闽西北不同施肥毛竹林生态系统碳平衡研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
竹林是我国南方重要的森林类型,到2008年第七次森林资源清查时已达538.10万公顷,其中毛竹(Phyllostachys edulis)林面积为386.83万公顷,约91.57亿株。竹林施肥是影响土壤质量演化及其可持续利用的重要林业措施之一,本文研究施肥对毛竹林生态系统碳平衡的影响,以期为现实竹林的科学经营提供理论指导。本项研究设置施用5年竹林专用肥(Ⅰ)、5年氮、磷、钾配方施肥(Ⅱ)、5年有机肥(Ⅲ)、1年竹林专用肥(Ⅳ)、1年有机肥(Ⅴ)、不施肥毛竹林(Ⅵ)6个试验水平,从生态系统碳输入和输出的角度出发,研究不同施肥措施下毛竹林生态系统碳储量及分配格局、土壤活性有机碳、呼吸及组分呼吸的变化规律,探讨其与土壤温/湿度、根系生物量、凋落物量及土壤质量因子等之间的关系,揭示不同施肥措施调控下土壤呼吸过程及影响机制,评估施肥措施调控下毛竹林碳汇/源的影响。主要研究结果如下:
     1.不同施肥处理毛竹林生态系统碳储量、碳分配格局及植被层碳素平均年净固定量
     (1)毛竹林Ⅰ~Ⅵ植被层碳储量分别为41.49、35.82、45.99、32.11、35.30、28.37tC·hm~(-2),植被层碳储量在器官上的分配均以竹秆最大,毛竹林地施肥可以提高竹秆生物量及碳储量占总量的比例。
     (2)不同施肥处理及季节变化对土壤有机碳含量无显著影响,有机碳含量为:Ⅵ(13.70g·kg~(-1))>Ⅰ(13.61g·kg~(-1))>Ⅳ(12.11g·kg~(-1))>Ⅲ(11.95g·kg~(-1))>Ⅴ(11.57g·kg~(-1))>Ⅱ(11.43g·kg~(-1)),Ⅰ~Ⅵ毛竹林土壤层(0~100cm)碳储量为111.34~122.36t C·hm~(-2),平均值为117.41t C·hm~(-2)。
     (3)毛竹林Ⅰ~Ⅵ生态系统碳贮量分别为165.36、153.29、168.35、145.19、154.06、145.00t C·hm~(-2)。土壤层碳贮量所占比例最大,约为75%;其次是乔木层,枯落物层最低,仅为0.47%~1.73%。
     (4)毛竹林Ⅰ~Ⅵ植被层碳素平均年净固定量均为:Ⅲ>Ⅰ>Ⅱ>Ⅴ>Ⅳ>Ⅵ,年固碳量分别为11.30、11.23、8.45、6.40、5.64、5.45t C·hm~(-2)·a~(-1),相当于年同化CO2量41.41、41.17、30.99、23.47、20.69、20.00t CO_2·hm~(-2)·a~(-1)。
     2.不同施肥处理毛竹林活性有机碳变化规律
     (1)施肥降低土壤MBC含量,下降幅度为16.44%~28.69%。0-100cm土层MBC平均含量排列顺序为:Ⅵ(118.47mg·kg~(-1))>Ⅳ(98.99mg·kg~(-1))>Ⅰ(92.46mg·kg~(-1))>Ⅴ(91.06mg·kg~(-1))>Ⅱ(86.25mg·kg~(-1))>Ⅲ(84.48mg·kg~(-1))。土壤微生物生物量碳表现出明显的季节动态,7月和10月MBC含量均显著高于1月和4月。
     (2)施肥降低土壤HWC含量,下降幅度为4.99%~23.54%。0-100cm土层HWC平均含量排列顺序为:Ⅵ(641.29mg·kg~(-1))>Ⅰ(609.30mg·kg~(-1))>Ⅳ(587.13mg·kg~(-1))>Ⅴ(562.88mg·kg~(-1))>Ⅲ(559.16mg·kg~(-1))>Ⅱ(490.35mg·kg~(-1))。土壤热水浸提有机碳表现出明显的季节动态,但不同施肥处理之间规律性不一致。
     (3)施肥降低土壤ROC含量(除处理Ⅰ),降低幅度为-7.82%~20.08%。0-100cm土层ROC平均含量排列顺序为:Ⅰ(5.10g·kg~(-1))>Ⅵ(4.73g·kg~(-1))>Ⅲ(4.39g·kg~(-1))>Ⅱ(4.32g·kg~(-1))>Ⅳ(4.06g·kg~(-1))>Ⅴ(3.78g·kg~(-1))。土壤易氧化态碳表现出明显的季节动态,均以10月份最高,1月份次之,4月和7月较低。
     (4)施肥有利于土壤中轻组有机质含量的积累,提高幅度为13.37%~59.30%。0-100cm土层LFOM平均含量排列顺序为:Ⅲ(2.74g·kg~(-1))>Ⅰ(2.22g·kg~(-1))>Ⅱ(2.20g·kg~(-1))>Ⅳ(1.95g·kg~(-1))>Ⅴ(1.72g·kg~(-1))=Ⅵ(1.72g·kg~(-1))。
     (5)不同土壤活性有机碳占总有机碳的比率为:ROC>LFOM>HWC>MBC。其中ROC的比例介于29.00%~37.80%,LFOM介于11.01%~22.93%,HWC介于4.11%~4.84%,MBC介于0.68%~0.82%。不同形式活性有机碳均随土层加深呈现下降趋势,表层富集现象明显。土壤总有机碳、微生物量碳、热水浸提有机碳、易氧化态碳及轻组有机质之间均达到极显著相关水平,相关系数介于0.708~0.964。
     (6)以不施肥毛竹林各土层为参照土壤,计算出混交经营对毛竹林各土层土壤碳库指数(CPI)、碳库活度(L)、碳库活度指数(LI)、氧化稳定系数(KOS)和碳库管理指数(CMI),CPI介于0.83~0.99之间,LI介于0.92~1.15之间,KOS介于1.65~2.06之间,CMI介于77.32~112.36之间。表明处理Ⅰ对土壤具有培肥作用,处于良性管理状态。
     3.不同施肥处理毛竹林总呼吸及组分呼吸变化规律。
     (1)不同施肥处理毛竹林土壤总呼吸、根呼吸、凋落物呼吸、矿质呼吸均表现出一定的月动态特征,且呈单峰型曲线。
     (2)六种处理(Ⅰ~Ⅵ)毛竹林地土壤总呼吸、根呼吸、凋落物呼吸、矿质呼吸年平均速率为3.57~3.96、1.15~1.69、0.86~1.21、1.05~1.49μmol·m~(-2)·s-1。施肥处理增大了毛竹林土壤总呼吸、矿质呼吸,根呼吸(除处理Ⅲ),降低了凋落物呼吸。
     (3)根呼吸、凋落物呼吸、矿质呼吸对总呼吸的贡献率均具有一定的季节性变化。根呼吸年平均贡献率分别为42.14%、44.08%、31.40%、42.41%、39.76%、39.04%;凋落物呼吸年平均贡献率分别为23.48%、22.50%、29.06%、30.47%、26.69%、31.80%;矿质呼吸年平均贡献率分别为34.99%、33.59%、39.79%、27.12%、33.85%、29.17%。
     (4)土壤呼吸及组分呼吸与5cm土壤温度、土壤湿度均呈指数相关,土壤总呼吸,矿质呼吸相关性要高于根呼吸与凋落物呼吸。土壤呼吸及组分呼吸Q10介于1.30-2.13。处理Ⅰ增强了土壤呼吸与根呼吸的敏感性,处理Ⅱ-Ⅴ降低了土壤呼吸与根呼吸的敏感性,施肥处理均降低了凋落物呼吸和矿质呼吸的敏感性。
     4.不同施肥处理毛竹林生态系统碳平衡
     处理Ⅰ~Ⅵ土壤总呼吸年释放量分为13.67、14.18、14.41、14.96、14.10、13.51tC·hm~(-2)·a~(-1),相当于年CO2释放量为49.55~54.84t CO2·hm~(-2)·a~(-1),其中根呼吸年释放量为18.20~23.36t CO2·hm~(-2)·a~(-1),凋落物呼吸年释放量为11.96~16.82t CO2·hm~(-2)·a~(-1),矿质呼吸年释放量为14.53~20.61t CO2·hm~(-2)·a~(-1)。年初级净生产力(NPP)分为12.60、9.79、12.86、6.31、7.13、6.25t C·hm~(-2)·a~(-1)。不同施肥处理下生态系统净生产力(NEP)不同,Ⅰ~Ⅵ生态系统净生产力分别为4.71、1.47、2.79、-2.28、-1.21、-2.29t C·hm~(-2)·a~(-1),表现为:Ⅰ>Ⅲ>Ⅱ>Ⅴ>Ⅳ>Ⅵ,施肥毛竹林高于不施肥毛竹林,施肥5年毛竹林优于施肥1年毛竹林,且以施用5年毛竹林专用肥效果最佳。
Bamboo forest is a critical type of forest in South China, until the7thnational forestinventory in2008, bamboo forest has an area of5.381million hectare, among which, Mosobamboo (Phyllostachys edulis) forest accounts for3.8683million hectare, about9.157billionstems. Fertilization in bamboo forest is one of the most impressive forest measures affectingsoil quality evolution and sustainable use, In this study, the effect of fertilization on carbonbalance in Moso bamboo forest was conducted to supply theoretical guidance to scientificallysustainable management in bamboo forest. In this research, bamboo forests with six treatments,5-year application of specialized fertilizer for bamboo, formula NPK-fertilizer, organicfertilizer, and1-year application of specialized fertilizer for bamboo, organic fertilizer, andnon-fertilization application were selected to study the carbon stock, stock distribution patterns,change laws of soil active organic matter, soil respiration and source components underdifferent fertilization measures from the point of ecosystem carbon input and output. The studyalso discussed the relationships between these changes patterns and soil respiration/moisture,root biomass, litter biomass and soil quality factors, and revealed the influence of fertilizationon soil respiration processes and influence mechanism, further assessed the influence offertilization on carbon sink/source in Moso bamboo forest. The main results were following:
