大型火电厂钢结构主厂房框排架结构抗震性能及设计方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在我国,火电厂主体结构常采用钢筋混凝土框排架结构,而随着电厂单机容量的不断增大,主厂房的高度和跨度随之增加,具有布置灵活、自重轻、强度高、施工快、抗震性能好等优点的钢结构,成为了中国大型火电厂主厂房的主要结构形式,尤其成为在抗震设防区建造大型火电厂的首选形式。课题组前期已经研究了大型火电厂钢结构异型节点受力性能,为了揭示大型火电厂钢结构主厂房框排架结构抗震性能,建立其相对应的设计方法,本文进行了系统研究。
     设计了1榀缩尺比为1/10三跨五层的钢框排架模型,通过对其进行拟动力试验,研究其在预估地震作用下的加速度反应、位移反应、滞回特性、刚度和耗能性能。研究结果表明:钢框排架结构延性相对较好,具有较强的塑性变形能力。模型结构在三种地震波(El Centro波、Taft波、兰州人工波)的多遇地震以及ElCentro波的罕遇地震作用下,层间位移角均满足我国现行规范要求。钢框排架结构体系可满足8度设防要求,具有良好抗震性能。在拟动力试验结束后,又对该榀钢框排架结构进行了拟静力试验,观测了框排架的破坏形态,得到了试件的荷载—位移滞回曲线、骨架曲线,分析了钢框排架的破坏机制、滞回性能、延性、耗能能力、刚度退化等力学性能。结果表明:钢框排架结构的破坏机制为先梁端后柱端出现塑性铰的混合破坏机制,滞回曲线较饱满,整体位移延性系数大于4.0,等效黏滞阻尼系数达到0.185。钢框排架结构体系总体上表现出良好的抗震能力,适合高烈度抗震设防区采用。模型结构的层间位移角在底层和第二层较大,为薄弱层;煤斗梁地震反应较强,设计时要特别注意。
     采用有限元软件Sap2000对平面钢框排架结构进行了时程分析,计算结果与试验结果符合较好。根据计算结果,对钢框排架结构的变形性能进行了分析,明确了大震作用下塑性铰的出现次序和发展规律,研究了错层对结构性能的影响和框架、排架之间的协同工作情况。
     采用有限元软件Midas/gen对钢框排架整体厂房进行了弹性时程分析、弹塑性时程分析、静力弹塑性分析,研究了主厂房的变形能力、薄弱部位、受力机理及其破坏机制。计算结果表明:钢框排架延性相对较好,具有较强的塑性变形能力和抗震能力。主厂房横向框排架和纵向框架—支撑结构存在较多的薄弱部位;煤斗梁刚度超强,要特别注意柱截面的选取,结构计算分析应采用考虑扭转效应的空间模型。
     参考国内外规范相关规定,将钢框排架结构的性能水平划分为正常使用、基本使用、生命安全和接近倒塌四个等级,并结合地震设防水准,给出了钢框排架结构的抗震性能目标。在钢框排架结构抗震性能试验研究的基础上,提出了钢框排架对应四个性能水平的层间位移角限值。给出了基于位移的设计方法在主厂房钢框排架结构设计中的设计步骤,并以一工程实例详细说明了钢框排架结构基于位移的设计过程。
     提出根据结构损伤期望对钢框排架结构进行抗震优化设计,并建立了钢框排架结构抗震优化设计的数学模型,给出了其优化设计步骤。基于ANSYS软件的二次开发平台,采用APDL语言编制了钢框排架结构抗震优化设计程序,并采取该程序对一工程实例进行抗震设计优化,验证了所采用的优化思路和方法的可行性。
     在试验研究和理论分析基础上,结合火电厂特点和多高层钢结构设计方法,提出了钢框排架主厂房的抗震设计建议,可为工程应用提供参考。
In China, the reinforced concrete frame-bent structure often are used in the mainstructure of the thermal power plant, while the height and span of the main power houseincreased with the increasing of the power plant unit capacity, the steel structure withflexible layout, light weight, high strength,quickly construction, good seismicperformance advantages, has become the main structure of the main plant of largethermal power plants.In particular, it has become the preferred form of construction oflarge thermal power plants in the earthquake-proof.The mechanical behavior of irregularjoints of steel structure of large thermal power plants have been studied. Based on theprevious studies, the research on seismic performance and design method of steelframe-bent structures of large thermal power plant main buildings is systematicallyperformed in this dissertation.
