基于多体动力学的大型正铲液压挖掘机工作装置的动载特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,我国挖掘机行业存在的主要问题是:挖掘机品种不齐,缺少大型液压挖掘机,特别是用于矿山开采的大型正铲液压挖掘机几乎没有。为了填补我国大型正铲液压挖掘机的国内空白,某挖掘机生产企业欲研制7-50m3的大型正铲液压挖掘机与国外同类型产品品牌竞争。本文结合与该企业的合作项目,应用虚拟样机技术,进行“基于多体动力学的大型正铲液压挖掘机工作装置动载特性的研究”,包括正铲液压挖掘机工作装置各种工况下运动性能的可视化研究、整个工作范围内斗杆挖掘力的可视化计算、正铲工作装置工作范围、最大斗杆挖掘力和液压系统参数的试验设计与分析及正铲工作装置整体动态强度的研究,旨在解决设计不合理所导致的大型液压挖掘机动臂或斗杆开裂失效、挖掘区域不合理、机体干涉、挖掘力不足、液压系统工作效率低下等问题,为大型液压挖掘机的设计提供理论依据和实用手段。具体研究内容如下:
     应用D-H法推导正铲工作装置的运动轨迹方程,分析正铲工作装置的主要作业参数和挖掘包络图的绘制方法,然后利用多体动力学软件,建立正铲工作装置的运动学虚拟样机模型,完成正铲工作装置在挖掘、举升、平推工况下运动性能的可视化分析,并绘制出正铲工作装置的挖掘包络图。通过对正铲工作装置运动性能进行可视化仿真分析,可以在没有物理样机的情况下,对设计方案能否满足正铲工作装置工作范围方面的要求进行有效的分析和判断,为企业的设计工作提供参考依据。
     利用力矩平衡法和空间矢量法建立了正铲挖掘机斗杆挖掘力的理论计算公式。应用牛顿-欧拉法推导正铲工作装置的动力学方程,同时以此为基础建立正铲工作装置机液耦合的虚拟样机模型。通过在铲斗斗尖施加随油缸压力变化的弹簧力的方法仿真计算正铲工作装置的斗杆最大挖掘力,并运用正铲挖掘机斗杆挖掘力的理论公式计算相应工作姿态下的斗杆最大挖掘力,将两者数值进行对比,验证采用铲斗斗尖施加弹簧力模拟计算挖掘力方法的正确性。最后绘制出斗杆挖掘工况下的挖掘力图。
     利用/ADAMS/Insight的试验设计功能,完成对正铲工作装置工作范围、最大斗杆挖掘力、工作效率的试验设计研究。通过正铲工作装置虚拟样机的多次试验仿真,分析研究多组设计变量同时发生变化对样机性能的影响,优选出使样机性能最佳的设计方案。在ADAMS软件中,建立正铲工作装置的参数化样机模型,运用蒙特卡罗方法研究分析正铲工作装置9个关键铰接点空间位置的变化对正铲工作装置工作范围、最大斗杆挖掘力的影响及举升和斗杆油缸的流量、油管长度和直径等参数对正铲工作装置举升、挖掘时间的影响。从试验结果中优选出工作性能较优对应的设计变量值,并应用层次分析法对工作装置运动性能和挖掘力性能均较优的设计方案进行综合选优。
     为了更加真实准确的模拟正铲工作装置在工作过程的动态特性,将工作装置的斗杆和动臂视为柔体,建立正铲工作装置刚-柔、机-液耦合的虚拟样机模型。在ADAMS中模拟分析正铲工作装置在自身重力与物料重力作用下,以最大挖掘力挖掘和以高工作效率进行挖掘举升过程中,工作装置各部件的动态应力分布,为更深入研究挖掘机工作装置的力学特性以及动态设计提供理论依据。
     综上所述,本文对正铲工作装置的运动性能、挖掘性能、工作效率和动态强度进行了深入系统的研究。并对正铲工作装置的运动性、挖掘性能和工作效率进行了试验设计分析。试验结果为该企业的大型液压挖掘机设计提供了有效的技术参考。本研究对推动我国挖掘机行业的科技进步也具有重要的现实意义。
At present, one of the main problems in domestic excavator industry is the lack of large hydraulic excavators, especially the lack of large-scale mining shovel hydraulic excavators. In order to improve the quality of our products, a large face-shovel hydraulic excavator with a capacity of7to50m3is being developed by a domestic company to compete with the same type of foreign brand. In this dissertation, based on the cooperative projects with the enterprise and the virtual prototyping technology, a research on the dynamic load characterizes of a large face-shovel hydraulic excavator attachment is developed, including the visualization research on the move performance of the shovel hydraulic excavator under various conditions; the visual calculation of the arm digging force within the all scope of work; the experimental design of the scope of work; the largest stick digging force; the parametric of the hydraulic system and the dynamic strength analysis of the shovel attachment, which can eventually solve the problems arising from unreliable design, such as the crack failure of excavator boom or arm, the unreasonable excavation area, body interference, digging force and low efficiency of the hydraulic system, by providing a theoretical basis and practical means on the design of large hydraulic excavator. The specific contents are as follows:
     Kinematic trajectory equations of the face-shovel attachment can be derived by D-H method and be used to analyze the major operating parameters and digging envelope diagram. And on this basis, the face-shovel kinematics virtual prototype model is built to undertake a visual analysis of athletic performance of the working device shovel digging, lifting and pushing, and draw the attachment digging envelope diagram. By the visual simulation analysis on the face-shovel attachment, even if there are no physical prototypes, the design can also meet the requirements of the scope of work of the face-shovel attachment, maximum digging force and so on. It is to provide a valuable reference for the enterprise design work.