     1. Carbon stock, carbon distribution patterns and annual net carbon sequestration ofvegetation layer in Moso bamboo forest ecosystems under different fertilization treatments
     (1)Vegetation carbon stock of stand Ⅰ~Ⅵ were41.49,35.82,45.99,32.11,35.30,28.37t C.hm~(-2). Considering the distribution of vegetation carbon stock to different organs, thedistribution was highest in stem, and fertilization could increase the proportion of stembiomass and carbon stock to total biomass and carbon stock.
     (2)Different fertilization treatments and seasonal changes had no significant effect on soilorganic matter, and the soil organic carbon content were: Ⅵ (13.70g·kg~(-1))>Ⅰ(13.61g·kg~(-1))>Ⅳ(12.11g·kg~(-1))>Ⅲ(11.95g·kg~(-1))>Ⅴ(11.57g·kg~(-1))>Ⅱ(11.43g·kg~(-1)). In layer of0~100cm, the soil organic carbon stock of standⅠ~Ⅵ was111.34~122.36t C·hm~(-2)with average of117.41t C·hm~(-2).
     (3)Ecosystem carbon stock of Moso bamboo forest of stand Ⅰ~Ⅵ were165.36,153.29,168.35,145.19,154.06,145.00t C·hm~(-2), respectively. Soil layer accounted for thehighest rate of about75%, followed by tree layer, but litter layer was lowest of only0.47%~1.73%.
     (4)Annual average carbon sequestration of vegetation layer of stand Ⅰ~Ⅵ was inorder of Ⅲ>Ⅰ>Ⅱ>Ⅴ>Ⅳ>Ⅵ, which were11.30,11.23,8.45,6.40,5.64,5.45tC·hm~(-2)·a~(-1), equaling41.41,41.17,30.99,23.47,20.69,20.00t CO2·hm~(-2)·a~(-1).
     2. Changes patterns of different types of active organic matter in Moso bamboo forestecosystem under different fertilization treatments
     (1)Fertilization decreased soil MBC content by16.44%~28.69%. In0-100layer, theMBC was in order of Ⅵ (118.47mg·kg~(-1))>Ⅳ (98.99mg·kg~(-1))>Ⅰ(92.46mg·kg~(-1))>Ⅴ(91.06mg·kg~(-1))>Ⅱ(86.25mg·kg~(-1))>Ⅲ (84.48mg·kg~(-1)). Seasonal changes were observedin MBC, the content of MBC in July and October were significant higher than that in Januaryand April.
     (2)Fertilization decreased soil HWC content by4.99%~23.54%. In0-100layer, theHWC was in order of Ⅵ (641.29mg·kg~(-1))>Ⅰ(609.30mg·kg~(-1))>Ⅳ (587.13mg·kg~(-1))>Ⅴ(562.88mg·kg~(-1))>Ⅲ (559.16mg·kg~(-1))>Ⅱ(490.35mg·kg~(-1)). The HWC content showedobvious seasonal changes, however the change laws of different fertilization treatments werenot uniform.
     (3)Fertilization decreased soil ROC content by-7.82%~20.08%, except treatment Ⅰ. In0-100layer, the ROC was in order ofⅠ(5.10g·kg~(-1))>Ⅵ(4.73g·kg~(-1))>Ⅲ (4.39g·kg~(-1))>Ⅱ(4.32g·kg~(-1))>Ⅳ(4.06g·kg~(-1))>Ⅴ(3.78g·kg~(-1)). Seasonal changes were observed in ROCcontent, peaking in October followed by January, but bottomed in April and July.
     (4)Fertilization was good to LFOM accumulation, increased by13.37%~59.30%. In0-100layer, the LFOM was in order of Ⅲ (2.74g·kg~(-1))>Ⅰ(2.22g·kg~(-1))>Ⅱ(2.20g·kg~(-1))>Ⅳ (1.95g·kg~(-1))>Ⅴ (1.72g·kg~(-1))=Ⅵ (1.72g·kg~(-1)).
     (5)The proportions of different types of organic matter to total soil organic matter were inorder of ROC>LFOM>HWC>MBC. The rates of ROC, LFOM, HWC and MBC were in range of29.00%~37.80%,11.01%~22.93%,4.11%~4.84%,0.68%~0.82%,respectively. Different types of active organic matter decreased along with the increase of soildepth, showing obvious surface enrichment. The relationships between total soil organic matterand MBC, HWC, ROC and LFOM were significantly related, the coefficients were0.708~0.964.
     (6)Considering the soil of different layers of non-fertilized Moso bamboo stand asreference, the carbon pool index (CPI), carbon pool activity(L), carbon pool activity index(LI),coefficient of oxidation stability (KOS) and carbon pool index were calculated, the CPI, LI, KOSand CMI were in range of0.92~1.15,1.65~2.06,77.32~112.36. Results showed thattreatment Ⅰ was functioned by improving soil fertility, which was in good managementstatus.
     3. Change patterns of total soil respiration and source components under differentfertilization treatments
     (1)Total soil respiration (RS), root respiration (RR), litter respiration (RL) and mineralrespiration (RM) were characterized by monthly changes with single peak curve.