     According to the experimental study on a1:10model of steel frame-bent structureunder pseudo-dynamic test.The seismic responses such as acceleration,displacement,varying stiffess,hysteretic property and energy consumption were analyzed. The resultsshow that the steel frame-bent structure has good ductility and strong plastic deformationcapacity. The maximum story drift angles of the model structure under intensity8frequent and rare earthquakes are all less than their limit values regulated by the presentseismic code. Steel frame-bent structures satisfied the demand of seismic design in8intensity zones,and has good seismic behaviors. After the pseudo-dynamic test, theexperimental study on the model of a three-bay and five-story steel frame-bent structuresunder low cyclic reversed loading was to do. The failure condition of frame-bent structures is observed. The load-displacement hysteretic loops and skeleton curve oftested model are obtained. The failure mechanism, hysteretic behavior, ductility, energydissipation capacity and stiffness degeneration were investigated. The results show thatthe failure mechanism of steel frame-bent structures is the first occurrence of beam-hingeand then column-hinge mechanism.The hysteretic loops are a plump.The average of theoverall ductility factors is greater4.The equivalent viscous dampings coefficient is0.185.The steel frame-bent structures exhibits excellent seismic behavior, and can beadopted in high seismic fortification zones. The inter-story displacement rotation isrelatively large on the bottom floor and the second floor, namely the weak floor. Andthere is larger earthquake action at the coal hopper beams, which must be paid attention indesign.
     The time history response analysis on flat steel frame bent structure were carried outby using SAP2000.The calculated results agree well with experimental results.According to the calculated results, the deformation performance are analyzed, the plastichinges in the order and law under strong earthquakes are got. The influence of structureproperties from split-level, coordination between the frame and bent work.
     The elastic time history response analysis method, dynamic elastic-plastic analysismethod, static pushover analysis method are used to study the deformation, weak parts,loading capacity and failure mechanisms of steel frame-bent structures of large thermalpower plant main buildings by using Midas/gen. The results show that the steelframe-bent structure has good ductility, strong plastic deformation capacity and seismicperformance. But the horizontal frame-bent and longitudinal frame-supporting structureshave much weak parts, and there is larger earthquake action at the coal hopper beams,which must be paid attention when designed.It should be used the space modelconsidering the effect of torsion on the structure to calculate and analysis.
     Refer to the domestic and foreign relevant norms,four performance levels are putforward for steel frame-bent structures, which are normal operation, basic operation, lifesafety and collapse prevention. The seismic levels and four performance levels arecombined to form the seismic performance target. Based on the results of seismicperformance tests on steel frame-bent structures, the maximum inter-story drift anglecorresponding to different performance levels are presented for the steel frame-bent structures. The displacement-based seismic design(DBSD) method was proposed to steelframe-bent structures. The procedure of the DBSD was given, and taking one steelframe-bent structure of main building as an example, the design process wasdemonstrated.
