration into adipose tissue may promote angiogenesis for adipose tissue remodeling in obesity. Endocrinol Metab.2008,295(2): E313-22.
    [50]Gesta S, Tseng YH, Kahn CR. Developmental origin of fat:tracking obesity to its source. Cell. 2007,131(2):242-56.
    [51]Gregoire FM, Smas CM, Sul HS. Understanding adipocyte differentiation. Physiol Rev.1998, 78(3):783-809.
    [52]Duncan RE, Ahmadian M, Jaworski K, et.al. Regulation of lipolysis in adipocytes. Annu Rev Nutr.2007,27:79-101.
    [53]Zechner R, Strauss JG, Haemmerle G, et.al. Lipolysis:pathway under construction. Curr Opin Lipidol.2005,16(3):333-40.
    [54]Brown DA. Lipid droplets:proteins floating on a pool of fat. Curr Biol.2001,11(11):R446-9.
    [55]Murphy DJ, Vance J. Mechanisms of lipid-body formation. Trends Biochem Sci.1999,24(3): 333-40.
    [56]Brasaemle DL, T. Barber, T. Barber, et.al. Adipose differentiation-related protein is an ubiquitously expressed lipid storage droplet-associated protein. J Lipid Res.1997b,38(11): 2249-2263.
    [57]Jiang HP, Serrero G. Isolation and characterization of a full-length cDNA coding for an adipose differentiation-related protein. Proc Natl Acad Sci U S A.1992,89(17):7856-60.
    [58]Zimmermann R SJ, Haemmerle G, Schoiswohl G, et.al. Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase. Science.2004,306:1383-6.
    [59]Haemmerle G, Zimmermann R, Hayn M, et.al. Hormone-sensitive lipase deficiency in mice causes diglyceride accumulation in adipose tissue, muscle, and testis. J Biol Chem.2002, 277(7):4806-15.
    [60]Karlsson M, Contreras JA, Hellman U, et.al. cDNA cloning, tissue distribution, and identification of the catalytic triad of monoglyceride lipase. Evolutionary relationship to esterases, lysophospholipases, and haloperoxidases. J Biol Chem.1997,272(43):27218-23.
    [61]Sato K, Seol HS, Kamada T. Tissue distribution of lipase genes related to triglyceride metabolism in laying hens (Gallus gallus). Comp Biochem Physiol B Biochem Mol Biol.2010, 155(1):62-6.
    [62]Bulankina AV, Deggerich A, Wenzel D, et.al. TIP47 functions in the biogenesis of lipid droplets. J Cell Biol.2009,185(4):641-55.
    [63]Hickenbottom SJ, Kimmel AR, Londos C, et.al. Structure of a lipid droplet protein; the PAT family member TIP47. Structure.2004,12(7):1199-207.
    [64]Aivazian D SRL, Pfeffer S. TIP47 is a key effector for Rab9 localization. J Cell Biol.2006, 173(6):917-926.
    [65]Zhao X, Zhu Q, Wang Y, et.al. Tissue-specific expression of the chicken adipose differentiation-related protein (ADP) gene. Mol Biol Rep.2010,37(6):2839-45.
    [66]Sztalryd C, Bell M, Lu X, et.al. Functional compensation for adipose differentiation-related protein (ADFP) by Tip47 in an ADFP null embryonic cell line. J Biol Chem.2006,281(45): 34341-8.
    [67]Chang BH, Li L, Paul A, et.al. Protection against fatty liver but normal adipogenesis in mice lacking adipose differentiation-related protein. Mol Cell Biol.2006,26(3):1063-76.
    [68]Listenberger LL, Ostermeyer-Fay AG, Goldberg EB, et.al. Adipocyte differentiation-related protein reduces the lipid droplet association of adipose triglyceride lipase and slows triacylglycerol turnover. J Lipid Res.2007,48(12):2751-61.
    [69]Ducharme NA, Bickel PE. Lipid droplets in lipogenesis and lipolysis. Endocrinology.2008, 149(3):942-9.
    [70]Tansey JT, Huml AM, Vogt R, et.al. Functional studies on native and mutated forms of perilipins. A role in protein kinase A-mediated lipolysis of triacylglycerols. J Biol Chem.2003, 278(10):8401-6.
    [71]Souza SC, de Vargas LM, Yamamoto MT, et.al. Overexpression of perilipin A and B blocks the ability of tumor necrosis factor alpha to increase lipolysis in 3T3-L1 adipocytes. J Biol Chem. 1998,273(38):24665-9.
    [72]S.C. Souza KVM, L. Liscum, P. Lien, et.al. Modulation of hormonesensitive lipase and protein kinase A-mediated lipolysis by perilipin A in an adenoviral reconstituted system. J. Biol. Chem. 2002,277:8267-8272.