     A stick digging force theoretical formula on a face-shovel excavator is established by using the torque balance method and the space vector method. Dynamic equations of the face-shovel attachment can be derived by Newton-Euler method. And on this basis, the mechanism-liquid coupling virtual prototype model is built in ADAMS. Through the spring force which is changed with the pressure of cylinder on the tip of the bucket, the stick force can be simulated. The simulated value of the stick force is compared with the theoretical value to verify the method. Finally the stick digging diagram is drawn under the stick digging condition.
     Based on ADAMS/Insight, the research of the experiment design about the working range, the maximum stick digging force and the work efficiency of the face-shovel attachment are completed. By repeated experimental simulations on the virtual prototype, the influence on the performance of the attachment are analyzed when a sets of design variables changed at the same time and the best design of the prototype performance can be chosen. By using ADAMS software, the parameters prototype model on the face-shovel attachment is established and the influence of the spatial location change about the attachment's9key hinge points to the hydraulic face-shovel attachment working scope and the maximum stick digging force is researched. It is also studied that the influence on the flow of the pressure relief valve, tubing length, diameter and other parameters on the face-shovel attachment hydraulic system lifting time during mining and lifting process. From the results, the better design parameters are preferred. And the APH method is used to choose the better design of the hydraulic attachment which has better movement performance and digging performance.
     In order to simulate the dynamic performance of the face-shovel attachment more realistically and accurately during the process of the work, the attachment's arm and boom are treated as the flexible body, and the rigid-flexible, mechanism-liquid coupling virtual prototype model is established. During digging and lifting process in high efficiency or in maximum digging force ways, the dynamic stresses of the attachment are analyzed in ADAMS. And the gravity of its components and the material in the bucket are all considered during the analysis process. The results provide a theoretical basis for a further research on the mechanical properties of the excavator attachment as well as dynamic design.
     In summary, the kinemics performance, the digging performance, the work efficiency, and dynamic stress about the face-shovel attachment are studied thoroughly. The experimental design of movement of the face-shovel attachment, the face-shovel digging performance and the work efficiency has been developed. The results give an effective and technical reference for the large hydraulic excavator enterprises. This study also has important practical significance to promote the scientific and technological progress of China's excavator industry.
引文
[1]林慕义,史青录著.单斗液压挖掘机构造与设计(第一版)[M].北京:冶金工业出版社,2011
    [2]上篇2010年国内挖掘机市场数据精析[J].今日工程机械,2010,(5):50-54.
    [3]文颢.2010年中国挖掘机市场分析报告[J]建设机械技术与管理,2011,24(2):70-72,76
    [4]周强.浅析我国挖掘机市场的时与势[J].城市建设,2010,(16):91-92.