     The seismic optimal design of the steel frame-bent structures based on structuraldamage expectations was proposed. The seismic optimal design mathematical model ofthe steel frame-bent structures was set up and the optimized design steps were given.Theseismic optimal design program of the steel frame-bent structures was compiled by usingAPDL based on the secondary development platform in ANSYS. The feasibility ofoptimizing idea and method was verified by an engineering example.
     Based on experimental study and theoretical analysis, combined the characteristicsof thermal power plants and high-rise steel structure design method,the seismic designrecommendations of steel frame–bent structures of main buildings were proposed,whichcan provide a reference for engineering applications.
引文
[1-01]葛增茂.火力发电厂主厂房结构形式和体系评述[J].电力建设,1998(6):15-17
    [1-02]张文元,于海丰,张耀春等.大型火电厂钢结构主厂房铰接中心支撑框架体系的振动台试验研究[J].建筑结构学报,2009,30(3):11-19
    [1-03]刘恢先主编.唐山大地震震害[M].地震出版社,1986
    [1-04]沈聚敏,高小旺,周锡元,刘晶波编.抗震工程学[M].中国建筑工业出版社,1999
    [1-05]文良谟.火力发电厂土建结构抗震设计的回顾和展望[J].电力建设,1998(6):18-24
    [1-06]中华人民共和国电力行业标准,火力发电厂土建结构设计技术规定(DL5022-93),1993
    [1-07]中华人民共和国国家标准,电力设施抗震设计规范(GB50260-96),1996
    [1-08]孙香红,王社良,苏三庆等.大型火电厂纵向消能支撑框架结构1/8比例模型拟静力试验研究[J].西安建筑科技大学学报(自然科学版),2006,38(3):384-389
    [1-09]白国良,安建利,陈亮.大型火力发电厂主厂房钢筋混凝土框排架结构空间地震反应分析[J].工程抗震与加固改造,2006,28(5):25-28
    [1-10]吴涛,白国良,刘伯权.大型火力发电厂钢筋混凝土框排架主厂房结构抗震性能试验研究[J].建筑结构学报,2007,28(3):46-52
    [1-11]白晓红,白国良,吴涛.钢筋混凝土框排架结构空间地震反应分析[J].工业建筑,2007,37(11):35-39
    [1-12]宋远齐,汪小刚,温彦锋等.大型火电厂主厂房框排架结构静力弹塑性地震反应分析[J].电力建设,2009,30(5):59-62
    [1-13]马云玲,白晓红,白晓方.水平双向地震作用下框排架结构的变形能力[J],河南科技大学学报(自然科学版),2009,30(6):60-67
    [1-14]彭自强,葛鹏.火电厂预应力框架拟静力试验与推覆分析[J].华中科技大学学报,2010,27(2):44—47
    [1-15]宋远齐,汪小刚,温彦锋等.大型火电厂主厂房框排架结构弹塑性时程反应分析[J].工业建筑,2010,40(1):51-54
    [1-16]白国良,朱佳宁,李红星.钢筋混凝土框架异型节点抗裂计算[J].世界地震工程,2003,19(3):12-16
    [1-17]白国良,李红星,朱佳宁.钢筋混凝土框架异型节点抗震性能试验研究[J].建筑结构学报,2004,25(4):8-14
    [1-18]吴涛,刘伯权,白国良等.大型厂房钢筋混凝土框排架结构中异型节点的抗震性能和设计方法研究[J].土木工程学报,2006,39(4):1-5
    [1-19]吴涛,刘伯权,白国良等.大型火力发电厂钢筋混凝土框架异型边节点抗震性能及设计方法研究[J].建筑结构学报,2005,26(5):17-22
    [1-20]吴涛,白国良,刘伯权.大型火力发电厂钢筋混凝土框架异型节点性能试验研究[J].工业建筑,2004,34(1):39-41
    [1-21]吴涛,刘伯权,白国良等.工业厂房框架异型节点破坏机理和设计方法研究[J].工业建筑,2005,35(7):26-28
    [1-22]吴涛,王亮,车亚玲.空间异型边节点抗震性能试验及破坏机理研究[J].建筑科学,2005,21(4):6-9
    [1-23] LI Hong-xing,BAI Guo-liang,ZHU Jia-ning.et.al. Experimental research on seismicbehavior of abnormal joint in reinforced concrete frame [J]. Journal of Xi’an University ofArchitecture&Technology,2006,38(2):168-177
    [1-24]张淑云,白国良,朱佳宁等.钢筋混凝土框架异型边节点抗震性能试验研究[J].西安科技大学学报,2005,25(2):147-150
    [1-25]白建方,白国良,史冠卿.基于人工神经网络的钢筋混凝土异型节点滞回模型[J].世界地震工程,2004,20(2):50-54
    [1-26]张淑云,白建方,白国良.基于神经网络的钢筋混凝土异型节点抗裂能力预测[J].世界地震工程,2005,21(4):54-59
    [1-27]白国良,康灵果,李红星等.大型火力发电厂SRC框架柱-RC分散剪力墙主厂房混合结构体系抗震性能试验研究[J].土木工程学报,2011,44(9):20-26
    [1-28]白国良,白涌滔,李红星等.大型火电厂分散剪力墙-SRC框排架结构抗震性能试验研究[J].工程力学,2011,28(6):74-80
    [1-29]沈祖炎,黄奎生,陈以一等.大型火电厂主厂房钢支撑—框架结构振动台试验模型[J].建筑科学与工程学报,2006,23(4):1-5
    [1-30]张文元,于海丰,张耀春等.大型火电厂钢结构主厂房铰接中心支撑框架体系的振动台试验研究[J].建筑结构学报,2009,30(3):11-19
    [1-31]薛建阳,刘祖强,胡宗波等.钢框架异型节点核心区的受剪机理及承载力计算[J].地震工程与工程振动,2010,30(5):37-41
    [1-32]薛建阳,胡宗波,彭修宁等.钢结构箱形柱与梁异型节点破坏机理的试验研究[J].建筑结构学报,2010(Suppl.1):50-54.
    [1-33]薛建阳,刘祖强,彭修宁等.钢结构异型节点受力性能及非线性有限元分析[J].西安建筑科技大学学报,2010,42(5):609-613
    [1-34]彭修宁,薛建阳,刘祖强等.刚性钢框架异型节点性能及设计方法[J].土木建筑与环境工程,2010,32(3):22-26.