     (2)Among the six treatments (Ⅰ~Ⅵ), annual rates of RS, RR, RL, RMwere ranged from3.57~3.96,1.15~1.69,0.86~1.21,1.05~1.49μmol·m~(-2)·s-1. Fertilization increase total RS,RM, and RR(except treatment Ⅲ), decreased RL.
     (3)Contributions RR, RL, RMto total RSshowed seasonal changes. RRcontributed42.14%,44.08%,31.40%,42.41%,39.76%,39.04%, RLcontributed23.48%,22.50%,29.06%,30.47%,26.69%,31.80%and RMcontributed34.99%,33.59%,39.79%,27.12%,33.85%,29.17%.
     (4)Soil respiration and source components were exponentially related with soiltemperature and moisture at depth of5cm, and the correlation efficient of RSand RMwerehigher than that of RRand RL. Q10values of soil respiration and source components were inrange of1.30-2.13. TreatmentⅠincreased temperature sensitivity of RSand RR, but treatmentsⅡ-Ⅴdecreased temperature sensitivity of RSand RR. However, fertilization treatmentdecreased temperature sensitivity of RLand RM.
     4. Carbon balance in Moso bamboo forest ecosystem under different fertilizationtreatment
     Annual C release from RSwere13.67,14.18,14.41,14.96,14.10,13.51t C·hm~(-2)·a~(-1),respectively, in treatmentⅠ~Ⅵ, equalling49.55~54.84t CO2·hm~(-2)·a~(-1), among which, annualC release from RR, RLand RMwere18.20~23.36,11.96~16.82and14.53~20.61tCO2·hm~(-2)·a~(-1), respectively. Annual net primary productivity (NPP) were12.60,9.79,12.86,6.31,7.13,6.25t C·hm~(-2)·a~(-1). Net ecosystem productivity (NEP) varied among differentfertilization treatments, and NEP of Ⅰ~Ⅵ were4.71,1.47,2.79,-2.28,-1.21,-2.29tC·hm~(-2)·a~(-1)and in order of Ⅰ>Ⅲ>Ⅱ>Ⅴ>Ⅳ>Ⅵ. NEP of fertilized bamboo stand washigher than that of unfertilized bamboo stand, and duration of5-year fertilization was betterthan that of1-year fertilization, further bamboo forest with5-year specialized fertilizationapplication was best.
引文
[1] Woodwell, G.M., R. Whitaker, W. Reiners, et al.Biota and the world carbon budget.Science,1978,199:141-146
    [2] Olson, J.S.W., J.A.,Allison, L.J.Carbon in live vegetation of major world ecosystems.Oak Ridge:OakRidge NationalLaboratory,1983
    [3] Post, W.M., Emanuel, W.R.,Zinke, P.J.,Stangenberger, A.G.Soil carbon pools and world life zones.Nature,1982,298:156-159
    [4] Yoda, K., People's role in the management of the global carbon sink and reservoirs, in Gloal ForestryConference.1993: Indonesia.
    [5] Houghton, R.A., R.D. Boone, J.M. Melillo, et al.Evolution of carbon dioxide from tropical zone.Nature,1985,316:617-620
    [6] Houghton, R.A.Land-use change and the carbon cycle.Global change biology,1995,1(4):275-287
    [7] Detwiler, R.P.C.A.S. Hall.Tropical forests and the global carbon cycle.Science,1988,239(4835):42-47
    [8]陈先刚,张一平,张小全,等.过去50年中国竹林碳储量变化.生态学报,2008,28(11):5218-5227
    [9]周玉荣,于振良,赵士洞.我国主要森林生态系统碳贮量和碳平衡.植物生态学报,2000,24(5):518-522
    [10]刘国华,傅伯杰,方精云.中国森林碳动态及其对全球碳平衡的贡献.生态学报,2000,20(5):733-740
    [11]江泽慧.世界竹藤.沈阳:辽宁科学技术出版社,2002
    [12]国家林业局.中国森林资源报告.北京:中国林业出版社,2009
    [13] Tans, P.P.,I.Y. FungT. Takahashi.Observational contrains on the global atmospheric CO2budget.Science,1990,247:1431-1438
    [14] Kauppi, P.E.,K. Mielik inenK. Kuusela.Biomass and carbon budget of European forests,1971to1990.Science,1992,256(5053):70-74
    [15] Dixon, R.K., A. Solomon, S. Brown, et al.Carbon pools and flux of global forest ecosystems.Science,1994,263(5144):185-190
    [16] Kurz, W.A.M.J. Apps.Conntribution of northern forests to the global C cycle: Canada as a casestudy.Water, Air,&Soil Pollution,1993,70(1):163-176
    [17]王效科,冯宗炜欧阳志云.中国森林生态系统的植物碳储量和碳密度研究.应用生态学报,2001,12(1):13-16
    [18]李海奎,雷渊才,曾伟生.基于森林清查资料的中国森林植被碳储量.林业科学,2011,47(7):7-12
    [19]汪业勖.中国森林生态系统区域碳循环研究.中国科学院博士论文,1999.
    [20]李克让,王绍强,曹明奎.中国植被和土壤碳贮量.中国科学D辑,2003,33(1):72-80
    [21]方精云,陈安平.中国森林植被碳库的动态变化及其意义.植物学报,2001,43(9):967-973
    [22]杜满义,范少辉,漆良华,等.不同类型毛竹林土壤碳、氮特征及其耦合关系.水土保持学报,2010,24(4):198-202
    [23]漆良华,刘广路,范少辉,等.不同抚育措施对闽西毛竹林碳密度、碳贮量与碳格局的影响.生态学杂志,2009,28(8):1482-1488
    [24]唐晓鹿,范少辉,漆良华,等.不同经营措施对毛竹林碳储量及碳分配影响.江西农业大学学报,2012,34(4):736-742
    [25]肖复明,范少辉,汪思龙,等.毛竹(Phyllostachy pubescens)、杉木(Cunninghamialanceolata)人工林生态系统碳贮量及其分配特征.生态学报,2007,27(7):2794-2801
    [26]李意德,吴仲民,曾庆波,等.尖峰岭热带山地雨林生态系统碳平衡的初步研究.生态学报,1998,18(4):371-378
    [27]李铭红,于明坚.青冈常绿阔叶林的碳素动态.生态学报,1996,16(6):645-651
    [28]方晰,田大伦,项文化.速生阶段杉木人工林碳素密度,贮量和分布.林业科学,2002,38(3):14-19
    [29]孙玉军,张俊,韩爱惠,等.兴安落叶松(Larix gmelini)幼中龄林的生物量与碳汇功能.生态学报,2007,27(5):1756-1762
    [30]阮宏华,姜志林,高苏铭.苏南丘陵主要森林类型碳循环研究.生态学杂志,1997,16(6):17-21
    [31]闫恩荣,王希华,陈小勇.浙江天童山区常绿阔叶林退化对土壤养分库和碳库的影响.生态学报,2007,27(4):1646-1656
    [32]程堂仁,冯菁,马钦彦,等.甘肃小陇山森林植被碳库及其分配特征.生态学报,2008,28(1):33-44
    [33]刘恩,王晖,刘世荣.南亚热带不同林龄红锥人工林碳贮量与碳固定特征.应用生态学报,2012,23(2):335-34
    [34]方精云,朴世龙,赵淑清.CO2失汇与北半球中高纬度陆地生态系统的碳汇.植物生态学报,2001,25(5):594-602
    [35]曹军,张镱锂,刘燕华.近20年海南岛森林生态系统碳储量变化.地理研究,2002,21(5):551-560
    [36]焦燕,胡海清.黑龙江省森林植被碳储量及其动态变化.Forest,2005,16(12):2248-2252
    [37]焦秀梅,项文化,田大伦.湖南省森林植被的碳贮量及其地理分布规律.中南林学院学报,2005,25(1):4-8
    [38]田大伦,王新凯,方晰, et al.喀斯特地区不同植被恢复模式幼林生态系统碳储量及其空间分布.林业科学,2011,47(9):7-14
    [39]马钦彦,谢征鸣.中国油松林储碳量基本估计.北京林业大学学报,1996,18(3):31-34
    [40]梁宏温,罗宏,温远光,等.桉树林取代马尾松林对森林生态系统碳贮量的影响.江西农业大学学报,2010,32(6):1168-1174
    [41]李意德,吴仲民,曾庆波,等.尖峰岭热带山地雨林群落生产和二氧化碳同化净增量的初步研究.植物生态学报,1998,22(2):127-134
    [42]于颖,范文义,李明泽.东北林区不同尺度森林的含碳率.应用生态学报,2012,23(2):341-346
    [43]王娟,陈云明,曹扬,等.子午岭辽东栎林不同组分碳含量与碳储量.生态学杂志,2012,31(012):3058-3063
    [44]方运霆,莫江明.鼎湖山马尾松林生态系统碳素分配和贮量的研究.广西植物,2002,22(4):305-310
    [45]田大伦,方晰.湖南会同杉木人工林生态系统的碳素含量.中南林学院学报,2004,24(2):1-5
    [46]周国模,姜培坤.毛竹林的碳密度和碳贮量及其空间分布.林业科学,2004,40(6):20-24
    [47]黄松殿,吴庆标,廖克波,等.观光木人工林生态系统碳储量及其分布格局.生态学杂志,2011,30(11):2400-2404
    [48]陈楚莹,廖利平,汪思龙.杉木人工林生态系统的碳素分配与贮量的研究.应用生态学报,2000,11(增刊):175-178
    [49]王秀云.不同年龄长白落叶松人工林碳储量分布特征.北京林业大学博士论文,2011.