    [5]陈立平,张云清,任卫群,覃刚等编著.机械系统动力学分析及ADAMS应用教程[M],北京:清华大学出版社,2005
    [6]刘延柱,洪嘉振,杨海兴著.多刚体系统动力学[M].北京:高等教育出版社,1989
    [7]Fletcher, H.J., Rongved, L., Yu, E.Y., Dynamics Analysis of a Two-body Gravitationally Oriented Satellite[J], Bell System Tech,1963(5):2239-2266
    [8]Hooker, W. W., Margulies, G., The Dynamical Attitude Equations for an n-Body Satellite[J]. Astron. Sci. 1965(12):123-128
    [9]Hooker, W. W., A Set of r-Dynamical Attitude Equations for an Arbitrary n-Body Satellite Having r Rotational Degrees of Freedom[J]. AIAA J.1970(7):1205-1207
    [10]Schwertassek, R., Roberson, R.E., A State-space Dynamical Representation for Multibody Mechanical Systems[J]. Acta Mechanica.1983(50):141-161
    [11]罗伯森,R.E.,(祁延爽、苏乙波译).多体系统动力学[J].南京航空学院.1984
    [12]Schiehlen, W., Kreuzer, E., Rechnergestutztes Aufstellen der Bewegungsgleichungen gewohnlicher Mehrkorpersysteme[J]. Ingenieur-Arch.1977(46):185-194
    [13]Schiehlen, W., Technische Mechanik[M]. Teubner:Stuttgart,1986
    [14]Hussain, M. A., Noble, B., Application of MACSYMA to Calculations in Applied Mathematics[J]. General Electric Company Report.1983, No.83 CRD 054
    [15]Wittenburg, J., Dynamics of Systems of Rigid Bodies[M]. Teubner:Stuttgart,1977
    [16]Von Mised, R., Motorrechnung, eineues Hilfsmittle der Mechanik[J], ZAMM, Bd.1924(4)
    [17]Yang, A. T., Freudenstein, F., Application of Dual-Number Quaternion Algebra to Analysis of Spatial Mechanisms[J]. Appl. Mech.,1964(86)
    [18]Yang, A.T., Inertia Force Analysis of Spatial Mechanisms[J]. Engrg for Industry.1973(93)
    [19]Wittenburg, J., Duale Quaternionen in der Kinematik raumlicher Getriebe, Eine anschaulichen Darstellung[J]. Ing-Arch.1981(51):17-29
    [20]袁仁保等,计算机代数与符号演算语言CASC[J].计算机学报,1990(5):357-366
    [21]Wittenburg, J., Wolz, U., MESA VERDE:A Symbolic Program for Nonlinear Articulated Rigid Body Dynamics[J]. Proc. ASME Conf, Mechnaical Vibration and Noise, Cincinnar 1985
    [22]Levinson, D.A., The Derivation of Equations of Motion of Multiple-Rigid-Body Systems Using Symbolic Manipulation[J]. AIAA,1976
    [23]Meirovitch, L.& Quinn, R.D., Equations of Motion for Maneuvering Flexible Spacecraft[J]. Journal of Guidance.1987(10):453-465
    [24]Meirovitch, L. Hybrid State Equations of Motion for Flexible Bodies in Terms of Quasi-Coordinates[J]. Journal of Guidance.1990(5)
    [25]Meirovitch, L.& Kwark, M., Dynamics and Control of Spacecraft with Retargeting Flexible Antennas[J]. Journal of Guidance.1990(2):241-248
    [26]Kane, T. R. & Levinson, D.A., Formulation of Equations of Motion for Complex Spacecraft J]. Journal of Guidance, Control and Dynamics.1980(2):99-112