    [1-35] Roeder C W,Schneider S P,Carpenter J E.Seismic behaviour of moment-resisting steelframes: analylical study[J].Journal of Structural Engineering,ASCE,1993,119(6):1866-1884
    [1-36] Tang D T,Clough R W.Shaking table earthquake response of steel franles[J].Journal of theStructural Division,ASCE,1979,105(ST1):221-243
    [1-37] Kaya I,Mcniven H D.Investigation of the elastic characteristics of three-story structureusing system identification[J].Earthquake Engineering and Structural Dynamics,1982,l0(3):433-445
    [1-38] Tagawa Y,Kato B,Aoki H.Behaviour of composite beam in steel frame under hystereticloading[J].Journal of Structural Engineering,ASCE,1989,115(8):2029-2045
    [1-39] Fielding D J,Chert W F.Steel frame analysis and connection shear deformation[J].Journalof the Slmemral Division,ASCE,1973,99:1-18
    [1-40]武藤清.结构物动力设计[M].滕家禄等译.北京:中国建筑工业出版社,1984
    [1-41] Krawinkler H, Mohasseb S.Effects of panel zone deformations on seismic response[J].Journal of Constructional Steel Research,1987,8:233-250
    [1-42] Tsai K C,Popov E P.Seismic panel zone design effect on elastic story drift in steelframes[J]. Journal of Structural Engineering,ASCE,1990,116(12):3285-3301
    [1-43] Krawinkler H,Mohasseb S. Effects of panel zone deformations on seismic response[J].Journal of Constructional Steel Research,1987,8:233-250
    [1-44] Foutch D.A,Goel S C,Roeder C W,Seismic testing a full scale steel building[J].Journalof Structural Engineering,ASCE,1987,113(11):2111-2145
    [1-45] Roeder C W.Seismic behavior of concentrically braced steel building[J].Journal ofStructural Engineering,ASCE,1989.115(8):1837-1856
    [1-46] Foutch D.A. Seismic behavior of eccentrically braced frame[J],Journal of StructuralEngineering,ASCE,1989.115(8):1857-1875
    [1-47] Bertero V. V, Uang C M,Llopiz C R, Igarshi K. Earthquake simulator testing of concentricbraced dual system[J].Journal of Structural Engineering,ASCE,1989,115(8):1877—1893
    [1-48] Lee S J,Lu L w.Quasi-static tests of scale model building[J]. Journal of StructuralEngineering, ASCE,1989,115(8):1895-1916
    [1-49] Wallace B J, Krawinkler H.Small-scale model tests of structural steel assemblies[J].Journalof Structural Engineering,ASCE,1989,115(8):1999-2015
    [1-50] Midorikawa M,Nishiyama I,Yamanouchi H.Analytical evaluation of K-braced structureseismic test[J]. Journal of Structural Engineering, ASCE,1989,115(8):1930-1948
    [1-51] Goel S C,Boutros M K.Analytical modeling of phase2steel structure[J].Journal ofStructural Engineering,ASCE,1989,115(8):1949-1959
    [1-52] Gupta A,Krawinkler H. Behavior of ductile SMRFs at various hazard levels[J].Journal ofStructural Engineering,2000,126(1):98-107
    [1-53] Gupta A, Krawinkler H. Dynamic P-delta effects for flexible inelastic steelstructures[J].Journal of Structural Engineering,2000,126(1):145-154
    [1-54] ChallaV R M,Hall J E. Earthquake collapse analysis of steel frames[J].EarthquakeEngineering and Structural Dynamics,1994,23(11):1199-1218
    [1-55] Usami T, Zheng Y, Ge H B.Seimic design methord for thin-walled steel frame structures[J].Journal of Structural Engineering, ASCE,2001,127(2):137-144
    [1-56]李国强,黄靖宇,沈祖炎,等.钢柱的空间弹塑性单元刚度方程[J].同济大学学报,1994,22(4):457-462
    [1-57]李国强,冯健.罕遇地震下多高层建筑钢结构弹塑性位移的实用计算[J].建筑结构学报,2000,21(l):77-83
    [1-58]李国强,沈祖炎.钢框架弹塑性静动力反应的非线性分析模型[J].建筑结构学报.1990,11(2):51-59
    [1-59]李国强,沈祖炎.考虑节点区剪切变形的钢框架弹塑性地震反应分析[J].同济大学学报.1990,18(l):l-9
    [1-60]冯健.平面钢框架体系弹塑性地震反应分析及其简化计算[D]:[硕士学位论文].上海:同济大学,1999
    [1-61]李国强,冯健.罕遇地震下多高层建筑钢结构弹塑性位移的实用计算[J].建筑结构学报,2000,21(1):77-83
    [1-62]董宝.高层钢框架结构在多维地震作用下考虑损伤累积效应的弹塑性反应分析[D]:[博士学位论文].上海:同济大学,1997
    [1-63]吴芸、张其林、王旭峰.钢框架抗震性能试验研究和数值分析[J].西安建筑科技大学学报(自然科学版),2006,38(4):486-490.