    [73]Brasaemle DL, Rubin B, Harten IA, et.al. Perilipin A increases triacylglycerol storage by decreasing the rate of triacylglycerol hydrolysis. J Biol Chem.2000,275(49):38486-93.
    [74]Tansey JT, Sztalryd C, Gruia-Gray J, et.al. Perilipin ablation results in a lean mouse with aberrant adipocyte lipolysis, enhanced leptin production, and resistance to diet-induced obesity. Proc Natl Acad Sci U S A.2001,98(11):6494-9.
    [75]Martinez-Botas J, Anderson JB, Tessier D, et.al. Absence of perilipin results in leanness and reverses obesity in Lepr(db/db) mice. Nat Genet.2000,26(4):474-9.
    [76]Brasaemle DL, Subramanian V, Garcia A, et.al. Perilipin A and the control of triacylglycerol metabolism. Mol Cell Biochem.2009,326(1-2):15-21.
    [77]Miyoshi H, Perfield JW,2nd, Souza SC, et.al. Control of adipose triglyceride lipase action by serine 517 of perilipin A globally regulates protein kinase A-stimulated lipolysis in adipocytes. J Biol Chem.2007,282(2):996-1002.
    [78]Marcinkiewicz A, Gauthier D, Garcia A, et.al. The phosphorylation of serine 492 of perilipin a directs lipid droplet fragmentation and dispersion. J Biol Chem.2006,281(17):11901-9.
    [79]Cheng CF, Oosta GM, Bensadoun A, et.al. Binding of lipoprotein lipase to endothelial cells in culture. J Biol Chem.1981,256:12893.
    [80]Davies BS BA, Barnes RH 2nd, Tu Y, et.al. GPIHBP1 is responsible for the entry of lipoprotein lipase into capillaries. Cell Metab.2010,12:42-52.
    [81]Lookene A, Chevreuil O, Ostergaard P, et.al. Interaction of lipoprotein lipase with heparin fragments and with heparan sulfate:stoichiometry, stabilization, and kinetics. Biochemistry. 1996,35(37):12155-63.
    [82]Lookene A, Savonen R, Olivecrona G.Interaction of lipoproteinsg with heparan sulfate proteoglycans and with lipoprotein lipase. Studies by surface plasmon resonance technique. Biochemistry.1997,36(17):5267-75.
    [83]Semenkovich CF, M. Wims, L. Noe, et.al. Insulin regulation of lipoprotein lipase activity in 3T3-L1 adipocytes is mediated at posttranscriptional and posttranslational levels. J. Biol. Chem. 1989,264:9030-9038.
    [84]Wang H, Eckel RH. Lipoprotein lipase:from gene to obesity. Am J Physiol Endocrinol Metab. 2009,297(2):E271-88.
    [85]Preiss-Landl K, Zimmermann R, Hammerle G, et.al. Lipoprotein lipase:the regulation of tissue specific expression and its role in lipid and energy metabolism. Curr Opin Lipidol.2002,13(5): 471-81.
    [86]Villena JA, Roy S, Sarkadi-Nagy E, et.al. Desnutrin, an adipocyte gene encoding a novel patatin domain-containing protein, is induced by fasting and glucocorticoids:ectopic expression of desnutrin increases triglyceride hydrolysis. J Biol Chem.2004,79(45):47066-75.
    [87]Jenkins CM MD, Yan W, Sims HF, et.al. Identification, cloning, expression, and purification of three novel human calciumindependent phospholipase A2 family members possessing triacylglycerol lipase and acylglycerol transacylase activities. J Biol Chem.2004,279:J Biol Chem.
    [88]Osuga J IS, Oka T, Yagyu H, et.al. Targeted disruption of hormone-sensitive lipase results in male sterility and adipocyte hypertrophy, but not in obesity. Proc Natl Acad Sci USA.2000,97: 787-92.
    [89]Wilson PA, Gardner SD, Lambie NM, et.al. Characterization of the human patatin-like phospholipase family. J Lipid Res.2006,47(9):1940-9.
    [90]Haemmerle G, Lass A, Zimmermann R, et.al. Defective lipolysis and altered energy metabolism in mice lacking adipose triglyceride lipase. Science.2006,312(5774):734-7.
    [91]Fischer J LC, Morava E, Mussini JM, et.al. The gene encoding adipose triglyceride lipase (PNPLA2) is mutated in neutral lipid storage disease with myopathy. Nat Genet.2007,39: 28-30.
