铝电解电容器用阳极箔扩面发孔腐蚀过程与控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电子产品日新月异的发展带动了铝电解电容器行业的快速增长,同时对铝电解电容器的小型化、高比容等性能提出了更高的要求。实现铝电解电容器高比容、小型化的关键技术是通过直流腐蚀在铝电极箔表面生成大量的[001]方向的隧道型方孔来提高铝箔的比表面积。
     本文从电子铝箔的质量、预处理工艺、发孔腐蚀工艺及手段等方面分析和讨论了铝电极箔在扩面发孔腐蚀中的影响因素,并优化了工艺参数;同时利用纳米技术如多孔氧化铝模板、聚苯乙烯小球自组装结构、紫外纳米光刻技术等来研究点蚀的可控分布,为国产铝电极箔比电容的水平提供一定的指导。论文的主要内容及创新性研究归纳如下:
     (1)国产电极箔用原料即电子铝箔在微量成分的控制水平上达到国际上通常采用的日本JCC标准,尤其是在Fe和Mg微量元素的控制上更加合理化;在组织织构方面,国产的电子铝箔都具有典型立方织构,且织构度都较高,达95%以上;但是国产的电子铝箔表面缺陷较多,晶粒尺寸过于细小,这样不利于均匀发孔腐蚀和隧道孔生长。
     针对这些存在的缺陷,本文拟通过后续的预处理过程、调节腐蚀工艺参数、引用超声及缓蚀剂等方法来改善铝箔的发孔腐蚀状态;同时利用纳米技术对点蚀的可控分布进行研究。
     (2)通过酸洗、碱洗、表面氧化、表面活化等方式来对电子铝箔进行预处理,比较表面形貌、发孔腐蚀后的点蚀的分布、大小等参数,并结合Tafel和IV两种电化学曲线进行分析,得出发孔腐蚀前的预处理过程都能改善铝箔表面的缺陷。研究发现碱洗比酸洗更能去除表面油污和不平整层;经过表面清洗后再氧化的铝箔在发孔的过程中出现典型的方孔,且孔的数量也会增加;Cl~-活化处理后的铝箔表面的蚀点引发更加容易,且孔的数量也有所增加,但是因为Cl~-离子较强的侵蚀作用,致使铝箔在发孔过程中孔径过小,出现很多径向小于0.5μm的且分布较集中的小孔。
     (3)发孔腐蚀过程中的工艺参数对蚀孔的影响较大。通过改变盐酸/硫酸的配比度、电流大小及温度等工艺参数,并结合腐蚀后的蚀孔形貌、分布及电容等参数进行比较和研究,结果表明随着H_2SO_4浓度的增加,铝箔表面的孔隙率得到提高,但是孔径和孔长变小,通过电容数据的分析和比较,得出1mol/L HCl+3mol/L H_2SO_4腐蚀液为最优发孔溶液;温度对蚀孔形貌的影响效果类似于硫酸,但是当温度达到85℃时,铝箔表面并孔现象严重,这样导致材料力学性能的下降,所以本文选择的腐蚀温度为78℃;电流密度对孔的数量影响较大,尤其是低电流区域,但对孔的大小影响不大。当电流达到0.4A/cm~2时,并孔现象严重,所以本实验选定0.3A/cm~2的电流密度对铝箔进行腐蚀。结合Tafel曲线分析可知,Epit为点蚀电位和Ecorr自腐蚀电位之差ΔE反应出铝箔整个表面产生点蚀的难易程度。
     (4)添加超声处理和缓蚀剂等方式对铝箔在发孔腐蚀过程中研究发现这些辅助手段都能改善铝箔发孔腐蚀。超声的添加,能加速生成隧道孔内溶液与孔外溶液的交换,使孔内生成的AlCl_3和Al_2(SO_4)_3达到饱和度的时间推迟,这样孔的生长能得到延续,所以孔的长度有所增加,同时超声能增加表面活性,增加发孔系数;缓蚀剂的添加也能明显改善点蚀的分布,但是过量的缓释剂会严重的减少孔的数量。
     (5)纳米模板对铝箔发孔腐蚀中的点蚀分布有一定的可控作用。本文提出的新型多孔氧化铝模板能明显控制点蚀沿着并孔的地方,且这种新型多孔氧化铝模板制作工艺简单;PS小球在铝箔表面的单层自组装结构也可以控制点蚀的发生,但是因为小球易从铝基体上脱落而使这种可控作用仅发生在腐蚀的前期;纳米模板对铝箔表面的预压印处理对后期铝箔发孔腐蚀过程中点蚀的可控分布没有产生有利的影响;铝箔紫外纳米光刻技术在一定程度上也能改善点蚀的分布。
Aluminum electrolytic capacitors achieve extensive applications in the field of assembly ofelectronic products. At the same time, the demands of high performance aluminum electrolyticcapacitors with miniaturization, high specific capacitance and et al are growing drastically. Recentdevelopment of small electronic devices with increasing capacitance is to increase the specificsurface area of the anode aluminum foils by gaining a great amount of tunnels on the [001] direction.
     In this paper, the factors as quality of aluminum foils, pretreatment process, corrosion process,some auxiliary methods of adding ultrasound treatment and corrosion inhibitors so as to influencedthe expanding surface corrosion were discussed and analyzed. Also, the nanotechnology such asporous anodic alumina templates, the self-assembled structure of the polystyrene spheres (PS) andUV nano lithography techonology were introduced to the corrosion process to control the pitsinitiation. The main contents and innovative contentare as follows:
     (1) The level of electronic aluminum foils in trace elements produced by China had satisfied thestandards of JCC in Japan which was on behalf of the world standard, especially on the control of Feand Mg trace element. In terms of organizational structure, domestic aluminum foils had cubictexture, and the content was above95%. However, the domestic electronic aluminum foils had moredefects on the surface, and the grain size was too small, which was bad for uniform pit corrosion andtunnel growth.