    [50]周国模.毛竹林生态系统中碳储量、固定及其分配与分布的研究.浙江大学博士论文,2006.
    [51]肖复明.毛竹林生态系统碳平衡特征的研究.中国林业科学研究院博士论文,2007.
    [52]邓娟,上官周平.子午岭林区人工与天然油松林(Pinus tabulaeformis)养分库和碳库特征.生态学报,2009,29(6):3231-3240
    [53]雷丕锋,项文化,田大伦,等.樟树人工林生态系统碳素贮量与分布研究.生态学杂志,2004,23(4):25-30
    [54] Brown, S.A.E. Lugo.Biomass of tropical forests: a new estimate based on forestvolumes.Science(Washington),1984,223(4642):1290-1293
    [55]方精云.北半球中高纬度的森林碳库可能远小于目前的估算.植物生态学报,2000,24(5):635-638
    [56] Fang, J., G.G. Wang, G. Liu, et al.Forest biomass of China: an estimate based on the biomass-volumerelationship.Ecological Applications,1998,8(4):1084-1091
    [57]王秀云,孙玉军.森林生态系统碳储量估测方法及其研究进展.世界林业研究,2008,21(5):24-29
    [58]杨海军,邵全琴,陈卓奇,等.森林碳蓄积量估算方法及其应用分析.地球信息科学,2007,9(4):5-12
    [59]殷鸣放,杨琳,殷炜达,等.森林固碳领域的研究方法及最新进展.浙江林业科技,2010,30(6):78-86
    [60]杜满义.不同类型毛竹林碳库特征研究.中国林业科学研究院硕士论文,2010.
    [61]王敏,李贵才,仲国庆,等.区域尺度上森林生态系统碳储量的估算方法分析.林业资源管理,2010,2:107-112
    [62]赵仲辉.亚热带杉木林生态系统与大气间的碳通量研究.中南林业科技大学,2011.
    [63] Del Galdo, I., J. Six, A. Peressotti, et al.Assessing the impact of land‐use change on soil Csequestration in agricultural soils by means of organic matter fractionation and stable C isotopes.Globalchange biology,2003,9(8):1204-1213
    [64] Hagedorn, F., D. Spinnler, M. Bundt, et al.The input and fate of new C in two forest soils under elevatedCO2.Global Change Biology,2003,9(6):862-872
    [65] Matamala, R., M.A. Gonzalez-Meler, J.D. Jastrow, et al.Impacts of fine root turnover on forest NPP andsoil C sequestration potential.Science,2003,302(5649):1385-1387
    [66] O'Reilly, C.M., S.R. Alin, P.D. Plisnier, et al.Climate change decreases aquatic ecosystem productivityof Lake Tanganyika, Africa.Nature,2003,424(6950):766-768
    [67] Grünzweig, J.M., S.D. Sparrow, D. Yakir, et al.Impact of agricultural land‐use change on carbonstorage in Boreal Alaska.Global Change Biology,2004,10(4):452-472
    [68] De Graaff, M.A., J. Six, D. Harris, et al.Decomposition of soil and plant carbon from pasture systemsafter9years of exposure to elevated CO2: impact on C cycling and modeling.Global Change Biology,2004,10(11):1922-1935
    [69]陈泮勤.地球系统碳循环.北京:科学出版社,2004
    [70]于贵瑞,李海涛,王绍強.全球变化与陆地生态系统碳循环和碳蓄积: Global change, carbon cycleand storage in terrestrial ecosystem.北京:气象出版社,2003
    [71] Smith, T., W. Cramer, R. Dixon, et al.The global terrestrial carbon cycle.Water, Air,&Soil Pollution,1993,70(1):19-37
    [72] Schlesinger, W.H.Biogeochemistry: an analysis of global change.Academic press,1997
    [73] Lal, R.Forest soils and carbon sequestration.Forest Ecology and Management,2005,220(1):242-258
    [74] Bonan, G.B.,F.S. ChapinS.L. Thompson.Boreal forest and tundra ecosystems as components of theclimate system.Climatic Change,1995,29(2):145-167
    [75]李克让.土地利用变化和温室气体净排放与陆地生态系统碳循环.北京:气象出版社,2002
    [76]李鑫,欧阳勋志,刘琪璟.江西省2001-2005年森林植被碳储量及区域分布特征.自然资源学报,2011,26(4):655-665
    [77]叶金盛,佘光辉.广东省森林植被碳储量动态研究.南京林业大学学报:自然科学版,2010,34(004):7-12
    [78]王瑞静,赵敏,高峻.城市森林主要植被类型碳储量研究.地理科学,2011,31(4):490-494
    [79]张修玉,许振成,王俊能,等.西双版纳森林植被碳储量动态与增汇潜力研究.生态环境学报,2011,20(3):397-402
    [80]马琪,刘康,张慧.陕西省森林植被碳储量及其空间分布.资源科学,2012,34(9):1781-1789
    [81]郭起荣,杨光耀,杜天真,等.中国竹林的碳素特征.世界竹藤通讯,2005,3(3):25-28
    [82]王兵,魏文俊,邢兆凯,等.中国竹林生态系统的碳储量.生态环境,2008,17(4):1680-1684
    [83]王斌,杨校生.4种典型地带性森林生态系统碳含量与碳密度比较.湖南农业大学学报(自然科学版),2010,36(4):464-450
    [84]彭守璋,赵传燕,郑祥霖,等.祁连山青海云杉林生物量和碳储量空间分布特征.应用生态学报,2011,22(7):1689-1694
    [85]李甜甜,季宏兵,孙媛媛,等.我国土壤有机碳储量及影响因素研究进展.首都师范大学学报:自然科学版,2007,28(1):93-97
    [86]程鹏飞,王金亮,王雪梅,等.森林生态系统碳储量估算方法研究进展.林业调查规划,2009,34(6):39-45
    [87]黄志霖,田耀武,曾立雄,等.森林土壤有机碳模型评述与应用.西北林学院学报,2012,27(5):50-56
    [88] Post, W.M.L. Mann.Changes in soil organic carbon and nitrogen as a result of cultivation.Soils and theGreenhouse Effect,1990:410-416
    [89] Post, W.M., W.R. Emanuel, P.J. Zinke, et al.Soil carbon pools and world life zones.1982
    [90] Sedjo, R.A.The carbon cycle and global forest ecosystem.Water, Air,&Soil Pollution,1993,70(1):295-307
    [91]徐德应.人类经营活动对森林土壤碳的影响.世界林业研究,1994,5(26):26-32
    [92]王艳芬,陈佐忠, L.T. Tieszen.人类活动对锡林郭勒地区主要草原土壤有机碳分布的影响.植物生态学报,1998,22(6):545-551
    [93] Valentini, R., G. Matteucci, A. Dolman, et al.Respiration as the main determinant of carbon balance inEuropean forests.Nature,2000,404(6780):861-865
    [94] Woodwell, G.M., R. Whitaker, W. Reiners, et al.Biota and the world carbon budget.Science;(UnitedStates),1978,199(4325)