    [92]Schweiger M, Lass A, Zimmermann R, et.al. Neutral lipid storage disease:genetic disorders caused by mutations in adipose triglyceride lipase/PNPLA2 or CGI-58/ABHD5. Am J Physiol Endocrinol Metab.2009,297(2):E289-96.
    [93]Schweiger M, Schreiber R, Haemmerle G, et.al. Adipose triglyceride lipase and hormone-sensitive lipase are the major enzymes in adipose tissue triacylglycerol catabolism. J Biol Chem.2006,281(52):40236-41.
    [94]Davis S PN, Aldrich TH, Maisonpierre PC, et.al. Angiopoietins have distinct modular domains essential for receptor binding, dimerization and superclustering. Nat Struct Biol.2003,10(1): 38-40.
    [95]Fu Z YF, Abou-Samra AB, Zhang R. Lipasin, thermoregulated in brown fat, is a novel but atypical member of the angiopoietin-like protein family. Biochem Biophys Res Commun.2013, 430(3):1126-31.
    [96]Mattijssen F, Kersten S. Regulation of triglyceride metabolism by Angiopoietin-like proteins. Biochim Biophys Acta.2011,1821(5):782-9.
    [97]Camenisch G, Pisabarro MT, Sherman D, et.al. ANGPTL3 stimulates endothelial cell adhesion and migration via integrin alpha vbeta 3 and induces blood vessel formation in vivo. J Biol Chem.2002,277(19):17281-90.
    [98]Tabata M, Kadomatsu T, Fukuhara S, et.al. Angiopoietin-like protein 2 promotes chronic adipose tissue inflammation and obesity-related systemic insulin resistance. Cell Metab.2009, 10(3):178-88.
    [99]Zhang Y HX, Tian R, Wei W, et.al. Angiopoietinrelated growth factor (AGF) supports adhesion, spreading, and migration of keratinocytes, fibroblasts, and endothelial cells through interaction with RGD-binding integrins.. Biochem Biophys Res Commun.2006,347(1):100-108.
    [100]Zhu P, Tan MJ, Huang RL, et al. Angiopoietin-like 4 protein elevates the prosurvival intracellular O2(-):H2O2 ratio and confers anoikis resistance to tumors. Cancer Cell.2011, 19(3):401-15.
    [101]Feng SQ, Chen XD, Xia T, et.al. Cloning, chromosome mapping and expression characteristics of porcine ANGPTL3 and-4. Cytogenet Genome Res.2006,114(1):44-9.
    [102]Romeo S, Yin W, Kozlitina J, et.al. Rare loss-of-function mutations in ANGPTL family members contribute to plasma triglyceride levels in humans. J Clin Invest.2009,119(1):70-9.
    [103]Sato K, Seol HS, Kamada T, et.al Molecular characterization and expression of angiopoietin-like protein 3 in the chicken, Gallus gallus. Gen Comp Endocrinol.2008,158(1): 102-7.
    [104]Niki D, Katsu K, Yokouchi Y. Ontogeny of angiopoietin-like protein 1,2,3,4,5, and 7 genes during chick embryonic development. Dev Growth Differ.2009,51(9):821-32.
    [105]F. Zandbergen SvD, M. Muller, S. Kersten. Fasting-induced adipose factor/angiopoietin-like protein 4:a potential target for dyslipidemia? Future Lipidol.2006,1: 227-236.
    [106]Kersten S, Lichtenstein L, Steenbergen E, et.al. Caloric restriction and exercise increase plasma ANGPTL4 levels in humans via elevated free fatty acids. Arterioscler Thromb Vasc Biol. 2009,29(6):969-74.
    [107]M. Ono TS, M. Shimamura, K. Yoshida, et.al. Protein region important for regulation of lipid metabolism in angiopoietin-like 3 (ANGPTL3):ANGPTL3 is cleaved and activated in vivo. J. Biol. Chem.2003,278:41804-41809.
    [108]Jin W, Wang X, Millar JS, et.al. Hepatic proprotein convertases modulate HDL metabolism. Cell Metab.2007,6(2):129-36.
    [109]Ge H, Yang G, Huang L, etal. Oligomerization and regulated proteolytic processing of angiopoietin-like protein 4. J Biol Chem.2004,279(3):2038-45.
    [110]W. Yin SR, S. Chang, N.V. Gmhin, et al. Genetic variation in ANGPTL4 provides insights into protein processing and function. J. Biol. Chem.2009,284:13213-13222.
    [111]Chomel C, Cazes A, Faye C, et al. Interaction of the coiled-coil domain with glycosaminoglycans protects angiopoietin-like 4 from proteolysis and regulates its antiangiogenic activity. FASEB J.2009,23(3):940-9.