    [27]Kane, T. R. & R.R. & Banerjee, A.K., Attached to Moving Base[J]. Journal of Guidance, Control and Dynamics,1987(2):139-150
    [28]Singh, R., Likins, P., Vandervoort, R., Interactive Design for Flexible Multibody System ControlfJ]. Proc. IUTAM/IFTOMM Symposium on Dynamics of Multibody System. Udine, Italy,1985,9.15-9.20
    [29]Huston, R.L., Appl. Mech. Rev.1991(3):109-114
    [30]Boland, P., Stability Analysis of Interconnected Deformable Bodies with Closed-Loop Configuration[J]. AIAA Journal.1975(7):864-867
    [31]Ho. J. Y.L., Direct Path method for Flexible Multibody Spacecraft Dynamics[J]. AIAA Journal of Spacecraft & Rocket,1977(2):102-110
    [32]Boland, P., Samin, J.C. & Willems, P.Y., Stability Analysis of Interconnected Deformable Bodies in Topological Tree[J]. AIAA Journal.1974(8):1025-1032
    [33]Haug, E.J., Wu, S.C. and Kim, S.S., Dynamics of Flexible Machines, A Variational Approach[J]. Proc. IUTAM/IFTOMM Symposium on Dynamics of Multibody System. Udine, Italy,1985
    [34]Lilov, L. and Wittenburg, J., Dynamics of Chains of Rigid Bodies and Elastic Rods with Revolute and Prismatic Joins[J]. Proc. IUTAM/IFTOMM Symposium on Dynamics of Multibody System. Udine, Italy, 1985
    [35]Modi, V.J., Attitude Dynamics of Satellites with Flexible Appendages a Brief Re vies [J]. Journal of Spacecraft & rocket.1974(11):743-751
    [36]洪嘉振主编.计算机系统动力学[M].北京:高等教育出版社.1999
    [37]洪嘉振主编.多体系统动力学-理论、计算方法和应用[M].上海:上海交通大学出版社.1992
    [38]陆佑方主编.柔性多体系统动力学[M].北京:高等教育出版社.1996
    [39]覃正主编.多体系统动力学压缩建模[M].北京:科学出版社.2000
    [40]刘又午.多体动力学的休斯敦方法及其发展[J].中国机械工程,2000,(06):10-16+4.
    [41]刘又午.多体动力学在机械工程领域的应用[J].中国机械工程,2000,(Z1):153-158+7.
    [42]陈立平,张云清,任卫群,覃刚编.机械系统动力学分析及ADAMS应用教程[M].北京:清华大学出版社.2005
    [43]李伯虎,柴旭东.复杂产品虚拟样机工程[J].计算机集成制造系统,2002,8(9):678-683.
    [44]李伯虎,朱文海,刘杰,柴旭东,熊光楞,毛媛,陈晓波,王行仁,王江云.复杂产品虚拟样机技术的研究与实践[J].测控技术,2001,(11):1-6.
    [45]李伯虎,柴旭东,熊光楞,朱文海,全春来,张和明,王行仁.复杂产品虚拟样机工程的研究与初步实践[J].系统仿真学报,2002,(03):332-337.
    [46]李潭,李伯虎,柴旭东,燕雪峰.复杂产品多学科虚拟样机元建模框架[J].计算机集成制造系统,2011,(06):1178-1186
    [47]Balovnev, V.I., New Methods for Calculating Resistance to Cutting of Soil[M]. Amerind Publishing, New Delhi,1983.
    [48]Reece, A.R. The Fundamental Equation of Earth-Moving Mechanics[A]. Proceedings of the Institution of Mechanical Engineers[C], In:Symposium on Earth-moving Machinery,179(3F),1965,16-22.
    [49]Luengo,O., Singh, S. and Cannon, H. Modeling and Identification of Soil-tool Interaction in Automated Excavation [A], In:Proceedings of the 1998 IEEE/RSJ International Conference on Intelligent Robots and Systems[C], Victoria, BC, Canada,1998,1900-1906.