     To deal with these defects, we studied pretreatment process, corrosion process, some auxiliarymethods and adopted the nanotechnology to improve tunnel corrosion.
     (2) The pretreatment methods as acid cleaning, alkaline cleaning, surface oxidation andactivation treatment were studied in this paper. By comparing surface morphology, distribution ofthe pits, size, and analyzing the Tafel and IV electrochemical curves, we found that pretreatmentprocess prior to pitting corrosion could improve the defects on the surface of the aluminum foils.Compared to acid cleaning, alkaline cleaning was easier to remove surface stains and uneven floor.The surface oxidation after cleaning the surface was in favor of forming the square holes andincreasing the number of pits. Etching pits were easily formed on the surface of the aluminum foilafter Cl~-activation treatment, and the pit number increased. However, the diameter size of theetching holes was too small, and lots of them were less than0.5μm because of the strong erosion ofCl~-ions. These small holes would be blocked during the forming process, which could not improvespecific surface area.
     (3) The parameters during the pitting corrosion process had a greater influence on themorphology of corrosion hole. The process parameters such as concentration of hydrochloricacid/sulfuric acid, current and temperature were discussed in this paper. By comparing surface morphology, distribution of the pits, the size, and the capacitance, it was showed that with theincrease of H_2SO_4concentration, the porosity on the aluminum foil was improved, but the smallerpore diameter and tunnel length was obtained. It was concluded that1M HCl+3M H_2SO_4solutionwas most beneficial for pitting corrosion. The effect of the temperature on the pitting corrosion wassimilar to that of sulfuric acid. As the temperature increased, the porosity was increased, butachieved smaller pore diameter and tunnel length. Furthermore, the corrosion on the surface ofaluminum foils was serious when the temperature reached85℃. It led to decrease of the materialmechanical performance. Therefore,78℃was selected as the corrosion temperature in this study.The current density also had a greater influence on the porosity, especially in the low current zone.However, the size of the etching tunnels changed rarely with the current density increasing. Thepitting corrosion process was phenomenal, and lots of etching tunnels combined, as the currentdensity reached0.4A/cm~2. Hence,0.3A/cm~2was selected as the corrosion current density in thisstudy. By analyzing the Tafel curve, the ΔE, the difference between the Epit (pitting potential) andEcorr (self-corrosion potential) reflected the difficulty of the pitting corrosion on the entire surfaceof aluminum foils.
     (4) With the assistance of the ultrasonic treatment, the pitting corrosion and the etching tunnelsgrowth were also improved. The exchange rate of the solution outside and inside the holes was fasterby utilizing the ultrasonic treatment, and the process of the generated AlCl_3and Al_2(SO_4)_3reachingto the saturated concentration was delayed. So the tunnels continued to grow, and the length of thetunnels became longer. Also, the density of the etching tunnels increased with the assistance ofadding corrosion inhibitors. The distribution of tunnels was improved with addition of the corrosioninhibitors, and the reason for this was similar to the effect of SO_4~(2-)ions.
     (5) To some extent, nano templates could control the pit initiation sites on aluminum foils. Thenovel template of the porous alumina proposed in this paper could obviously control the pits alongthe combined hole to form, and the fabrication of this novel template was easy. The monolayerself-assembly nano structures of polystyrene spheres could also control pits occurred on the surfaceof the aluminum foil. However, this control process just existed in the first few seconds duringcorrosion, because the PS easily falled off from the aluminum substrate. The preloading printingprocess by the nano template had no beneficial effect on the distribution of the etching pits. UV nanolithography was also introduced to control the distribution of pitting. To some extent, this technologycould control the pits formation on aluminum surface. However, there were a great amount ofnon-through holes due to the immature technology of the UV nano lithography on the aluminumfoils. Therefore, the experiment based on this template was hard to carry out. This study willcontinue to be carried out in our future work.
引文
[1]永田伊佐也.アルミニウム干式電解コンデサ[M].东京:日本蓄電器工業,1983.
    [2]林学清.《铝电解电容器工程技术》[M].厦门:门大学出版社,2002年,229.
    [3]杨邦朝,冯哲圣.国内外电容器市场概况分析[J].电子元器件应用,2001,3(1):56-60.
    [4]冯哲圣,陈金菊,徐蓓娜,杨邦朝.铝电解电容器技术现状及未来发展趋势[J].电子元件与材料,2001,20(5):30-32.
    [5]周旺龙.铝电解电容器的选择和使用[J].电焊机,2007,37(5):35-38.
    [6]徐友龙.铝电解电容器技术的新进展[J].《电子元件与材料》2008,27(9):5-7.
    [7]王祝堂,任柏峰.日本与韩国的铝箔工业[J].轻合金加工技术,2003,31(5):1-5.
    [8]陈卫东,张红卫,顾义明,丁晓峰,朱军.铝电解电容器的现状与发展趋势[J].电子元件与材料,2004,23(9):46-48.
    [9]高亢之.电解电容器用铝箔概述[J].轻合金加工技术,2000,28(11):9-16.
    [10]肖占文.电容器铝箔交流腐蚀扩面机理研究[D].成都,电子科技大学,1999.
    [11]阎康平.电容器高纯铝箔的侵蚀机理及工程化研究[D].成都,四川大学,1999.
    [12]王银华,杜国栋,许国强,杨军,王建中.中高压铝电解电容器阳极箔研究进展[J].电子元件与材料,2006,25(6):1-5.
    [13]孟亚秋.腐蚀条件对高纯铝箔直流电解腐蚀的影响[J].安徽化工,2005,4:36-37.
    [14] C. G. Dunn, R. B. Bolon, A. S. Alwan, A. W. Stirling. A Scanning Electron MicroscopeStudy of Etched Aluminum Foil for Electrolytic Capacitors [J]. Journal of the ElectrochemicalSociety,1971,118(2):381-390.