    [1-64]彭观寿、高轩能、陈明华.支撑布置对钢框架结构抗侧刚度的影响[J].工业建筑,2008,38(5):83-70
    [1-65]完海鹰、王建国、王秀喜.半刚性连接钢框架的拟动力实验研究[J].实验力学,2009,24(4):299-306
    [1-66]石永久、熊俊、王元清等.多层钢框架偏心支撑的抗震性能试验研究[J].建筑结构学报,2010,31(2):29-34
    [1-67]郭兵、刘国鹏、徐超等.偏心支撑半刚接钢框架的动力特性及抗震性能试验研究[J].建筑结构学报,2011,32(10):90-96
    [1-68] Axelsson K.Samuelsson.Finite Element Analysis of Elasto-plastic Materials DisplayingMixed Hardening.Inr,JNum.Meth.Eng.1979,14:211-225
    [1-69]沈祖炎,董宝,曹文衔.结构损伤累积分析的研究现状和存在问题[J].同济大学学报,1997,6(2):l35-140
    [1-70]张其林.薄壁构件整体稳定一局部稳定相互作用问题的有限元分析[D]:[博士学位论文].上海:同济大学,1988
    [1-71] Fukumoto Y,Krsama H.Local Instability Test of Plate Elements Under Cyclic UniaxialLoading[J]. Engineering Structures,1985,(5):1051-1067
    [1-72]郝际平,陈绍蕃.钢结构在循环荷载作用下非线性屈曲和低周疲劳的试验研究[J].土木工程学报,1996,29(6):40-51
    [1-73]董永涛,张耀春.板件在单轴往复荷载作用下局部屈曲分析的有限元法[J].哈尔滨建筑工程学院学报,1994,27(1):35-39
    [1-74]申林,顾强,苏明周.高层钢结构支撑循琢性能的研究和现状[J].西安建筑科技大学学报,1992,32(3):215-219
    [1-75]沈祖炎,王革,李国强.交叉钢支撑滞回性能特性分析[J].上海力学,1992,13(3):l-8
    [1-76]邓雪松,张耀春,程晓杰.钢支撑性能对高层钢结构动力反应的影响[J].地震工程与工程振动,1998,17(3):52-59
    [1-77]李国强,沈祖炎.半刚性连接钢框架弹塑性地震反应分析[J].同济大学学报,1992,(6):14-22
    [1-78]施刚,石永久.多层钢框架半刚性端板连接的试验研究[J].清华大学学报,2004,44(3):391-394
    [1-79] Kishi N.W.&Chen W.F.Moment-rotation Relations of Semi-rigid Connections withAngles.Journal of Structural Engineering,ASCE,1990,116(7):1813-1834
    [1-80] Wu F. S.&Chen W. F. A. Design Model for Semi—rigid Connections.EngineeringStructures,1990,12(2):88-97
    [2-01]刘志钦,白国良,李红星等.火电厂主厂房SRC柱—RC分散剪力墙框排架混合结构抗震性能研究[J].建筑科学,2013,29(1)::41-46
    [2-02]刘杰.建筑结构试验[M].北京:机械工业出版社,2012:185-196.
    [2-03]郑山锁.动力试验模型在任意配重条件下与原型结构的相似关系[J].工业建筑,2000,(3):35-39.
    [2-04]黄维平,邬瑞锋,张前国.配重不足时的结构动力模型试验与原型相似关系问题的探讨[J].地震工程与工程振动,1994,(4):64-71.
    [2-05] GB/T228-2002金属材料温室拉伸试验方法[S].北京:中国建筑工业出版社,2002.
    [2-06] GB/T2975-1998《钢及钢产品力学性能试验取样位置及试验制备》[S].北京:中国计划出版社,1998.
    [2-07] GB50011-2010建筑抗震设计规范[S].北京:中国建筑工业出版社,2010
    [2-08]王大鹏,田石柱.混合编程控制的多自由度结构拟动力试验方法[J].工程抗震与加固改造,2013,35(1):120-126.
    [2-09] JGJ101-96建筑抗震试验方法规程[S].北京:中国建筑工业出版社,1997:28-31
    [2-10] Buonopane S G,White R N.Pseudodynamic testing of masonry infilled reinforced concreteframe[J].Journal of Structural Engineering,ASCE,1999,125(6):575-589
    [2-11] Chung Woo-Jung, Yun Chung-Bang, Kim Nam-Sik, el at. Shaking table andpseudo-dynamic tests for the evaluation of the seismic performance of base-isolatedstructures[J].Engineering Structures,1999,21(4):365-379
    [2-12] K. K. Wijesundara, D. bolognini, R. nascimbene.Review of design parameters ofconcentrically braced frames with RHS shape braces [J].Journal of Earthquake Engineering,2009,13(s1):109-131
    [2-13] Molina F J,Verzeletti G, Magonette G, el at. Bi-directional pseudodynamic test of a full-sizethree-storey building[J]. Journal of Earthquake Engineering,2002,27(10):1541-1566
    [3-01]薛建阳,梁炯丰,彭修宁等.大型火电厂钢结构主厂房框排架结构抗震性能试验研究[J],建筑结构学报,2012,33(8):16-22
    [3-02] JGJ101-96建筑抗震试验方法规程[S].北京:中国建筑工业出版社,1996.