    [95] Ajtay, G.,P. KetnerP. Duvigneaud.Terrestrial primary production and phytomass.The global carbon cycle,1979,13:129-182
    [96]郑聚锋,程琨,潘根兴,等.关于中国土壤碳库及固碳潜力研究的若干问题.科学通报,2011,56(26):2162-2173
    [97]倪元龙,于东升,张黎明,等.土壤碳库研究中土壤数据从矢量到栅格的等精度转换.地理研究,2012,31(6)
    [98]史利江,郑丽波,张卫国,等.上海土壤有机碳储量及其空间分布特征.长江流域资源与环境,2010,19(12):1442-1447
    [99]黄鸿翔.关于开发土壤碳库固碳减排潜力的几点思考.中国土壤与肥料,2010(6):1-3
    [100]李意德,曾庆波.我国热带天然林植被C贮存量的估算.林业科学研究,1998,11(2):156-162
    [101]郭建明,胡理乐,林伟,等.秦岭太白红杉林土壤有机碳密度研究.环境科学研究,2010(12):1464-1469
    [102]骆土寿,陈永富.海南岛霸王岭热带山地雨林采伐经营初期土壤碳氮储量.林业科学研究,2000,13(2):123-128
    [103]杨晓梅,程积民,孟蕾,等.不同林地土壤有机碳储量及垂直分布特征.中国农学通报,2010,26(9):132-135
    [104]黄承才.浙江省毛竹林和茶园土壤碳库的研究.绍兴文理学院学报,2001,21(1):55-57
    [105]巫涛,彭重华,田大伦,等.长沙市区马尾松人工林生态系统碳储量及其空间分布.生态学报,2012,32(13):4034-4042
    [106]方运霆,莫江明, S. Brown,等.鼎湖山自然保护区土壤有机碳贮量和分配特征.生态学报,2004,24(1):135-142
    [107]王哲,韩玉洁,康宏樟,等.黄浦江上游主要树种水源涵养林生态系统碳储量.生态学杂志,2012,31(008):1930-1935
    [108]聂道平,徐德应.全球碳循环与森林关系的研究——问题与进展.世界林业研究,1997,10(5):33-40
    [109] Lal, R.Soil carbon sequestration in China through agricultural intensification, and restoration ofdegraded and desertified ecosystems.Land Degradation&Development,2002,13(6):469-478
    [110]缪琦,史学正,于东升,等.气候因子对森林土壤有机碳影响的幅度效应研究.土壤学报,2010(002):270-278
    [111]孙晓芳,岳天祥,范泽孟,等.全球植被碳储量的时空格局动态.Resources Science,2013,35(4)
    [112]黄昌勇.土壤学.中国农业出版社,2000
    [113]商素云,李永夫,姜培坤,等.天然灌木林改造成板栗林对土壤碳库和氮库的影响.应用生态学报,2012,23(3):659-665
    [114]谭文峰,朱志锋,刘凡,等.江汉平原不同土地利用方式下土壤团聚体中有机碳的分布与积累特点.自然资源学报,2006,21(6):973-980
    [115]李顺姬,邱莉萍,张兴昌.黄土高原土壤有机碳矿化及其与土壤理化性质的关系.生态学报,2010(5):1217-1226
    [116]曲卫东,陈云明,王琳琳,等.黄土丘陵区柠条人工林土壤有机碳动态及其影响因子.中国水土保持科学,2011,9(4):72-77
    [117]王绍强,刘纪远.土壤碳蓄积量变化的影响因素研究现状.地球科学进展,2002,17(4):528-534
    [118] Hassink, J.Preservation of plant residues in soils differing in unsaturated protective capacity.SoilScience Society of America Journal,1996,60(2):487-491
    [119]王长庭,龙瑞军,王启基, et al.高寒草甸不同海拔梯度土壤有机质氮磷的分布和生产力变化及其与环境因子的关系.草业学报,2005,14(4):15-20
    [120]陈浩,莫江明,张炜,等.氮沉降对森林生态系统碳吸存的影响.生态学报,2012,32(21):6864-6879
    [121]王清奎.碳输入方式对森林土壤碳库和碳循环的影响研究进展.Chinese Journal of Applied Ecology,2011,22(4):1075-1081
    [122]王鹏程.三峡库区森林植被水源涵养功能研究.北京:中国林业科学研究院博士论文,2007
    [123] Houghton, R.The annual net flux of carbon to the atmosphere from changes in land use1850–1990.Tellus B,1999,51(2):298-313
    [124] Guo, L.R. Gifford.Soil carbon stocks and land use change: a meta analysis.Global change biology,2002,8(4):345-360
    [125] Ingram, J.E. Fernandes.Managing carbon sequestration in soils: concepts and terminology.Agriculture,ecosystems&environment,2001,87(1):111-117
    [126]刘纪远,王绍强,陈镜明,等.1990~2000年中国土壤碳氮蓄积量与土地利用变化.2004,59(4):483-496
    [127]吴建国,张小全,徐德应.土地利用变化对土壤有机碳贮量的影响.应用生态学报,2004,15(4):593-599
    [128]李家永,袁小华.红壤丘陵区不同土地资源利用方式下有机碳储量的比较研究.资源科学,2001,23(5):73-76
    [129]戴慧,王希华,阎恩荣.浙江天童土地利用方式对土壤有机碳矿化的影响.生态学杂志,2007,26(7):1021-1026
    [130]魏文佳,桂智凡,薛滨,等.土地利用变化对陆地生态系统碳储量的影响'.第四纪研究,2012,32(2)
    [131]王小利,郭胜利,马玉红,等.黄土丘陵区小流域土地利用对土壤有机碳和全氮的影响.应用生态学报,2007,18(6):1281-1285
    [132]王淑芳,王效科,欧阳志云.密云水库上游流域土壤有机碳和全氮密度影响因素研究.环境科学,2012,33(003):946-951
    [133] Bouwman, A.Global distribution of the major soils and land cover types.Soils and the GreenhouseEffect,1990:33-59
    [134] Bouwman, A.Soils and the greenhouse effect.1990
    [135]肖洪浪,赵雪.河北坝缘简育干润均腐土耕种过程中的退化研究.土壤学报,1998,35(1):129-134
    [136] Wilson, A.Pioneer agriculture explosion and CO2levels in the atmosphere.1978
    [137] Campbell, C., B. McConkey, R. Zentner, et al.Tillage and crop rotation effects on soil organic C and Nin a coarse-textured Typic Haploboroll in southwestern Saskatchewan.Soil and Tillage Research,1996,37(1):3-14
    [138] Lal, R.,T. LoganN. Fausey.Long-term tillage effects on a Mollic Ochraqualf in North-West Ohio. III.Soil nutrient profile.Soil and Tillage Research,1990,15(4):371-382
    [139] Davidson, E.A.P.A. Lefebvre.Estimating regional carbon stocks and spatially covarying edaphicfactors using soil maps at three scales.Biogeochemistry,1993,22(2):107-131
    [140]孟磊,丁维新,蔡祖聪,等.长期定量施肥对土壤有机碳储量和土壤呼吸影响.地球科学进展,2005,20(6):687-692
    [141]尤孟阳,李海波,韩晓增.土地利用变化与长期施肥对黑土有机碳密度的影响.水土保持学报,2010,24(2):155-159
    [142]张责龙,赵建宁,宋晓龙,等.施肥对土有机碳含及碳库管理指数的影响.植物营养与肥料学报,2012,18(2):359-365
    [143]金峰,杨浩.土壤有机碳储量及影响因素研究进展.土壤,2000,32(1):11-17
    [144]李发东,赵广帅,李运生,等.灌溉对农田土壤有机碳影响研究进展.生态环境学报,2012,21(11):1905-1910
    [145]张懿晗.火干扰对兴安落叶松林土壤有机碳储量及空间分布格局的影响.东北林业大学,2011.