    [15]张新明,孟亚,周卓平,周鸿章. Fe杂质对高纯铝箔再结晶织及比电容的影响[J].中国有色金属学报,1999,9(1):19-24.
    [16]迟慧,洪涛,邹道.特高压电容器用电极箔腐蚀工艺的研究[J].电子元件与材料,2009,28(5):58-61.
    [17] D. Goad. Tunnel Morphology in Anodic Etching of Aluminum [J]. Journal of theElectrochemical Society,1997,144(6):1965-1971.
    [18]2011年版中国电容器用铝箔市场竞争研究报告[R].北京,2011.5.
    [19]中华人民共和国电子行业标准SJ/T11140-1997,铝电解电容器用电极箔[S].
    [20]杨宏,毛卫民.铝电解电容器铝箔的研究现状和技术发展[J].材料导报,2005,19(9):1-4.
    [21]毛卫民.金属材料的晶体学织构与各向异性[J].2002年,科学出版社.
    [22] C. Liu, X. Zhang, Z. Chen, Z. Zhou, C. Li, L. Lin, W. Chen. Effect of Hot Finishing Rollingon Cube Texture in High Purity Aluminum Foils [J].Transactions Nonferrous Metals Society ofChina,2001,11(1):104-107.
    [23]左宏,毛卫民,冯惠平.强立方织构超薄型高压阳极铝箔的研制及检测[J].物理测试,2005,23(2):16-18.
    [24] J. Scherer, O. M. Magnussen, T. Ebel, R. J. Behm. Initial Stages of the Anodic Etching ofAluminum Foils Studied by Atomic Force Microscopy [J]. Corrosion Science41(1),1999,35-55.
    [25] S. Ikonopisov. Theory of Electrical Breakdown During Formation of Barrier Anodic Films[J].Electrochimica Acta,1977,22(10):1077–1082.
    [26] L. F. Lin, C. Y. Chao and D. D. Macdonald. A Point Defect Model for Anodic Passive FilmsII. Chemical Breakdown and Pit Initiation[J]. Journal of the Electrochemical Society,1981,128(6):1194-1198.
    [27] T. P. Hoar, D. C. Mears, G. P. Rothwell. The Relationships between Anodic PassivityBrightening and Pitting [J].Corrosion Science,1965,5(4):279-281.
    [28] D. M. Drazic, S. K. Zecevic, R. T. Tanasiski, et al. The Effect of Anions on theElectrochemical Behavior of Al [J]. Electrochimica Acta,1991,36(1):179-282.
    [29] N. A. Sato. Theory for Breakdown of Anodic Oxide Films on Metals [J]. Electrochimica Acta,1971,16(10):1683-1686.
    [30] Ja. M. Kolotyrkin. Pitting Corrosion of Metals Corrosion[J].1963,19(8):261-268.
    [31]肖占文,杨邦朝.交流负半周对高纯铝在盐酸溶液中点蚀行为的影响[J].1999,29(4):193-199.
    [32] Y. L. Lee, B. L. Ou, Y. H. Chiu. Effect of Frequency and Current Density on A.C. etching ofAluminum Electrolytic Capacitor Foil [J]. Journal of Materials Science: Materials in Electronics,2007,18(6):627–634.
    [33] D. Goad. Tunnel Morphology in Anodic Etching of Aluminum [J]. Journal of theElectrochemical Society,1997,144(6):1965-1971.
    [34]阎康平,罗沪溶,涂铭旌,中高压阳极箔直流电扩面侵蚀研究[J].四川大学学报(工程科学版),2000,32(2):32-35.
    [35] S. Ono, T. M akino, R. S. A lwitt. Crystallographic Pit Growth on Aluminum (100)[J].Journal of the Electrochemical Society,2005,152(2): B39-B44.
    [36] Y. Tak, K. R. Hebert. Initial Events during the Passivation of Rapidly Dissolving AluminumSurfaces[J]. Journal of the Electrochemical Society,1994,141(6):1453-1459.
    [37] N. Takata, K. Ikeda, F. Yoshida, H. Nakashima, H. Abe. Influence of Purity on the Formationof Cube Texture in Aluminum Foils for Electrolytic Capacitors [J]. Materials Transaction,2004,45(5):1687-1692.
    [38]潘复生,张静.铝箔材料[M].北京:化学工业出版社,2005.
    [39]张新明,孟亚,周卓平等. Fe杂质对高纯铝箔再结晶织构及比电容的影响[J].中国有色金属学报,1999,9(1):19-24.
    [40] K. I. R. Musick, K. Lucke. The Influence of Iron Content and Annealing Temperature on theRecrystallization Texture of High-purity Al-Fe Alloys [J]. Metall Trans,1985,16-27.
    [41] K. Ito, R. Musick, K. Lücke. The Influence of Iron Content and Annealing Temperature on theRecrystallization Textures of High-purity Aluminium-iron Alloys[J]. Acta Metallurgica,1983,31(12):2137-2149.
    [42]刘楚明,张新明,陈志永等.微量元素对高纯铝箔立方织构的影响[J].中南工业大学学报(自然科学版),2001,32(2):176-179.
    [43]徐进毛卫民,冯惠平,舒龙卫. Cu对高压电解电容器阳极铝箔再结晶织构的影响[J].北京科技大学学报,2002,24(2):133-136.
    [44]肖仁贵,闫康平,严季新,王建中.高纯铝光箔化学成分对直流电侵蚀的影响[J].电子元件与材料,2007,26(8):52-54.
    [45]毛卫民,杨宏,余永宁等.微量Mg对高压电子铝箔腐蚀结构的影响[J].中国有色金属学报,2005,13(5):1057-1060.
    [46]毛卫民,蒋恒,杨平,冯惠平,余永宁.微观结构和微量元素对铝箔腐蚀结构的影响[J].中国有色金属学报,2004,14(10):1627-1631.