    [3-03]陈志鹏等.结构试验与工程检测[M].北京:中国水利水电出版社,2004:5-13.
    [3-04]王社良.抗震结构设计[M].武汉:武汉理工大学出版社,2008:34-35.
    [3-05]聂建国,朱立,樊健生等.钢板剪力墙抗震性能试验研究[J].建筑结构学报,2013,34(1):61-69.
    [3-06]傅军.建筑结构试验基础[M].北京:机械工业出版社.2012:190-195.
    [3-07]朱伯龙.结构抗震试验[M].北京:地震出版社,1989.
    [3-08] Durgesh C. Rai;Praveen K. Annam;Tripti Pradhan. Seismic testing of steel braced frameswith aluminum shear yielding dampers[J], Engineering Structures,2013,vol.46:737-747
    [3-09] Xilin Lu;Jingjing Wang;Fuwen Zhang.Seismic collapse simulation of spatial RC framestructures [J],Computers&Structures,2013,Vol.119:140-154.
    [3-010] GB50011-2010建筑抗震设计规范[S].北京:中国建筑工业出版社,2010
    [4-01]陈昌宏.SAP2000结构工程案例分析[M],北京:冶金工业出版社,2010.
    [4-02] Computer&Structures,北京金土木软件技术有限公司.CSI分析参考手册.2009
    [4-03]杨文侠,李春燕,顾强. Y形偏心支撑钢框架SAP2000非线性分析模型[J],兰州理工大学学报,2010,36(6):68-75
    [4-04]杨先桥,傅学怡,黄用军.深圳平安金融中心塔楼动力弹塑性分析[J],建筑结构学报,2011,23(3):40-49
    [4-05]余卫江,赵阳,傅学怡.国家游泳中心静力弹塑性分析[J],建筑结构学报,2011(S1):30-39
    [4-06]李海旺,王红霞,张宗升.三心圆钢管拱桁架的动力弹塑性分析[J],工业建筑,2011,22(3):10-15
    [4-07]史祝.大型火电厂主厂房钢框排架结构抗震性能试验及其优化设计[D].西安:西安建筑科技大学硕士学位论文,2012
    [4-08]王奇,王亚勇,楼文娟.体育场挑篷结构抗震性能试验及弹塑性分析[J],浙江大学学报(工学版),2010,33(12):34-38
    [4-09] Zhong-Xian Li;Yang Lv;Long-He Xu. Experimental studies on nonlinear seismic control ofa steel–concrete hybrid structure using MR dampers [J]. Engineering Structures,2013,Vol.49:248-263.
    [4-010] Gang Li;Larry A. Fahnestock.Seismic Response of Single-Degree-of-Freedom SystemsRepresenting Low-Ductility Steel Concentrically Braced Frames with Reserve Capacity [J].Journal of Structural Engineering,2013,139(2):199-211
    [5-01]龚思礼编.建筑抗震设计手册[M].北京:中国建筑工业出版社,2002
    [5-02]李爱群,高振世主编.工程结构抗震设计[M].北京:中国建筑工业出版社,2004
    [5-03]祝英杰主编.结构抗震设计[M].北京:北京大学出版社,2009
    [5-04]丰定国主编.工程结构抗震[M].北京:地震出版社,2002.
    [5-05]包世华编著.新编高层建筑结构(第2版)[M].北京:中国水利水电出版社,2009
    [5-06]郭继武编.建筑抗震设计[M].北京:中国建筑工业出版社.2002
    [5-07]张家华,吕志涛,朱筱俊.关于转换层结构时程分析的计算建议[J].东南大学学报.1997.27(6):23-28
    [5-08]北京迈达斯技术有限公司编著.Midas/Gen工程应用指南[M].北京:中国建筑工业出版社,2012
    [5-09]程亚鹏,王洪国.大连市体育场上层看台结构设计[J].建筑结构,2012,16(1):81-84
    [5-10]王先华,邓铁军.地震作用下高层钢-混组合结构的抗震性能分析[J].动力学与控制学报,2010,8(2):182-187
    [5-11]王昌兴主编. MIDAS/Gen应用实例教程及疑难解答[M].北京:中国建筑工业出版社,2010
    [5-12]蒋玉川编著.MIDAS在结构计算中的应用[M].北京:化学工业出版社,2012
    [5-13] DL5022-93火力发电厂土建结构设计技术规定[S].北京:中国水利水电出版社,1993.