    [146] Haynes, R.J.M.H. Beare.Aggregation and organic matter storage in meso-thermal, humid soils. In:Carter MR, eds.Advances in Soil Science,Structure and Organic Matter Storagein Agriculture Soils.Boca Raton:CRC Lewis Publishers1996:213~262
    [147]张国,曹志平,胡婵娟.土壤有机碳分组方法及其在农田生态系统研究中的应用.应用生态学报,2011,22(7):1921-1930
    [148] Blair, G.J.,R.D.B. LefroyL. Lisle.Soil carbon fractions based on their degree of oxidation, and thedevelopment of a carbon management index for agricultural systems.Australian Journal of AgriculturalResearch,1995,46(7):1459-1466
    [149] Janzen, H., C. Campbell, S. Brandt, et al.Light-fraction organic matter in soils from long-term croprotations.Soil Science Society of America Journal,1992,56(6):1799-1806
    [150] Whitbread, A.,R.D.B. LefroyG.J. Blair.A survey of the impact of cropping on soil physical andchemical properties in north-western New South Wales.Australian Journal of Soil Research,1998,36(4):669-681
    [151]沈宏,曹志洪,王志明.不同农田生态系统土壤碳库管理指数的研究.自然资源学报,1999,14(3):206-211
    [152]张国,曹志平,胡婵.土壤有机碳分组方法及其在农田生态系统研究中的应用.应用生态学报,2011,22(7):1921-1930
    [153] Wang, W., R. Dalal, P. Moody, et al.Relationships of soil respiration to microbial biomass, substrateavailability and clay content.Soil Biology and Biochemistry,2003,35(2):273-284
    [154]吴金水,林启美,黄巧云,等.土壤微生物生物量测定方法及其应用.北京:气象出版社,2006
    [155] Anderson, T.H.K. Domsch.Application of eco-physiological quotients (qCO2and qD) on microbialbiomasses from soils of different cropping histories.Soil Biology and Biochemistry,1990,22(2):251-255
    [156]吴建国,徐德应.土地利用变化对土壤有机碳的影响:理论,方法和实践.北京:中国林业出版社,2004
    [157] Wang, Q.S. Wang.Soil organic matter under different forest types in Southern China.Geoderma,2007,142(3):349-356
    [158] Ghani, A.,M. DexterK. Perrott.Hot-water extractable carbon in soils: a sensitive measurement fordetermining impacts of fertilisation, grazing and cultivation.Soil Biology and Biochemistry,2003,35(9):1231-1243
    [159] Cabrera, M.M. Beare.Alkaline persulfate oxidation for determining total nitrogen in microbial biomassextracts.Soil Science Society of America Journal,1993,57(4):1007-1012
    [160] Alvarez, R.C. Alvarez.Soil organic matter pools and their associations with carbon mineralizationkinetics.Soil Science Society of America Journal,2000,64(1):184-189
    [161] Curtin, D., C. Wright, M. Beare, et al.Hot water-extractable nitrogen as an indicator of soil nitrogenavailability.Soil Science Society of America Journal,2006,70(5):1512-1521
    [162]李君剑,赵溪,潘恬豪,等.不同土地利用方式对土壤活性有机质的影响.水土保持学报,2011,25(1):147-151
    [163]周程爱,张于光,肖烨,等.土地利用变化对川西米亚罗林土壤活性碳库的影响.生态学报,2009,29(8):4542-4547
    [164] Biederbeck, B.R. Zentner.Labile soil organic matter as influenced by cropping practices in a naredenvironment.Soil Biology and Biochemistry,1994,26(12):1647-1656
    [165]沈宏,曹志洪,胡正义.土壤活性有机碳的表征及其生态效应.生态学杂志,1999,18(3):32-38
    [166]沈宏,徐志红.施肥对土壤不同碳形态及碳库管理指数的影响.土壤学报,2000,37(2):166-173
    [167]杨丽霞,潘剑君.土壤活性有机碳库测定方法研究进展.土壤通报,2004,35(4):502-506
    [168]马少杰,李正才,王刚,等.集约和粗放经营下毛竹林土壤活性有机碳的变化.植物生态学报,2011,35(5):551-557
    [169] Besnard, E., C. Chenu, J. Balesdent, et al.Fate of particulate organic matter in soil aggregates duringcultivation.European Journal of Soil Science,1996,47(4):495-503
    [170] John, B., T. Yamashita, B. Ludwig, et al.Storage of organic carbon in aggregate and density fractionsof silty soils under different types of land use.Geoderma,2005,128(1):63-79
    [171]刘恩科,赵秉强,胡昌浩,等.长期施氮、磷、钾化肥对玉米产量及土壤肥力的影响.植物营养与肥料学报,2007,13(5):789-794
    [172]宇万太,赵鑫,姜子绍,等.不同施肥制度对潮棕壤微生物量碳的影响.生态学杂志,2007,26(10):1574-1578
    [173]张明,白震,张威,等.长期施肥农田黑土微生物量碳,氮季节性变化.生态环境,2007,16(5):1498-1503
    [174]徐永刚,宇万太,马强,等.长期不同施肥制度对潮棕壤肥力及微生物活性的影响.生态学杂志,2010,29(6):1135-1142
    [175]芦思佳,韩晓增.长期施肥对微生物量碳的影响.土壤通报,2011,42(6):1355-1358
    [176]徐明岗,于荣,王伯仁.长期不同施肥下红壤活性有机质与碳库管理指数变化.土壤学报,2006,43(5):723-729
    [177]张付申.不同施肥处理对娄土和黄绵土有机质氧化稳定性的影响.河南农业大学学报,1996,30(1):80-84
    [178]王晶,朱平,张男,等.施肥对黑土活性有机碳和碳库管理指数的影响.土壤通报,2003,34(5):394-397
    [179]张迪,韩晓增.长期不同植被覆盖和施肥管理对黑土活性有机碳的影响.中国农业科学,2010,43(13):2715-2723
    [180]袁颖红,李辉信,黄欠如,等.长期施肥对水稻土壤粒有机碳和矿物结合态有机碳的影响.生态学报,2008,28(1):353-360
    [181]魏朝富,陈世正.长期施用有机肥料对紫色水稻土有机无机复合性状的影响.土壤学报,1995,32(2):159-166
    [182]王凤友.森林凋落量研究综述.生态学进展,1989,6(2):82-89
    [183]林波,刘庆.中国西部亚高山针叶林凋落物的生态功能.世界科技研究与发展,2001,23(5):49-54
    [184]林波,刘庆,吴彦,等.森林凋落物研究进展.2004,23(1):60-64
    [185] Dray, J.R.E. Gorham.Litter production in forests of the world.Advances in ecological research,1964,2:101-157
    [186]黄锦学,黄李梅,林智超,等.中国森林凋落物分解速率影响因素分析.亚热带资源与环境学报,2010,5(3):56-63
    [187]程煜,陈灿,范海兰,等.不同坡向对木荷马尾松凋落物分解及养分释放速率的影响.中国农学通报,2011,27(31):6-17
    [188]原作强,李步杭,白雪娇,等.长白山阔叶红松林凋落物组成及其季节动态.应用生态学报,2010,21(9):2171-2178
    [189]王春阳,周建斌,夏志敏,等.黄土高原区不同植物凋落物搭配对土壤微生物量碳,氮的影响.生态学报,2011,31(8):2139-2147
    [190]兰长春.肖坑亚热带常绿阔叶林凋落物量及养分动态.安徽农业大学硕士论文,2008.