    [112]Yang YH, Wang Y, Lam KS, et al. Suppression of the Raf/MEK/ERK signaling cascade and inhibition of angiogenesis by the carboxyl terminus of angiopoietin-like protein 4. Arterioscler Thromb Vasc Biol.2008,28(5):835-40.
    [113]Adair TH, Gay WJ, Montani JP. Growth regulation of the vascular system:evidence for a metabolic hypothesis. Am J Physiol.1990,259(3 Pt 2):R393-404.
    [114]Gentil C, Le Jan S, Philippe J, et.al. Is oxygen a key factor in the lipodystrophy phenotype? Lipids Health Dis.2006,28(5):27.
    [115]Le Jan S, Amy C, Cazes A, et.al. Angiopoietin-like 4 is a proangiogenic factor produced during ischemia and in conventional renal cell carcinoma. Am J Pathol.2003,162:1521-1528.
    [116]Ito Y, Oike Y, Yasunaga K, et.al. Inhibition of angiogenesis and vascular leakiness by angiopoietin-related protein 4. Cancer Res.2003,63(20):6651-7.
    [117]Bourcier MN, Sukhova GK, Libby P, et.al. PPAR gamma activation in human endothelial cells increases plasminogen activator inhibitor type-1 expression:PPAR gamma as a potential mediator in vascular diseasepotential mediator in vascular disease. Arterioscler Thromb Vasc Biol.1999,19:546-551.
    [118]Varet J, Vincent L, Mirshahi P, et.al. Fenofibrate inhibits angiogenesis in vitro and in vivo. Cell Mol Life Sci.2003,60(4):810-9.
    [119]Xin X, Yang S, Kowalski J, et.al. Peroxisome proliferator-activated receptor gamma ligands are potent target of angiogenesis in vitro and in vivo. J Biol Chem.1999,13:9116-9119.
    [120]Cazes A, Galaup A, Chomel C, et.al. Extracellular matrix-bound angiopoietinlike 4 inhibits endothelial cell adhesion, migration, and sprouting and alters actin cytoskeleton. Circ Res.2006, 99:1207-1215.
    [121]Ge H, Yang G, Huang L, et.al. Oligomerization and regulated proteolytic processing of angiopoietin-like protein 4. J Biol Chem.2004,279(3):2038-45.
    [122]Koishi R, Ando Y, Ono M, et.al. Angptl3 regulates lipid metabolism in mice. Nat Genet.2002, 30(2):151-7.
    [123]Shimizugawa T OM, Shimamura M, Yoshida K, et.al. ANGPTL3 decreases very low density lipoprotein triglyceride clearance by inhibition of lipoprotein lipase. J Biol Chem.2002, 277(37):33742-33748.
    [124]Koster A, Chao YB, Mosior M, et.al. Transgenic angiopoietin-like (angptl)4 overexpression and targeted disruption of angptl4 and angpt13:regulation of triglyceride metabolism. Endocrinology 2005,146(11):4943-50.
    [125]Liu J AH, Rader DJ, Jin W. Angiopoietin-like protein 3 inhibits lipoprotein lipase activity through enhancing its cleavage by proprotein convertases. J Biol Chem.2010,285(36): 27561-27570.
    [126]Shan L YX, Liu Z, Hu Y, et.al. The angiopoietin-like proteins ANGPTL3 and ANGPTL4 inhibit lipoprotein lipase activity through distinct mechanisms. J Biol Chem.2009,284(3): 1419-1424.
    [127]Yoshida K, Shimizugawa T, Ono M, et.al. Angiopoietin-like protein 4 is a potent hyperlipidemia-inducing factor in mice and inhibitor hyperlipidemia-inducing factor in mice and inhibitor. J Lipid Res.2002,43(11):1770-1772.
    [128]Lichtenstein L, Berbee JF, van Dijk SJ, et.al. Angptl4 upregulates cholesterol synthesis in liver via inhibition of LPL-and HL-dependent hepatic cholesterol uptake. Arterioscler Thromb Vasc Biol.2007,27(11):2420-7.
    [129]Sukonina V, Lookene A, Olivecrona T, et.al. Angiopoietin-like protein 4 converts lipoprotein lipase to inactive monomers and modulates lipase activity in adipose tissue. Proc Natl Acad Sci USA.2006,103(46):17450-5.
    [130]Yau MH WY, Lam KS, Zhang J, et.al. A highly conserved motif within the NH2-terminal coiled-coil domain of angiopoietin-like protein 4 confers its inhibitory effects on lipoprotein lipase by disrupting the enzyme dimerization. J Biol Chem.2009,284(18):11942-11952.