    [47] W. Lin, G. C. Tu, C. F. Lin, Y. M. Peng. The Effect of Lead Impurity on the DC-etchingBehavior of Aluminum Foil for Electrolytic Capacitor Usage [J]. Corrosion Science,1996,38(6):889-907.
    [48] W. Lin, G. C. Tu, C. F. Lin, Y. M. Peng.. The Effect of Indium Impurity on the DC-etchingBehavior of Aluminum Foil for Electrolytic Capacitor Usage [J].Corrosion Science,1997,39(9):1531-1543.
    [49] J. B. Song, W. M. Mao, H. Yang, H. P. Feng. Effect of Trace Sn on Corrosion Behaviors ofHigh Voltage Anode Aluminum Foil [J]. Transactions of Nonferrous Metals Society of China,2008,18(4):879-883.
    [50] Y Minamino, T Yasuda, H Araki. Interdiffusion in Binary Aluminium Alloys and Atom SizeEffects[J]. Defect and Diffusion Forum,1989,66:1251-1256.
    [51]毛卫民,赵新兵.金属的再结晶与晶粒长大[M].北京:冶金工业出版社,1994.
    [52] H. Wang, W. Li, H. Ren, L. Huang, X. Wang. Effect of Cerium Addition on Microstructureand Texture of Aluminum Foil for Electrolytic Capacitors [J]. Journal of Rare Earths,2010,28(1):134-137.
    [53]孙伟成,张淑荣.稀土在铝合金中的行为[M].北京:兵器工业出版社,1992.
    [54]邓运来,张新明.微量稀土对高压阳极电容铭箔织构演变的影响[J].功能材料,2002,33(1):60-62
    [55] O. M. L vvik. Surface Segregation in Palladium Based Alloys from Density-functionalCalculations[J]. Surface Science,2005,583(1):100-106.
    [56] R. Johnson, D. J. Oh. Analytic Embedded Atom Method Model for bcc Metals[J]. Journal ofMaterials Research,1989,4(5):1199-1205.
    [57]王博,建民,路彦冬,甘秀英,殷保祥,徐可为. Fcc金属表面能的各向异性分析及表面偏析的预测[J].物理学报,2011,60(1):016601.
    [58] B. Good, G. Bozzolo. Surface Composition of Alloys via BFS Atomistic Monte CarloSimulation[J]. Surface Science,2002,507-510:730-735.
    [59] X. Zhang, J. Liu, J Tang, L. Li, M. Chen, S. Liu, B. Zhu. Segregation on the Surfaces of PureAluminum Foils[J]. Applied Surface Science,2010,256(23):7300-7307.
    [60]郑子樵.组织鲒构对电容铝箔腐蚀形貌和比电容的影响[J].中南矿冶学院学报,1983,35(1):111-114.
    [61]南通电子铝材厂产品检测报告,内部资料,1996.
    [62]凌亚标.铸轧法生产电容铝箔的研究[D].湖南长沙:中南工业大学,1996,3.
    [63]凌亚标,尚振山,张声鹏.提高电解电容器用铝箔质量初探[J].轻合金加工技术,1999,27(7):27-32.
    [64]小管张弓.高纯度アルミニウム轻金属(日)[J].1998,38(4):238-247.
    [65]王瑞梓.赋能腐蚀铝箔[J].轻合金加工技术,1991,22(8):2-9.
    [66]刘建才,张新明,陈明安,唐建国,刘胜胆.密度泛函理论预测微量元素在Al(100)表面的偏聚[J].物理化学学报,2009,25(12):2519-2523.
    [67] K Hebert, R Alkire. Growth and Passivation of Aluminum Etch Tunnels [J]. Journal of theElectrochemical Society,1988,135(9):2146-2157.
    [68] N Osawa, K Fukuoka. Pit nucleation behavior of aluminium foil for electrolytic capacitorsduring early stage of DC etching [J]. Corros Sci,2000,42:585~597..
    [69]郑红梅,吴玉程,黄新民,胡学飞,刘勉诚,杨蓓蓓.铝电解电容器用电子铝箔的性能分析与比较[J].功能材料与器件学报,2012,18(1):10-16.
    [70]杨宏.非铬酸系电解电容器用高压阳极铝箔的研究[D].北京:北京科技大学,2007.
    [71]李东,毛卫民,将恒.表面划痕对高纯铝腐蚀发孔的影响[J].电子元件与材料,2009,28(3):16-18.
    [72]黄新民,吴玉程,刘衍芳,刘兰花,王跃,翁德明.铝电解电容器用腐蚀箔的SEM与EBSD研究[J].电子显微学报,2008,27(6):478-482.
    [73] O Keles, M Dundar. Aluminum Foil: Its Typical Quality Problems and Their Causes [J]. Journalof Materials Processing Technology,2007,186(1-3):125–137.
    [74]徐贺年,王学书,刘秀兰,孙卫国,马英义.铝箔轧制油中粒子尺寸对针孔形成的影响[J].轻合金加工技术,2007,35(12):23-24.
    [75]张新明,蒋红辉,肖亚庆,陈志永,刘楚明,周卓平.润滑剂对高纯铝形变织构的影响[J].中国有色金属学报,2001,11(5):785-790.
    [76]左宏,毛卫民,冯惠平.强立方织构超薄型高压阳极铝箔的研制及检测[J].物理测试,2005,23(2):16-18.
    [77]吕爱强,黄涛,王福,左良。异步轧制高纯铝箔冷轧织构沿板厚的分布规律[J].中国有色金属学报,2003,56-59.
    [78]黄涛,曲家惠,高明,王福等,异步轧制速比对高纯铝箔织构转变的影响[J].中国有色金属学报,2006,16(1):110-115.
    [79] Y. Wu, X. Zhao, C. He, Z. Zhao, L. Zuo, C. Esling. Effects of Electric Field onRecrystallization Texture Evolution in Cold-rolled High-purity Aluminum Sheet duringAnnealing [J]. Transactions of Nonferrous Metals Society of China,2007,17(1):143-147.