    [191]郑金兴,杨智杰,凌华,等.楠木人工林凋落物的产量与月动态.福建师范大学学报:自然科学版,2011,27(001):88-92
    [192]彭少麟,刘强.森林凋落物动态及其对全球变暖的响应.生态学报,2002,22(9): l534-1544
    [193]曾锋,邱治军,许秀玉.森林凋落物分解研究进展.生态环境学报,2010,19(1):239-243
    [194]孙志高,刘景双.湿地枯落物分解及其对全球变化的响应.2006
    [195]窦荣鹏,江洪,余树全,等.柳杉凋落物在中国亚热带和热带的分解.生态学报,2010,30(7):1758-1763
    [196]陈莎莎,刘鸿雁,郭大立.内蒙古东部天然白桦林的凋落物性质和储量及其随温度和降水梯度的变化格局.植物生态学报,2010,34(9):1007-1015
    [197]李雪峰,韩士杰,张岩.降水量变化对蒙古栎落叶分解过程的间接影响.应用生态学报,2007,18(2):261-266
    [198] Mooney, H., J. Canadell, F. Chapin III, et al., Ecosystem physiology responses to global change.1999,Cambridge University Press, Cambridge.141-189.
    [199]曲浩,赵学勇,赵哈林,等.科尔沁沙地3种灌木凋落物分解速率及其与关键气象因子的关系.中国沙漠,2010,30(4):844-849
    [200] Willcock, J.N. Magan.Impact of environmental factors on fungal respiration and dry matter losses inwheat straw.Journal of Stored Products Research,2001,37(1):35-45
    [201] Berg, B.C. McClaugherty.Plant litter: decomposition, humus formation, carbonsequestration.Springer,2007
    [202]刘广路,范少辉,官凤英,等.毛竹凋落叶组成对叶凋落物分解的影响[J].生态学杂志,2011,30(8):1598-1603
    [203] HASTWELL, G.Nutrient Cycling and Limitation: Hawaii as a Model System.Austral Ecology,2005,30(5):609-610
    [204] Taylor, B.R.,W.F.J. ParsonsD. Parkinson.Decomposition of Populus tremuloides leaf litter acceleratedby addition of Alnus crispa litter.Canadian Journal of Forest Research,1989,19(5):674-679
    [205]窦荣鹏,江洪,余树全,等.热带尖峰岭和亚热带千岛湖六种凋落叶的分解特征.生态学报,2010,30(16):4521-4528
    [206]潘复静,张伟,王克林,等.典型喀斯特峰丛洼地植被群落凋落物C∶ N∶ P生态化学计量特征.生态学报,2011,31(2):335-343
    [207] Williams, B.Nitrogen mineralization and organic matter decomposition in Scots pine humus.Forestry,1972,45(2):177-188
    [208]廖利平,高洪,汪思龙.外加氮源对杉木叶凋落物分解及土壤养分淋失的影响.植物生态学报,2000,24(1):34-39
    [209]张小全,吴可红.森林细根生产和周转研究.林业科学,2001,37(3):126-138
    [210]刘聪,项文化,田大伦,等.中亚热带森林植物多样性增加导致细根生物量“超产”.植物生态学报,2011,35(5):539-550
    [211]赵忠,李鹏,薛文鹏,等.渭北主要造林树种细根生长及分布与土壤密度关系.林业科学,2004,40(5):50-55
    [212]黄锦学,凌华,杨智杰,等.中亚热带细柄阿丁枫和米槠群落细根的生产和死亡动态.生态学报,2012,32(14):4472-4480
    [213]范少辉,肖复明,汪思龙,等.毛竹林细根生物量及其周转.林业科学,2009,45(7):1-6
    [214]王存国,韩士杰,周玉梅,等.长白山阔叶红松林群落的细根现存量及养分内循环.林业科学,2012,48(3):148-153
    [215] Luo, Y.X. Zhou.Soil respiration and the environment.Academic press,2006
    [216]侯琳,雷瑞德,王得祥,等.森林生态系统土壤呼吸研究进展.土壤通报,2006,37(3):589-594
    [217]唐晓鹿.幕阜山区不同经营措施毛竹林土壤呼吸特征研究.中国林业科学研究院硕士论文,2012.
    [218] Johnson, D., D. Geisinger, R. Walker, et al.Soil pCO2, soil respiration, and root activity inCO2-fumigated and nitrogen-fertilized ponderosa pine.Plant and Soil,1994,165(1):129-138
    [219] Baldocchi, D.D.Assessing the eddy covariance technique for evaluating carbon dioxide exchange ratesof ecosystems: past, present and future.Global Change Biology,2003,9(4):479-492
    [220]王娓,宋日,郭继勋.东北松嫩草原碱茅群落的土壤呼吸同枯枝落叶分解释放CO2贡献量研究.草业学报,2002,11(2):45-50
    [221]栾军伟,向成华,骆宗诗,等.森林土壤呼吸研究进展.应用生态学报,2007,17(12):2451-2456
    [222] Adachi, M., Y.S. Bekku, A. Konuma, et al.Required sample size for estimating soil respiration rates inlarge areas of two tropical forests and of two types of plantation in Malaysia.Forest Ecology andManagement,2005,210(1):455-459
    [223] O'Neill, K.P.,E.S. KasischkeD.D. Richter.Environmental controls on soil CO2flux following fire inblack spruce, white spruce, and aspen stands of interior Alaska.Canadian Journal of Forest Research,2002,32(9):1525-1541
    [224] Samuelson, L.J., K. Johnsen, T. Stokes, et al.Intensive management modifies soil CO2efflux in6-year-old(Pinus taeda L.)stands.Forest ecology and management,2004,200(1):335-345
    [225] Scott-Denton, L.E.,K.L. SparksR.K. Monson.Spatial and temporal controls of soil respiration rate in ahigh-elevation, subalpine forest.Soil Biology and Biochemistry,2003,35(4):525-534
    [226] Kraus, T.E.C., R.J. Zasoski, R.A. Dahlgren, et al.Carbon and nitrogen dynamics in a forest soilamended with purified tannins from different plant species.Soil Biology and Biochemistry,2004,36(2):309-321
    [227]唐晓鹿,范少辉,漆良华,等.采伐对幕布山区毛竹林土壤呼吸的影响.林业科学研究,2013,26(1):52-57
    [228] Bowden, R.D., E. Davidson, K. Savage, et al.Chronic nitrogen additions reduce total soil respirationand microbial respiration in temperate forest soils at the Harvard Forest.Forest Ecology andManagement,2004,196(1):43-56
    [229] Micks, P., J.D. Aber, R.D. Boone, et al.Short-term soil respiration and nitrogen immobilizationresponse to nitrogen applications in control and nitrogen-enriched temperate forests.Forest Ecology andManagement,2004,196(1):57-70
    [230] Lee, K.H.S. Jose.Soil respiration, fine root production, and microbial biomass in cottonwood andloblolly pine plantations along a nitrogen fertilization gradient.Forest Ecology and Management,2003,185(3):263-273
    [231]黄从德.四川森林生态系统碳储量及其空间分异特征.四川农业大学博士论文,2008.