    [131]Desai U LE, Chung K, Gao C, et.al. Lipidlowering effects of anti-angiopoietin-like 4 antibody recapitulate the lipid phenotype found in angiopoietin-like 4 knockout mice. Proc Natl Acad Sci USA.2007,104(28):11766-11771.
    [132]Kathiresan S MO, Guiducci C, Surti A, et.al. Six new loci associated with blood lowdensity lipoprotein cholesterol, high-density lipoprotein cholesterol or triglycerides in humans. Nat Genet.2008,40(2):189-197.
    [133]Teslovich TM, Musunuru K, Smith AV, et.al. Biological, clinical and population relevance of 95 loci for blood lipids. Nature.2010,466(7307):707-13.
    [134]Willer CJ SS, Jackson AU, Scuteri A, et.al. Newly identified loci that influence lipid concentra and risk of coronary artery disease. Nat Genet.2008,40(2):161-169.
    [135]Hegele RA, Ban MR, Hsueh N, et.al. A polygenic basis for four classical Fredrickson hyperlipoproteinemia phenotypes that are characterized by hypertriglyceridemia. Hum Mol Genet.2009,18(21):4189-94.
    [136]Minicocci I, Montali A, Robciuc MR, et.al. Mutations in the ANGPTL3 gene and familial combined hypolipidemia:a clinical and biochemical characterization. J Clin Endocrinol Metab. 2012,97(7):E1266-75.
    [137]Romeo S PL, Fu Y, Boerwinkle E, et.al. Population-based resequencing of ANGPTL4 uncovers variations that reduce triglycerides and increase HDL. Nat Genet.2007,39(4): 513-516.
    [138]Nettleton JA, Volcik KA, Demerath EW, et.al. Longitudinal changes in triglycerides according to ANGPTL4[E40K] genotype and longitudinal body weight change in the atherosclerosis risk in communities study.Ann Epidemiol.2008,18(11):842-6.
    [139]Talmud PJ, Smart M, Presswood E, et.al. ANGPTL4 E40K and T266M:effects on plasma triglyceride and HDL levels, postprandial responses, and CHD risk. Arterioscler Thromb Vase Biol.2008,28:2319.
    [140]Shimamura M MM, Kobayashi S, Ando Y, et.al. Angiopoietin-like protein 3, a hepatic secretory factor, activates lipolysis in adipocytes. Biochem Biophys Res Commun.2003,301(2): 604-609.
    [141]Gibbons GF IK, Pease RJ. Mobilisation of triacylglycerol stores. Biochim Biophys Acta.2000, 1483(1):37-57.
    [142]MR T. Diabetic dyslipidaemia:from basic research to clinical practice. Diabetologia.2003, 46(6):733-749.
    [143]Gray NE LL, Yang K, Zhou AY, et.al. Angiopoietin-like 4 (Angpt14) is a physiological mediator of intracellular lipolysis in murine Adipocytes. J Biol Chem.2012,287(11): 8444-8456.
    [144]Kim HK YB, Shin MS, Namkoong C, et.al. Hypothalamic Angptl4/Fiaf is a novel regulator of food intake and body weight. Diabetes.2010,59(11):2772-2780.
    [145]Yoon JC CT, Rosen ED, Dussault B, et.al. Peroxisome proliferatoractivated receptor gamma target gene encoding a novel angiopoietin-related protein associated with adipose differentiation. Mol Cell Biol.2000,20(14):5343-5349.
    [146]Cahaner A NZ, Nir I. Weight and fat content of adipose and nonadipose tissues in broilers selected for or against adipose tissue. Poultry Science.1986,65:215-222.
    [147]Richard F H LQB, Tourallce C. Selecting broilers for low or high abdominal fat Distribution of carcass fat and quality of meat. British Poultry Science.1983,24:511-516.
    [148]顾志良,赵万里,周勤宣.肉鸡腹脂与皮下脂肪、肌脂率、肝脂率的关系[J].中国家禽.1994.3:27-29.
    [149]‘宁中华,李藏兰,王忠,等.北京鸭部分组织早期生长规律的研究[J].中国畜牧杂志.1998,34(5):13-]5.
    [150]Bochno R, Brzozowski W, Murawska D. Age-related changes in the distribution of lean, fat with skin and bones in duck careases. Br Poult Sci.2005,46(2):199-203
    [151]Bochno R, Murawska D, Brzostowska U. Age-related changes in the distribution of lean fat with skin and bones in goose carcasses. Poult Sci.2006,85(11):1987-91.
    [152]C. BS. Avian adipose tissue:Growth and metabolism [A]. Leanness in Domestic Birds [C]. 1988:203-231.