    [5-14] GB50011-2010建筑抗震设计规范[S].北京:中国建筑工业出版社,2010
    [5-15]姚谦峰.工程结构抗震分析[M].北京:清华大学出版社.2012
    [6-01]王书增.建筑抗震设计规范新旧对照手册[M].北京:中国电力出版社,2013
    [6-02]吕西林,苏宁粉,周颖.复杂高层结构基于增量动力分析法的地震易损性分析[J].地震工程与工程振动,2012,32(5):33-40
    [6-03]吕西林,金国芳,吴晓涵.钢筋混凝土结构非线性有限元理论与应用[M].上海:同济大学出版社,1997
    [6-04]宋远齐,汪小刚,温彦锋等.大型火电厂主厂房框排架结构弹塑性时程反应分析[J].电力建设,2010,40(1):51-54.
    [6-05]祝英杰主编.结构抗震设计[M].北京:北京大学出版社,2009
    [6-06]丰定国主编.工程结构抗震[M].北京:地震出版社,2002.
    [6-07]田砾主编.工作的开始——高层建筑结构设计[M].北京:机械工业出版社,2013
    [6-08]郭晓云主编.建筑抗震[M].北京:清华大学出版社.2012
    [6-09]何政,欧进萍.钢筋混凝土结构非线性分析[M].哈尔滨:哈尔滨工业大学出版社,2006
    [6-10]黄忠海,廖耘,李盛勇等.广州珠江新城东塔罕遇地震作用弹塑性分析[J].建筑结构学报,2012,30(11):14-22
    [6-11]桂国强,陆晖,程柯.超限高层剪力墙结构弹塑性动力分析[J].低温建筑技术,2012,18(11):33-42
    [6-12]曾榕,包恩和,尹霞.多层屈曲约束斜撑钢框架静动力抗震设计[J].广西大学学报(自然科学版),2012,37(4):48-55
    [6-13]李秋生.动力弹塑性分析在桥梁工程中的应用[J].河南科学,2012,30(2):81-87
    [6-14]陈绍蕃.钢结构设计原理(第三版)[M].北京:科学出版社,2005.
    [6-15] NEHRP Guidelines for the Seismic Rehabilitation of Buildings.FEMA-273,1997
    [7-01]强国平.高层钢结构支撑方案抗震性能对比分析[J].结构工程师,2012,28(3):12-20
    [7-02] Gang Li;Yi Jiang and Dixiong Yang. Modified-modal-pushover-based seismic optimumdesign for steel structures considering life-cycle cost [J]. Structural and MultidisciplinaryOptimization,2012,45(6):861-874.
    [7-03]吕剑勇,郭瑞东.两种托墙转换结构静力弹塑性抗震分析[J].水利与建筑工程学报,2012,10(3):22-28.
    [7-04]吴泽玉,王东炜.基于振型的Pushover方法的研究与实践[J].建筑科学,2012,28(3):13-16.
    [7-05]李正英,党鹏鹏,李竟涛.静力非线性方法用于桥梁高敦抗震性能分析[J].土木建筑与环境工程,2012,34(5):42-49.
    [7-06]焦柯,吴桂广.常用弹塑性分析软件在建筑结构推覆分析中的对比分析[J].建筑结构,2011,21(5):11-16
    [7-07]王燕燕,莫海鸿.基于MIDAS-Building的某超限高层建筑静力弹塑性分析[J].四川建筑科学研究,2012,38(6):22-26
    [7-08]吕秋鸿,刘新.模态pushover方法用于抗震评估的研究[J].建筑技术开发,2012,39(10):30-35
    [7-09]梁炯丰,杨泽平,王庆华.预应力混凝土拱式转换层结构静力弹塑性分析[J]世界地震工程,2012,28(3):40-45
    [7-10] ATC-40Seismic evaluation and retrofit of concrete buildings[R]. Applied TechnologyCouncil. Red Wood City,California,1996.
    [7-11]蒋欢军,左欢,崔龙飞.不同类型钢-混凝土组合剪力墙超高层结构抗震性能对比[J].结构工程师,2012,28(5):54-59.
    [7-12]马恺泽,刘伯权,鄢红良,梁兴文.高层建筑结构抗震性能评估方法的研究与改进[J].建筑科学与工程学报,2012,29(4):52-59.
    [8-01]王学婷译.基于性能的抗震设计—现状与课题[M].北京:中国建筑工业出版社,2012.
    [8-02]孙臻,刘伟庆.直接基于位移的橡胶支座隔震结构性能设计方法[J].南京工业大学学报(自然科学版),2011,33(5):43-51.
    [8-03]顾强,孙国华.基于性态的结构抗震设计研究进展[J].建筑钢结构进展,2011,13(4):12-19
    [8-04] GB50011—2010建筑抗震设计规范.北京:中国建筑工业出版社,2010.