    [50]Hermami, A., Goulet, S. and Aubertin, M., Resistance of Particulate Media to Excavation:Application to Bucket Loading[J]. International Journal of Surface Mining, Reclamation and Environment.1994(8): 125-129
    [51]Blouin.S, Hemami.A, Lipsett.M. Review of Resistive Force Models for Earthmoving Processes [J], Aerospace Eng.2001(14):102-111
    [52]Samuel Frimpong, Yafei Hu. Performance simulation of shovel excavators for earthmoving operations[J]. Proc. SCSC 2003(CD-ROM), Montreal, July
    [53]Hendricks, C., Daneshmend, L., Wu, S.,& Scoble, M. Design of a simulator for Productivity analysis of electric mining shovels[J]. Proc. Int. Symp. On Mine Mechanization and Automation, Lulea, Sweden, Jene,329-336
    [54]Daneshmend, L., Hendricks, C., Wu, S., & Scoble, M. Design of a mining shovel simulator[J]. Innovative mine design for the 21st century, Baiden and Archibald eds, Kingston, Ont., Canada,551-561
    [55]Samuel Frimpong, Yafei Hu,& Hilary Inyang. Dynamic Modeling of Hydraulic Shovel Excavators for Geomeaterials[J]. International Journal of Geomechanics,2008(8):20-29
    [56]Soo-Jin Lee & Pyung-Hun Chang. Modeling of a Hydraulic excavator based on bond graph method and its parameter estimation[J]. Journal of Mechanical Science and Technology,2012(1):195-204
    [57]Mutuku Muvengei & John Kihiu. Bond Graph Modeling of Mechanical Dynamics of an Excavator for Hydraulic System Analysis and Design[J]. International Journal of Mechanical, Industrial and Aerospace Engineering,2009(3):248-256
    [58]G. Wszolek. Vibration analysis of the excavator model in GRAFSIM Program on the basis of a block diagram method[J]. Journal of Materials Processing Technology,2004:268-273
    [59]Imanishi, Etsujiro, Nanjo, Takao, Hiroka, Eiko. Dynamic simulation of flexible multibody system with the hydraulic drive[J]. Nippon Kikai Gakkai Ronbunshu C,2003,69(9):2336-2343.
    [60]Tomi Makkonen, Kelervo Nevala, Rauno Heikkila. Automation of an excavator based on a 3D CAD model and GPS measurement[J]. Automation in Construction, In Press, Corrected Proof, Available online 4 November,2005.
    [61]黎波,严骏,曾拥华,彭卓,郭刚.挖掘机工作装置运动学建模与分析[J].机械设计,2011,(10):7-10.
    [62]袁开磊,史青录,曲德韵.挖掘机工作装置的运动学建模与仿真[J].矿山机械,2012,(03):33-36.
    [63]于国飞,宋文荣,许纯新.基于Matlab的挖掘机工作装置动力学方程[J].农业机械学报,2003,(02):93-96.
    [64]孙旭国,黄孙灼,林述温.液压挖掘机工作装置动力学建模与分析[J].建筑机械化,2007,(07):33-37.
    [65]朱小晶.大型矿用液压挖掘机电液控制系统的建模及仿真[D].太原理工大学,2010.
    [66]白玉琳.矿用正铲液压挖掘机工作装置虚拟样机研究[D].重庆大学,2008.
    [67]彭婧,贺利乐,梁堃,仪怀亮.基于刚柔耦合建模的液压挖掘机动力学分析研究[J].机械设计,2012,(04):38-43.
    [68]王国彪,曹旭阳,刘崇,支开印.谈谈反铲液压挖掘机的挖掘力[J].矿山机械,2003,(02):15-18.
    [69]陈进,李维波,张石强,钟春健.大型矿用正铲液压挖掘机挖掘阻力试验研究[J].中国机械工程,2008,(05):518-521.
    [70]陈进,李维波,张石强,钟春健.大型矿用正铲液压挖掘机挖掘阻力试验研究[J].中国机械工程,2008,(05):518-521.
    [71]徐黎萍.叠置式正铲装置挖掘力的研究[D].重庆大学,2008.
    [72]黄斌,何清华,贺继林,王北战,姜饶保.反铲液压挖掘机挖掘图谱程序化绘制与实验[J].农业机械学报,2009,(09):26-31+45.
    [73]荣洪均.液压挖掘机反铲工作装置整机理论复合挖掘力的计算模型及其应用研究[D].重庆大 学,2007.
    [74]张卫国,权龙,程珩,杨敬.真实载荷驱动下挖掘机工作装置疲劳寿命研究[J].农业机械学报,2011,(05):35-38+105.
    [75]张卫国,权龙,程珩,杨敬.基于真实载荷的挖掘机工作装置瞬态动力学分析[J].机械工程学报,2011,(12):144-149.