    [153]周长海,王淑杰,田中桂一,等.肉鸭和肉鸡脂肪酸及脂类合成能的对比研究[J].营养学报.2006,28(1):87-88.
    [154]张军,龚道清,段修军,等.高邮鸭体脂沉积规律的研究[J].江苏农业研究.2001,22(4):39-42.
    [155]Hausman DB, DiGirolamo M, Bartness TJ, et.al. The biology of white adipocyte proliferation. Obes Rev.2001,2(4):239-54.
    [156]Nakajima 1, Oe M, Ojima K, et.al. Cellularity of developing subcutaneous adipose tissue in Landrace and Meishan pigs:adipocyte size differences between two breeds. Anim Sci J.2011, 82(1):144-9.
    [157]Shadan S. Obesity:what's your fat-cell allowance? Nature.2008,453(7192):169.
    [158]Arimura N, Horiba T, Imagawa M, et.al. The peroxisome proliferator-activated receptor gamma regulates expression of the perilipin gene in adipocytes. J Biol Chem.2004,279(11): 10070-6.
    [159]Kotokorpi P VN, Ellis E, Gustafsson JA, et.al. The human ADFP gene is a direct liver-X-receptor (LXR) target gene and differentially regulated by synthetic LXR ligands. Mol Pharmacol.2010,77(1):79-86.
    [160]Magnusson B AL, Bostr?m P, Ruiz M, et.al. Adipocyte differentiation-related protein promotes fatty acid storage in cytosolic triglycerides and inhibits secretion of very low-density lipoproteins. Arterioscler Thromb Vasc Biol.2006,26(7):1566-71.
    [161]Ohoka N KS, Takahashi Y, Hayashi H, et.al. The orphan nuclear receptor RORalpha restrains adipocyte differentiation through a reduction of C/EBPbeta activity and perilipin gene expression. Mol Endocrinol.2009,23(6):759-71.
    [162]Shimizu M, Akter MH, Emi Y, et al. Peroxisome proliferator-activated receptor subtypes differentially cooperate with other transcription factors in selective transactivation of the perilipin/PEX11 alpha gene pair. J Biochem.2006,139(3):563-73.
    [163]Targett-Adams P MM, Ehrenborg E, Gustafsson MC, et.al. A PPAR response element regulates transcription of the gene for human adipose differentiation-related protein. Biochim Biophys Acta.2005:95-104.
    [164]Yamaguchi T ON, Matsushita S, Osumi T. CGI-58 interacts with perilipin and is localized to lipid droplets. Possible involvement of CGI-58 mislocalization in Chanarin-Dorfman syndrome. J Biol Chem.2004,279(29):30490-7.
    [165]Yamaguchi T ON, Omukae A, Osumi T. Analysis of interaction partners for perilipin and ADRP on lipid droplet. Mol Cell Biochem.2006,284(1-2):167-73.
    [166]Merkley JW, Cartwright AL. Adipose tissue deposition and cellularity in cimaterol-treated female broilers. Poult Sci.1989,68(6):762-70.
    [167]Ntambi JM, Young-Cheul K. Adipocyte differentiation and gene expression. J Nutr.2000, 130(12):3122S-3126S.
    [168]Prins JB, O'Rahilly S. Regulation of adipose cell number in man. Clin Sci (Lond) 1997;92:3.
    [169]Cianzio DS, Topel DG, Whitehurst GB, et al. Adipose tissue growth and cellularity:changes in bovine adipocyte size and number. J Anim Sci.1985,60(4):970-6.
    [170]Nellemann B, Gormsen LC, Christiansen JS, et.al. Postabsorptive VLDL-TG fatty acid storage in adipose tissue in lean and obese women. Obesity (Silver Spring).2010,18(7):1304-11.
    [171]Tchernof A, Belanger C, Morisset AS, et.al. Regional differences in adipose tissue metabolism in women:minor effect.of obesity and body fat distribution.Diabetes.2006,55(5):1353-60.
    [172]Anderson DB, R. G. Kauffman, and L. L. Kastenschmidt. Lipogenic enzyme activities and cellularity of porcine adipose tissue from various anatomical locations. J Lipid Res.1972,13(5): 593-599.
    [173]Miyoshi H, Souza SC, Zhang HH, et.al. Perilipin promotes hormone-sensitive lipase-mediated adipocyte lipolysis via phosphorylation-dependent and -independent mechanisms. J Biol Chem. 2006,281(23):15837-44.
    [174]林丽超,黄得纯,刘绍扬,等.仙湖肉鸭不同吕系体脂性状和血脂指标的比较分析[J].江苏农业科学.2011,39(3):2011.