    [80] H. J. Oh, J. H. Lee, H. J. Ahn, Y. Jeong, N. J. Park, S. S. Kim, C. S. Chi. EtchingCharacteristics of High-purity Aluminum in Hydrochloric Acid Solutions[J]. Materials Science&Engineering A.2007:449-451,348-351.
    [81]班朝磊.酸碱预处理对阳极铝箔电蚀特征的影响[J].轻合金加工技术,2010,38(5):39-41.
    [82] X. Wu, P. Asoka‐Kumar, K. G. Lynn. Detection of Corrosion-related Defects in AlminiumUsing Positron Annihilation Spectroscopy [J]. Journal of Electrochemical Society,1994,14l(12):3361-3364.
    [83] S. Ono, H. Habazaki. Effect of Sulfuric Acid on Pit Propagation Behaviour of Aluminiumunder AC Etch Process [J]. Corrosion Science,2009,51(10):2364-2370.
    [84] J. Lee, J. Kim, J. Kim, J. Lee, H. Chung, Y. Tak. Effects of Pretreatment on the AluminiumEtch Pit Formation[J]. Corrosion Science,2009,51(7)1501-1505.
    [85]毛卫民,杨宏,杨平,冯惠平.退火对高压电解电容器铝箔微量元素分布和腐蚀性能的影响[J].金属热处理,2004,29(9):3-6.
    [86]日比野淳.アルミニウム箔のトソネルエッチソグにぼす硫酸の影響[J].轻金属(日),1992,42(8):440-445.
    [87] C.i Ban, Y. He. Controlling Limiting Length of Tunnels on Al Foil Electroetched inHCl-H2SO4Solution [J]. Transactions of Nonferrous Metals Society of China,2009,19(3):601-605.
    [88]王玫,何业东,洪涛.影响高压阳极铝箔隧道孔极限长度的因素[J].电子元件与材料,2007,26(7):19-20.
    [89] B. N. Stirrup, N. A. Hampson, I. S. Midgley. Pit Formation in Relation to the Etching ofAluminium in Chloride Solutions [J]. Journal of Applied Electrochemistry,1975,5(3):229-231.
    [90] J. Soltisa, N. J. Laycock, D. Krouse. Temperature Dependence of the Pitting Potential of HighPurity Aluminium in Chloride Containing Solutions [J]. Corrosion Science,2011,53(1):7-10.
    [91] R. S. Alwitt, H. Uchi, T. R. Beck and R. C. Alkire. Electrochemical Tunnel Etching ofAluminum [J]. Journal of the Electrochemical Society,1984,131(1):13-17.
    [92] C. K. Dyer, R. S. Alwitt. Surface Changes During AC Etching of Aluminum.[J]. Journal of theElectrochemical Society,1981128(2):300-305.
    [93]加藤正義,秋秋田佳穗,食塩水溶液中でのアルミニウムの交流ニッチングに及ぼすタニン酸の影響,表面技術協会第82回講演大会要旨集,1990:15.
    [94]管沼栄一,塩酸溶液中のアルミニウムの交流ニッチングにおける硫酸添加の效果,表面技術協会第82回講演大会要旨集,1991:52.
    [95]冯哲圣,杨邦朝,李建军.日本铝电极箔制造技术研究的新进展[J].电子元件与材料,2000,20(2):23-25.
    [96] T. R. Beck, H. Uchi, K. R. Hebert. Length distribution of aluminum etch tunnels [J]. Journalof Applied Electrochemistry,1989,19:69-75.
    [97] C. Y. Hung, O. B. Lung, L. Y. Lien. Effect of Acid Concentration and Current Density onDC Etching of Aluminum Electrolytic Capacitor Foil [J]. Korean Journal of ChemicalEngineering,2007,24(5):881-887.
    [98] T. Martin, K.R. Hebert. Atomic force microscopy study of anodic etching of aluminum:etching morphology development and caustic pretreatment [J]. Journal of the ElectrochemicalSociety,2001,148(2): B101-B109.
    [99] C. G. Dunn1, R. B. Bolon1, A. S. Alwana and A. W. Stirling. A Scanning Electron MicroscopeStudy of Etched Aluminum Foil for Electrolytic Capacitors [J]. Journal of the ElectrochemicalSociety,1971,118(2):381-390.
    [100] R. S. Alwitt, H. Uchi, T. R. Beck, R. C. Alkire. Electrochemical Tunnel Etching ofAluminum [J]. Journal of the Electrochemical Society,1984,131(1):13-18.
    [101]叶英杰.添加剂作用下电容器用铝箔交流腐蚀研究[D].合肥工业大学,2004.
    [102]肖仁贵,闫康平,严季新,王建中.电解电容器铝箔横向隧道孔的生长控制[J].电子元件与材料,2008,27(12):30-32.
    [103]闫康平,王建中,严季新.中高压电容器铝箔扩孔液中缓蚀剂的作用[J].电子元件与材料,2001,6:6-7.
    [104]杨富国.缓蚀剂对提高腐蚀箔比容的影响[J].电子元件与材料,2010,29(7):54-56.
    [105]李学良,潘旭.脂肪胺类化合物对电解电容器用铝箔的作用[J].河南化工,2005,22(10):25-26.
    [106] J. Kang, Y. Shin, Y. Tak. Growth of Etch Pits Formed during Sonoelectrochemical Etching ofAluminum [J]. Electrochimica Acta,2005,51(5):1012-1016.
    [107] Junping Zhang,, J. E. Kielbasa, D. L. Carroll. Controllable Fabrication of Porous AluminaTemplates for Nanostructures Synthesis [J]. Materials Chemistry and Physics,2010,122(1):295-300.
    [108] D. Park, H. Kim. Electrochemical etching of aluminum through porous alumina [J].Analytical Science,2001,17: a73-a76.