    [76]郭立新,王守春,郑春歧,张国忠.液压反铲挖掘机工作装置有限元动态分析[J].中国机械工程,2000,(12):28-30+5-6.
    [77]杨为,冯培恩,秦大同等.液压挖掘机工作装置的动力特性修改研究[J].中国工程科学,2005,7(9):30-33.
    [78]黎业飞,邱清盈,冯培恩等.基于刚-柔混合建模的时变结构动力学分析[J].浙江大学学报(工学版),2007,41(2):311-314.
    [79]范文杰.挖掘装载机装载工作装置动力分析、动态应力仿真研究及动臂结构拓扑优化[D].吉林大学,2006.
    [80]樊建荣.液压挖掘机工作装置的广义动态优化设计[D].西北农林科技大学,2009.
    [81]张永胜.基于遗传算法的大型装载机工作装置优化设计[D].吉林大学,2011.
    [82]蒋炎坤,刘刚强,李宗,张宏.基于遗传算法的挖掘机工作装置铰点位置优化[J].华中科技大学学报(自然科学版),2011,(03):22-25.
    [83]赵健冬,邱清盈,冯培恩等.基于Nash均衡的多学科设计优化求解方法[J].农业机械学报,2008,39(1):126-128,141.
    [84]刘静,潘双夏,冯培恩等.挖掘机器人虚拟样机建模策略与仿真技术研究[J].浙江大学学报(工学版),2004,38(11):1490-1495.
    [85]刘静.挖掘机器人虚拟样机建模技术及其应用研究[D].浙江大学,2005
    [86]潘双夏,刘静,冯培恩等.挖掘机器人虚拟样机的机电液一体化建模与仿真[J].中国工程机械学报,2003,1(1):49-53.
    [87]潘双夏,刘静,冯培恩,高峰.挖掘机器人虚拟样机的机电液一体化建模与仿真实现[A].中国工程机械学会.中国工程机械学会2003年年会论文集[C].中国工程机械学会:,2003:4.
    [88]齐朝晖编著.多体系统动力学.北京:科学出版社,2008.7
    [89]陈乐生,王以伦编.多刚体动力学基础.哈尔滨:哈尔滨工程大学出版社,1995.3
    [90]付京逊.机器人学:控制、传感技术、视觉、智能.北京:中国科技教育出版社1989
    [91]张大庆.液压挖掘机工作装置运动控制研究[D].长沙:中南大学,2006.
    [92]张强.挖掘机器人规划控制方法与技术的研究[D].杭州:浙江大学,2002
    [93]杜文靖.液压挖掘工作装置设计关键技术研究[D].吉林:吉林工业大学,2007
    [94]许小侠.基于现代设计方法的轿车天窗开发研究[D].吉林:吉林工业大学,2009
    [95]ADAMS入门详解与实例李增刚编著国防工业出版社北京2006第一版
    [96]何君,何林.液压挖掘机工作装置仿真分析[J].贵州科学,2012,30(1):50-53.
    [97]颜荣庆等.现代工程机械液压与液力系统[M].北京:人民交通出版社,2001.
    [98]夏海南等.液压机械传动在工程机械上的应用[J].工程机械,2000(3):17-19.
    [99]郑建荣ADAMS--虚拟样机技术入门与提高[M].北京:机械工业出版社,2001.
    [100](美)MSC.Software著;邢俊文,陶永忠译MSC.ADAMS/View高级培训教程[M].北京:清华大学出版社,2004.
    [101]A·杜比著,卫军胡译.蒙特卡罗方法在系统工程中的应用[M].西安:西安交通大学出版社,2007
    [102]徐兵,朱晓军,刘伟,刘英杰.挖掘机工作装置运动学建模与仿真[J].机床与液压,2011,(09):97-99+131.
    [103]同济大学.单斗液压挖掘机[M].北京:中国建筑工业出版社,1986
    [104]史青录,连晋毅,林幕义.挖掘机最大理论挖掘力的确定[J].太原科技大学学报,2007,01:32-36
    [105]葛正浩ADAMS2007虚拟样机技术[M].北京:化学工业出版社,2010
    [106]曹旭阳,司爱国,王国彪,徐进永.装载机工作装置机-液耦合仿真分析[J].中国机械工程,2006,17:2461-2464