    [175]王海威,王启贵,王守志,等.肉鸡高、低脂系体脂性状和血清生化指标的比较分析[J].东北农业大学学报.2009,40(11):76-80.
    [176]Despres JP, Moorjani S, Tremblay A, et.al. Relation of high plasma triglyceride levels associated with obesity and regional adipose tissue distribution to plasma lipoprotein-lipid composition in premenopausal women. Clin Invest Med.1989,12(6):374-80.
    [177]柯斌,秦鉴,张俊杰.短期禁食对大鼠生理生化指标的影响[J].时珍国医国药.2011,22(11):2778-2780.
    [178]F. Zandbergen, E. van Straten, W.Wahli, et.al. The fasting-induced adipose factor/angiopoietin-like protein 4 is physically associated with lipoproteins and governs plasma lipid levels and adiposity. J. Biol. Chem.2006,281:934-944.
    [179]李志琼.α-亚麻酸对产蛋鸡脂质代谢及蛋黄胆固醇沉积的影响及其机理[D].四川农业大学.2007.
    [180]Bergo M, Wu G, Ruge T, et.al. Down-regulation of adipose tissue lipoprotein lipase during fasting requires that a gene, separate from the lipase gene, is switched on. J. Biol. Chem.2002, 277:11927-11932.
    [181]陈文,陈代文,黄艳群.脂蛋白脂酶(LPL)生理功能及特异表达[J].中国畜牧兽医.2004,31(4):29-30.
    [182]Bergo M, Olivecrona G, Olivecrona T. Forms of lipoprotein lipase in rat tissues:in adipose tissue the proportion of inactive lipase increases on fasting. Biochem J.1996,313 (Pt 3):893-8.
    [183]Doolittle MH, Ben-Zeev O, Elovson J, et.al. The response of lipoprotein lipase to feeding and fasting. Evidence for posttranslational regulation. J Biol Chem.1990,265(8):4570-7.
    [184]Lee JJ, Smith PJ, Fried SK. Mechanisms of decreased lipoprotein lipase activity in adipocytes of starved rats depend on duration of starvation. J Nutr.1998,128(6):940-6.
    [185]Ong JM, Simsolo RB, Saghizadeh M, et.al. Effects of exercise training and feeding on lipoprotein lipase gene expression in adipose tissue, heart, and skeletal muscle of the rat. Metabolism.1995,44(12):1596-605.
    [186]Spurlock ME, Ji SQ, Godat RL, et.al. Changes in the expression of uncoupling proteins and lipases in porcine adipose tissue and skeletal muscle during feed deprivation*(1). J Nutr Biochem.2001,12(2):81-87.
    [187]Horowitz JF, Coppack SW, Paramore D, et.al. Effect of short-term fasting on lipid kinetics in lean and obese women. Am J Physiol.1999,276(2 Pt 1):E278-84.
    [188]Serr J, Suh Y, Lee K.Regulation of adipose triglyceride lipase by fasting and refeeding in avian species.Poult Sci.2009,88(12):2585-91.
    [189]Zechner R. The tissue-specific expression of lipoprotein lipase:implications for energy and lipoprotein metabolism. CurrOpin Lipidol.1997,8:77-88.
    [190]Ong JM, Saffari B, Simsolo RB, et.al. Epinephrine inhibits lipoprotein lipase gene expression in rat adipocytes through multiple steps in posttranscriptional processing. Mol Endocrinol.1992,6(1):61-9.
    [191]Peckett AJ, Wright DC, Riddell MC. The effects of glucocorticoids on adipose tissue lipid metabolism. Metabolism.2011 Nov,60(11):1500-10.
    [192]Xu C, He J, Jiang H, et.al. Direct effect of glucocorticoids on lipolysis in adipocytes. Mol Endocrinol.2009,23(8):1161-70.
    [193]Bartolome N, Aspichueta P, Martinez MJ, et.al. Biphasic adaptative responses in VLDL metabolism and lipoprotein homeostasis during Gram-negative endotoxemia. Innate Immun. 2012,18(1):89-99.
    [194]Kitchens RL, Thompson PA, Munford RS, et al. Acute inflammation and infection maintain circulating phospholipid levels and enhance lipopolysaccharide binding to plasma lipoproteins. J Lipid Res.2003,44(12):2339-48.
    [195]Levels JH, Abraham PR, van den Ende A, et.al. Distribution and kinetics of lipoprotein-bound endotoxin. Infect Immun.2001,69(5):2821-8.
    [196]Van Lenten BJ, Fogelman AM, Haberland ME, et.al. The role of lipoproteins and receptor-mediated endocytosis in the transport of bacterial lipopolysaccharide. Proc Natl Acad Sci U S A.1986,83(8):2704-8.