    [109] K. Nishio, K. Kanezawa, H. Masuda. Control of Anisotropic Tunnel Etching of Al byIndentation [J]. Chemistry Letters,2006,35(10):1096-1097.
    [110] H. Masuda, M. Tajima, K. Nishio. Site Control of Tunnel Etching of Al for ElectrolyticCapacitors using Pretexturing by Mold [J]. Chemistry Letters,2002,31(11),1150-1151.
    [111] J. H. Jang, W. S. Choi, N. J. Kim, C. H. Lee, T. Y. Kim. Formation of Aluminum TunnelPits Arrayed using SU-8Masks with UV-assisted Thermal Imprint Lithography [J].Microelectronic Engineering,2010,87(12):2610–2613.
    [112] H. Asoh, K. Nakamura, S. Ono. Control of Pit Initiation Sites on Aluminum Foil UsingColloidal Crystals as Mask [J]. Electrochimica Acta,2007,53(1):83–86.
    [1]杨宏,毛卫民,钮震霖.国内外高压电解电容器用铝箔的性能比较[J].电子元件与材料,2005,24(11):62-65.
    [2]高亢之.电解电容器用铝箔概述[J].轻合金加工技术,2000,28(11):9-13.
    [3]2011年版中国电容器用铝箔市场竞争研究报告.北京,2011,5.
    [4]杨跃.中国铝箔工业的现状与发展[J].中国金属通报,2009,21:38-39.
    [5]黄新民,吴玉程,王跃等.铝电解电容器用腐蚀箔SEM与EBSD研究[J].电子显微学报,2008,27(6):478-481.
    [6]毛卫民,蒋恒,杨平,冯惠平,余永宁.微观结构和微量元素对铝箔腐蚀结构的影响[J].中国有色金属学报,2004,14(10):1627-1631.
    [7]毛卫民,杨宏,余永宁等.微量Mg对高压电子铝箔腐蚀结构的影响[J].中国有色金属学报,2005,13(5):1057-1060.
    [8]杨宏.非铬酸系电解电容器用高压阳极铝箔的研究[D].北京:北京科技大学,2007.
    [9]郑红梅,吴玉程,黄新民,胡学飞,刘勉诚,杨蓓蓓.铝电解电容器用电子铝箔的性能分析与比较[J].功能材料与器件学报,2012,18(1):10-16.
    [10]刘楚明.高纯铝箔形变和再结晶行为及织构的研究[D].湖南:中南大学材料科学与工程学院,2007.
    [11] O. Engler, M. Y. Huh. Evolutiong of the Cube Texture in High Purity Aluminum CapacitorFoils by Continuous Recrystallization and Subsequent Grain Growth.[J]. Materials Science andEngineering A,1999,271(1-2),317-381.
    [12]子樵.组织鲒构对电容铝箔腐蚀形貌和比电容的影响[J].中南矿冶学院学报,1983,35(1):111-114.
    [13]蔡双雨,何业东.高压阳极箔隧道枝孔的形成机理[J].电子元件与材料,2007,26(12):3941-3943.
    [1]萨丽曼.轧制主要缺陷对电子铝箔使用性能的影响和防治措施[J].新疆有色金属,2007,AA(BB):110-113.
    [2]林学清,洪雪宝.铝电解电容器工程技术[M].厦门大学出版社,2001.
    [3] N. Osawa, K. Fukuoka. Pit Nucleation Behavior of Aluminium Foil for Electrolytic Capacitorsduring Early Stage of DC Etching [J]. Corrosion Science.2000,42(3):585-597.
    [4] Rengui Xiao, Kangping Yan, Jixin Yan, Jianzhong Wang. Electrochemical Etching Model inAluminum Foil for Capacitor [J]. Corrosion Science,2008,50(6):1576-1583.
    [5] H. Tsubakino, A. Nogami, T. Yamanoi. Segregation of Lead in Oxide Film of High-purityAluminum Containing100ppm Lead [J]. Applied Surface Science,2002,185(3-4):298-302.
    [6] H. J. Oh, J. H. Lee, H. J. Ahn, Y. Jeong, N. J. Park, S. S. Kim, C. S. Chi. EtchingCharacteristics of High-purity Aluminum in Hydrochloric Acid Solutions [J]. Materials Science&Engineering A.2007:449-451,348-351.
    [7] J. Lee, J. Kim, J. Kim, J. Lee, H. Chung, Y. Tak. Effects of Pretreatment on the AluminiumEtch Pit Formation [J]. Corrosion Science,2009,51(7):1501–1505.
    [8] S. Doulami, K. Beligiannis, Th. Dimogerontakis,V. Ninni, et.al. The Influence of SomeTriphenylmethane Compounds on the Corrosion Inhibition of Aluminium[J]. Corrosion Science,2004,46(7):1765–1776
    [9] T. Martina, K. R. Hebert. Atomic Force Microscopy Study of Anodic Etching of Aluminum:Etching Morphology Development and Caustic Pretreatment[J]. Journal of the ElectrochemicalSociety,2001,148(2): B101-B109.
    [10] S. Ono, H. Habazaki. Effect of Sulfuric Acid on Pit Propagation Behaviour of Aluminiumunder AC Etch Process[J]. Corrosion Science,2009,51(10):2364-2370.
    [11] H. Masuda, K. Fukuda, Ordered Metal Nanohole Arrays Made by a Two-step Replication ofHoneycomb Structures of Anodic Alumina[J]. Science,1995,268,1466-1468.
    [12] V. P. Parkhutik, V.I. Shershulsky, Theoretical Modeling of Porous Oxide Growth onAluminum[J]. Journal of Physics D: Applied Physics,1992,25(8),1258-1263.
    [13]班朝磊,酸碱预处理对阳极铝箔电蚀特征的影响.轻合金加工技术,2010,38(5):39-41.