    [232]肖复明,张群,范少辉.中国森林生态系统碳平衡研究.世界林业研究,2006,19(1):53-57
    [233]杨毅,黄玫,刘洪升,等.土壤呼吸的温度敏感性和适应性研究进展.自然资源学报,2011,26(10):1812-1817
    [234]刘世荣,王晖,栾军伟.中国森林土壤碳储量与土壤碳过程研究进展.生态学报,2011,31(19):5437-5448
    [235]周国模,刘恩斌,佘光辉.森林土壤碳库研究方法进展.浙江林学院学报,2006,23(2):207-216
    [236]范少辉,唐晓鹿,漆良华,等.不同经营措施对毛竹林土壤呼吸温度敏感性的影响.四川农业大学学报,2012,30(3):300-307
    [237]张万儒,杨光澄,屠星南.中华人民共和国林业行业标准—森林土壤分析方法.北京:中国标准出版社,1999
    [238]鲁如坤.土壤农业化学分析方法.北京:中国农业科技出版社,2000
    [239]杜满义,范少辉,漆良华,等.不同类型毛竹林土壤活性有机碳.生态学杂志,32(3):571-576
    [240]徐万里,唐光木,盛建东,等.垦殖对新疆绿洲农田土壤有机碳组分及团聚体稳定性的影响生态学报.生态学报,2010,30(7):1773-1779
    [241] Powers, J.S.,J.P. HaggarR.F. Fisher.The effect of overstory composition on understory woodyregeneration and species richness in7-year-old plantations in Costa Rica.Forest Ecology andManagement,1997,99(1-2):43-54
    [242]方华军,杨学明,张晓平.农田土壤有机碳动态研究进展.土壤通报,2003,34(6):562-568
    [243]罗彩云,沈禹颖,南志标,等.水土保持耕作下陇东玉米一小麦一大豆轮作系统产量,土壤易氧化有机碳动态.水土保持学报,2005,19(4):84-88
    [244]陈庆强,沈承德,易惟熙,等.土壤碳循环研究进展.地球科学进展,1998,13(6):555-563
    [245] McLauchlan, K.K.S.E. Hobbie.Comparison of labile soil organic matter fractionation techniques.SoilScience Society of America Journal,2004,68(5):1616-1625
    [246]王晶,解宏图,朱平,等.土壤活性有机质(碳)的内涵和现代分析方法概述.生态学杂志,2003,22(6):109-112
    [247] Jenkinson, D.J. Ladd.Microbial biomass in soil: measurement and turnover.Soil biochemistry,1981,5
    [248]李新爱,肖和艾,吴金水,等.喀斯特地区不同土地利用方式对土壤有机碳、全氮以及微生物生物量碳和氮的影响.应用生态学报,2006,17(10):1827-1831
    [249] Haynes, R.R. Swift.Stability of soil aggregates in relation to organic constituents and soil watercontent.Journal of soil science,1990,41(1):73-83
    [250]张剑,汪思龙,王清奎,等.不同森林植被下土壤活性有机碳含量及其季节变化.中国生态农业学报,2009,17(1):41-47
    [251]王清奎,汪思龙,冯宗炜,等.土壤活性有机质及其与土壤质量的关系.生态学报,2005,25(3):513-519
    [252]姜培坤,周国模徐秋芳.雷竹高效栽培措施对土壤碳库的影响.林业科学,2002,38(6):6-11
    [253] Loginow, W., W. Wisniewski, S.S. Gonet, et al.Fractionation of organic carbon based on susceptibilityto oxidation.Polish Journal of Soil Science,1987,(20):47-52
    [254]邱莉萍,张兴昌,程积民.土地利用方式对土壤有机质及其碳库管理指数的影响.中国环境科学,2009,29(1):84-89
    [255]徐建民,袁可能.我国地带性土壤中有机质氧化稳定性的研究.土壤通报,1995,26(1):1-3
    [256]袁喆,罗承德,李贤伟,等.间伐强度对川西亚高山人工云杉林土壤易氧化碳及碳库管理指数的影响.水土保持学报,2010,24(6):127-131
    [257]漆良华,范少辉,杜满义,等.湘中丘陵区毛竹纯林、毛竹-杉木混交林土壤有机碳垂直分布与季节动态.林业科学,2013,49(3):17-24
    [258]向成华,栾军伟,骆宗诗,等.川西沿海拔梯度典型植被类型土壤活性有机碳分布.生态学报,2010,30(4):1025-1034
    [259] Schulten, H.R.P. Leinweber.Thermal stability and composition of mineral‐bound organic matter indensity fractions of soil.European journal of soil science,1999,50(2):237-248
    [260] Oades, J., A. Vassallo, A. Waters, et al.Characterization of organic matter in particle size and densityfractions from a red-brown earth by solid state13C NMR.Soil Research,1987,25(1):71-82
    [261]徐侠,陈月琴,汪家社,等.武夷山不同海拔高度土壤活性有机碳变化.应用生态学报,2008,19(3):539-544
    [262] Haynes, R.M. Beare.Influence of six crop species on aggregate stability and some labile organic matterfractions.Soil Biology and Biochemistry,1997,29(11):1647-1653
    [263]姜培坤.不同林分下土壤活性有机碳库研究.林业科学,2005,41(1):10-13
    [264]戴全厚,刘国彬,薛萐,等.侵蚀环境坡耕地改造对土壤活性有机碳与碳库管理指数的影响.水土保持通报,2008,28(4):17-21
    [265]苏永中,赵哈林.土壤有机碳储量,影响因素及其环境效应的研究进展.中国沙漠,2002,22(3):220-228
    [266] Mann, L.Changes in soil carbon storage after cultivation.Soil Science,1986,142(5):279-288
    [267]孟庆峰.不同改良措施对碱土的理化性状和碳库的研究.东北农业大学硕士论文,2009.
    [268]周礼恺,张志明.土壤酶活性的测定方法.土壤通报,1980,5(1):37-38
    [269]张继光,秦江涛,要文倩,等.长期施肥对红壤旱地土壤活性有机碳和酶活性的影响.土壤,2010,42(3):364-371
    [270] Caravaca, F., M. Alguacil, D. Figueroa, et al.Re-establishment of Retama sphaerocarpa as a targetspecies for reclamation of soil physical and biological properties in a semi-arid Mediterraneanarea.Forest Ecology and Management,2003,182(1):49-58
    [271]李娟.长期不同施肥制度土壤微生物学特性及其季节变化.中国农业科学院博士论文,2008.
    [272]丁新新.不同混交模式对毛竹林土壤有机碳及土壤呼吸的影响.福建农林大学硕士论文,2009.
    [273]李雅红,江洪,原焕英,等.西天目山毛竹林土壤呼吸特征及其影响因子.2010,生态学报,30(17):4590-4597
    [274]姜艳.毛竹林土壤呼吸及其三个生物学过程的时空格局变化研究.中国林业科学研究院博士论文,2010.
    [275]刘广路.毛竹林长期生产力保持机制研究.中国林业科学研究院博士论文,2009.