    [197]Fraunberger P, Schaefer S, Werdan K, et.al. Reduction of circulating cholesterol and apolipoprotein levels during sepsis. Clin Chem Lab Med.1999,37(3):357-62.
    [198]Gordon BR, Parker TS, Levine DM, et.al. Relationship of hypolipidemia to cytokine concentrations and outcomes in critically ill surgical patients. Crit Care Med.2001,29(8): 1563-8.
    [199]Windier E, Ewers-Grabow U, Thiery J, et.al. The prognostic value of hypocholesterolemia in hospitalized patients. Clin Investig.1994,72(12):939-43.
    [200]Feingold KR, Funk JL, Moser AH, et.al. Role for circulating lipoproteins in protection from endotoxin toxicity. Infect Immun.1995,63(5):2041-6.
    [201]Munford RS, Hall CL, Dietschy JM. Binding of Salmonella typhimurium lipopolysaccharides to rat high-density lipoproteins. Infect Immun.1981,34(3):835-43.
    [202]W. Khovidhunkit, M.S. Kim, R.A. Memon, et.al. Effects of infection and inflammation on lipid and lipoprotein metabolism:mechanisms and consequences to the host. J. Lipid Res.2004, 45(7):1169-96.
    [203]Vatier C, Kadiri S, Muscat A, et.al. Visceral and subcutaneous adipose tissue from lean women respond differently to lipopolysaccharide-induced alteration of inflammation and glyceroneogenesis. Nutr Diabetes.2012,2:e51.
    [204]Leuwer M, Welters I, Marx G, et al. Endotoxaemia leads to major increases in inflammatory adipokine gene expression in white adipose tissue of mice. Pflugers Arch.2009,457(4): 731-41.
    [205]Chung S, Lapoint K, Martinez K, et.al. Preadipocytes mediate lipopolysaccharide-induced inflammation and insulin resistance in primary cultures of newly differentiated human adipocytes. Endocrinology.2006,147(11):5340-51.
    [206]Granneman JG MH, Krishnamoorthy R, Rathod M. Perilipin controls lipolysis by regulating the interactions of AB-hydrolase containing 5 (Abhd5) and adipose triglyceride lipase (Atgl). J Biol Chem.2009,284:34538-34544.
    [207]Larigauderie G, Cuaz-Perolin C, Younes AB, et.al. Adipophilin increases triglyceride storage in human macrophages by stimulation of biosynthesis and inhibition of beta-oxidation. FEBS J. 2006,273(15):3498-510.
    [208]Lu B, Moser A, Shigenaga JK, et.al. The acute phase response stimulates the expression of angiopoietin like protein 4. Biochem Biophys Res Commun.2010,391 (4):1737-41.
    [209]Hato T, M. Tabata, and Y. Oike. The role of angiopoietinlike proteins in angiogenesis and metabolism. Trends Cardiovasc. Med.2008,18:6-14.
    [210]lnaba T, Matsuda M, Shimamura M, et.al. Angiopoietin-like protein 3 mediates hypertriglyceridemia induced by the liver X receptor. J Biol Chem.2003,278(24):21344-51.
    [211]Kaplan R, Zhang T, Hernandez M, et.al. Regulation of the angiopoietin-like protein 3 gene by LXR. J Lipid Res.2003,44(1):136-43.
    [212]Kersten S MS, Tan NS, Escher P, et.al. Characterization of the fastinginduced adipose factor F1AF, a novel peroxisome proliferator-activated receptor target gene. J Biol Chem.2000, 275(37):28488-28493.
    [213]Kim 1 KH, Kim H, Kim HH, et.al. Hepatic expression,synthesis and secretion of a novel fibrinogen/angiopoietin-related protein that prevents endothelial-cell apoptosis. Biochem J. 2000,346 Pt 3:603-610.
    [214]张丽萍.不同品种猪肠道微生物与体脂,ANGPTL4基因关系的研究[D].四川农业大学.2007.
    [215]Xu A, Lam MC, Chan KW, et.al. Angiopoietin-like protein 4 decreases blood glucose and improves glucose tolerance but induces hyperlipidemia and hepatic steatosis in mice. Proc Natl Acad Sci U S A.2005,102(17):6086-91.
    [216]Yu X, BgSC, Ge H, et.al. Inhibition of cardiac lipoprotein utilization by transgenic overexperssio n of Angpt14 in the heart. Pro c Natl Acad Sci USA.2005,10(2):1767-1772.
    [217]王欣,王继红,黄家利,等Angptl3基因在大鼠高脂模型中组织表达及其与血脂的关系[J].第三军医大学学报,2008,30(12):1167-1169.