    [14]杨静,何业东,杨宏. AlCl3溶液浸泡对非铬酸系铝箔化成速度及比电容的影响.电子元件与材料,2010,29(1):42-44.
    [15] J. Scherer, O. M. Magnussen, T. Ebel, R. J. Behm. Initial Stages of the Anodic Etching ofAluminum Foils Studied by Atomic Force Microscopy[J]. Corrosion Science1999,41(1):35-55.
    [16]杨邦朝,肖占文.预处理对铝箔电蚀特性的影响[J].电子元件与材料,1997,16(3):1-9.
    [17] D. M. Drazic, S. K. Zecevic, R. T. Atanasiski, et al. The Effect of Anions on theElectrochemical Behavior of Al [J]. Electrochimica Acta,1991,36(1):179-182.
    [18] N. A. S ato. Theory for Breakdown of Anodic Oxide Films on Metals.[J]. Electrochimica Acta,1971,16(10):1683-1685.
    [19]刘永辉,张佩芬.金属腐蚀学原理[M].北京:航空工业出版社,1993.
    [20]阎康平.铝箔在HCI中交流电腐蚀的起始成孔效应[J].腐蚀科学与防护技术,1996,8(1):59-63.
    [21] H. Wu, K. R. Hebert, T. Gessmann, K. G. Lynnb. Corrosion-related Inter faeial DefectsFormed by Dissolution of Aluminium Aqueous Phosphoric Acid [J]. Joumal of theEleetrochemical Society,2002,149(4): B108-B116.
    [22]袁战恒,徐友龙,曹婉真,邵祖发.高压铝阳极极化膜的陷阱浓度与隧穿导电[J].电子元件与材料,1999,15(6):11-14.
    [23]杨武等.腐蚀与防护一一金属的局部腐蚀[M].北京:化学工业出版社,1993.
    [24] D. Park, H. Kim. Electrochemical Etching of Aluminum through Porous Alumina[J].Analytical science,2001,17: a73-a76.
    [1] J. Scherer, O. M. Magnussen, T. Ebel, R. J. Behm. Initial Stages of the Anodic Etching ofAluminum Foils Studied by Atomic Force Microscopy [J]. Corrosion Science,1999,41(1):35-55.
    [2] C. Ban, Y. He. Controlling Limiting Length of Tunnels on Al Foil Electroetched in HCl-H2SO4Solution [J]. Transactions of Nonferrous Metals Society of China.,2009,19(3):601-605.
    [3] H. Asoh, K. Nakamura, S. Ono. Control of Pit Initiation Sites on Aluminum Foil UsingColloidal Craystals as Mask [J]. Electrochimica Acta,2007,53(1):83-86.
    [4] S. Ono, H. Habazaki. Pit Growth Behavior of Aluminium under Galvanostatic Control [J].Corrosion Science,2011,53(11):3521-3525.
    [5] J. H. Ryu, J. H. Seo, J. H. Jeong, S.K. Kim, D. N. Lee. The Effect of Aluminum Ions on theDC Etching of Aluminum Foil [J]. Journal of Applied Electrochemistry,2004,34(9):879-884.
    [6] I.Nagata. Aluminium Electrolytic Capacitor [M]. Tokyo: Japan Chemical Condensor Corp,1983:186-190.
    [7] W. Lin, G. C. Tu, C. F. Lin, Y. M. Peng. The Effect of Indium Impurity on the DC-etchingBhavior of Aluminum Foil for Electrolytic Capacitor Usage [J]. Corrosion Science,1997,39(9):1531-1543.
    [8] W. Mao, H. Jiang, P. Yang, H. Feng, Y. Yu. Influence of Microstructure and Microelements onCorrosion Structure of Aluminum Foil [J]. The Chinese Journal of Nonferrous Metals,2004,14(10):1627-1631.
    [9] J. Lee, J. Kim, J. Kim, J. Lee, H. Chung, Y. Tak. Effects of Pretreatment on the Aluminum EtchPit Formation [J]. Corrosion Science,2009,51(7):1501-1505.
    [10] B. Yang. Z. Xiao. Effect of Pretreatment for Aluminum Foil on Its Electrochemical Properties[J]. Electronic Components&Materials,1997,16(3):1-9.
    [11] K. Hebert, R. Alkire. Growth Rates of Aluminum Etch Tunnels [J]. Journal of ElectrochemicalSociety,1988,135(10):2447-2452.
    [12]魏玲玲,何业东.电子铝箔电解腐蚀隧道孔极限长度的控制机理[J].电子元件与器件,2007,27(11):36-39.
    [13] R. Xiao, K. Yan, J.Yan, J. Wang. Electrochemical Etching Model in Aluminum Foil forCapacitor[J]. Corrosion Science,2008,50(6):1576-1583.
    [14] J. Flis, L. Kowalczyk. Effect of Sulphate Anions on Tunnel Etching of Aluminium [J]. Journalof Applied Electrochemistry,1995,25(5):501-507.
    [15] A. Kolics, J. C. Polkinghorne and A. Wieckowski. Adsorption of sulfate and chloride ions onaluminum [J]. Electrochimica Acta.1998,43(18):2605-2618
    [16] C. Y. Hung, O. B. Lung, L. Y. Lien. Effec of Acid Concentration and Current Densiy on DCEtching of Aluminum Electrolytic Capacitor Foil [J]. Korean Journal of Chemical Engineering,2007,24(5):881-887.
    [17] D. M. Drazic, S. K. Zecevic, R. T. Atanasiski, et al. The Effect of Anions on theElectrochemical Behavior of Al [J]. Electrochimica Acta,1991,36(1)179.
    [18] N, Sato. A Theory for Breakdown of Anodic Oxide Films on Metals [J]. ElectrochimicaActa,1971,16(10):1683-1692.
    [19] R. S. Alwitt, H. Uchi, T. R. Beck, R. C. Alkire. Electrochemical Tunnel Etching of Aluminum[J]. Journal of Electrochemical Society,1984,131(1):13-17.