    [8-05] FEMA273. NEHRP Guidelines for the Seismic Rehabilitation of Buildings[S].WashingtonDC: Federal Emergency Management Agency, ASCE,1997
    [8-06] SEAOC. Performance-Based Seismic Engineering of Buildings[R]. Vision2000Committee.Sacramento: Structural Engineers Association of California,1995
    [8-07]白绍良译.钢筋混凝土建筑结构基于位移的抗震设计[J].欧洲国际结构混凝土联合会公报,2004(9):20-46,104-130.
    [8-08] CECS160:2004建筑工程抗震性态设计通则(试用)[S].北京:中国计划出版社,2004.
    [8-09] FEMA356. Pre-standard and commentary for the seismic rehabilitation of buildings
    [S].Report FEMA356. Federal Emergency Management Agency, Washington DC,2000.
    [8-10] Medhekar M S, Kennedy D T L. Displacement-based Seismic Design of Buildingtheory[J].Engineering Structure,2000,22:201-209
    [8-11] Miranda E,Garcia J G.Evaluation of approximate methods to estimate maximum inelasticdisplacement demands[J].Earthquake Engineering and Structural Dynamics,2002,31(6):539-560
    [8-12] Priestley, Kowalsky M J.Displacement-based Seismic Design of Structures[M]. Pavia: IURRPress,2007
    [9-01]陈勇.基于系统可靠度的空间网格结构优化分析[J].低温建筑技术,2012,34(10):19-25
    [9-02] Daniel J,Lizotte,Russell Greiner. An experimental methodology for response surfaceoptimization methods [J].Journal of Global Optimization,2012,53(4):699-736
    [9-03]马宏旺,吕西林.建筑结构基于性能抗震设计的几个问题[J],同济大学学报,2002,30(12):1429-1434
    [9-04] GB50011-2010建筑抗震设计规范[S].北京:中国建筑工业出版社,2010.
    [9-05]高小旺,鲍霭斌.地震作用的概率模型及其统计参数[J].地震工程与工程振动,1985,5(1):13-22
    [9-06]高小旺,鲍霭斌.用概率方法确定抗震设防标准[J].建筑结构学报,1986,7(2):55-63
    [9-07]建设部抗震办公室编.建筑地震破坏等级划分标准[M].地震出版社,1991
    [9-08]高小旺.不同重要性建筑抗震设防标准的探讨[M].城市与工程减灾基础研究论文集(1996),中国科学技术出版社,1997
    [9-09] GB50017-2002钢结构设计规范[S].北京:中国建筑工业出版社,2002.
    [9-10] JGJ99-98高层民用建筑钢结构技术规程[S].北京:中国建筑工业出版社,1998.
    [9-11]林振杨,张勇.基于有限单元法的钢-混凝土组合空腹板的优化设计[J].北京交通大学学报,2012,36(1):25-30
    [9-12]张洪才. ANSYS14.0理论解析与工程应用实例[M].北京:机械工业出版社,2013:257-282.
    [10-01]刘林.大型火电厂主厂房少墙型钢混凝土框架结构体系地震作用效应与设计方法研究[D].西安:西安建筑科技大学博士学位论文,2009
    [10-02]朱金华.大型火电厂房含异型节点钢框排架抗震性能研究[D].南宁:广西大学硕士学位论文,2011
    [10-03] DL5022-93火力发电厂土建技术规程.北京:水利电力出版社,1993
    [10-04] GB50260-1996电力设施抗震设计规范.北京:中国计划出版社,1997
    [10-05] GB50011—2010建筑抗震设计规范.北京:中国建筑工业出版社,2010
    [10-06]易孝强.大型火电主厂房含异型节点钢框排架抗震性能试验研究[D].南宁:广西大学硕士学位论文,2012
    [10-07]陈静.火电厂主厂房钢结构与钢筋混凝土结构的综合经济分析[D].北京:清华大学,2005
    [10-08]葛翔.火电厂除氧煤仓间结构Push-Over分析及优化[D].武汉:武汉理工大学硕士学位论文,2010
    [10-09]邢泰高,欧添雁,邹辉阳.土耳其钢结构主厂房抗震设计探讨[J].武汉大学学报(工学版),2012,31(S1):21-26.
    [10-10]申兆武.大型火电厂主厂房纵向带边框柱剪力墙抗震性能研究[D].西安:西安建筑科技大学,2004
    [10-11]彭修宁,薛建阳,刘祖强等.刚性钢框架异型节点性能及设计方法[J].土木建筑与环境工程,2010,32(3):22-26
    [10-12]薛建阳,刘祖强,胡宗波等.钢框架异型节点核心区的受剪机理及承载力计算[J].地震工程与工程振动,2010,30(5):37-41
    [10-13] AISC. Load and resistance factor design specification for structural steel
    buildings[S].Chicago: American Institute of Steel Construction,1999