    [1] M. L. Doche, J. Y. Hihn, A. Mandroyan, R. Viennet, F. Touyeras. Influence of UltrasoundPower and Frequency upon Corrosion Kinetics of Zinc in Saline Media[J]. UltrasonicsSonochemistry,2003,10(6):357-362.
    [2] P. Diodati, G. Giannini. Cavitation Damage on Metallic Plate Surfaces Oscillating at20kHz[J].Ultrasonics Sonochemistry,2001,8(1):49-53.
    [3] J. Kang, Y. Shin, Y. Tak. Growth of Etch Pits Formed during Sono electrochemical Etching ofAluminum [J]. Electrochimica Acta,2005,51(5):1012-1016.
    [4] J. Choi, K.H. Lee, Y. Tak. Interpretation of Potential Transients during Aluminum Etch TunnelGrowth in the Presence of Sulfuric Acid[J]. Electrochemistry,2001,69(1):843-847.
    [5] T. Martin, K. R. Hebert. Atomic Force Microscopy Study of Anodic Etching of Aluminum:Etching Morphology Development and Caustic Pretreatment[J]. Journal of the ElectrochemicalSociety,2001,148(2): B101-B109.
    [6] H. Ashassi-Sorkhabi, Z. Gha, D. Seifzadeh. The Inhibition Effect of Some Amino Acidstowards the Corrosion of Aluminum in1M HCl+1M H2SO4solution[J]. Applied SurfaceScience,2005,249(1-4):408–418.
    [7]闫康平,王建中,严季新.中高压电容器铝箔扩孔液中缓蚀剂的作用[J].电子元件与材料2001,20(6):6-9.
    [8]王志申,何业东.缓蚀剂在高压阳极箔电解扩孔中的作用机理[J].电子元件与材料,2010,29(1):48-51.
    [9]叶英杰.添加剂作用下电容器用铝箔交流腐蚀研究[D].合肥工业大学硕士论文,2004.
    [10]潘旭.电解电容器用铝箔扩面腐蚀工艺研究[D].合肥工业大学硕士论文,2007.
    [1] N. Osawa and K. Fukuoka. Pit Nucleation Behavior of Aluminum Foil for ElectrolyticCapacitors during Early Stage of DC Etching [J]. Corrosion Science,2000,42(3):585-597.
    [2] J. Kang, Y. Shin, Y. Tak. Growth of Etch Pits Formed during Sonoelectrochemical Etching ofAluminum [J]. Electrochimica Acta,2005,51(5):1012-1016.
    [3] H. Asoh, K. Nakamura, S. Ono. Control of Pit Initiation Sites on Aluminum Foil UsingColloidal Craystals as Mask [J]. Electrochimica Acta,2007,53(1):83-86.
    [4] R. G. Xiao, K. P. Yan, J. X. Yan, J. Z. Wang. Electrochemical Etching Model in Aluminum Foilfor Capacitor [J]. Corrosion Science,2008,50(6):1576-1583.
    [5] D. Goad. Tunnel Morphology in Anodic Etching of Aluminum [J]. Journal of theElectrochemical Society,1997,144(6):1965-1971.
    [6] J. Lee, J. Kim, J. Kim, et.al. Effects of Pretreatment on the Aluminum Etch Pit Formation[J].Corrosion Science,2009,51(7):1501-1505.
    [7] S. Doulami, K. Beligiannis, Th. Dimogerontakis,V. Ninni, et.al. The Influence of SomeTriphenylmethane Compounds on the Corrosion Inhibition of Aluminum[J]. Corrosion Science,2004,46(7):1765-1776.
    [8] K. Nishio, K. Kanezawa, H. Masuda. Control of Anisotropic Tunnel Etching of Al byIndentation[J]. Chemistry Letters,2006,35(10):1096-1097.
    [9] S. Ono, K. Nakamura, and H. Asoh. DC Etching of Aluminum Foils Using Self-organizedMaterials as a Direct Mask[J]. ATB Metallurgie,2006,45:480-483.
    [10] H. Asoh, K. Nakamura, S. Ono. Control of Pit Initiation Sites on Aluminum Foil UsingColloidal Craystals as Mask [J]. Electrochimica Acta,2007,53(1):83-86.
    [11] J. H. Jang, W. S. Choi, N. J. Kim, C. H. Lee, T. Y. Kim. Formation of Aluminum Tunnel PitsArrayed Using SU-8masks with UV-assisted Thermal Imprint Lithography [J]. MicroelectronicEngineering,2010,87(12):2610-2613.
    [12] H. Masuda, K. Fukuda. Ordered Metal Nanohole Arrays Made by a Two-step Replication ofHoneycomb Structures of Anodic Alumina [J]. Science,1995,268:1466-1468.
    [13] V. P. Parkhutik, V. I. Shershulsky. Theoretical Modeling of Porous Oxide Growth onAluminum [J]. Journal of Physics D: Applied Physics,1992,25(8),1258-1263.
    [14] H. Asoh, S. Ono, T. Hirose, M. Nakao, H. Masuda. Growth of Anodic Porous Alumina withSquare Cells [J]. Electrochimica Acta,2003,48(20-22):3171-3174.
    [15]韩婷,温培源,王晨雨,朱绪飞.多孔阳极氧化铝模板制备的研究进展[J].材料导报,2010,24(1):115-119.
    [16] K. Nielsch, F. Muller, A. P. Li, and U. Gosele. Uniform Nickel Deposition into OrderedAlumina Pores by Pulsed Electrodeposition [J]. Advanced Materials,2000,12(8),582-586.
    [17]郭元元,汪明,毛晓波,蒋月秀,王琛,杨延莲.阳极氧化铝模板法可控制备金属纳米线和纳米管阵列的生长机制[J].物理化学学报,2010,26(7):2037-2043.
    [18] J. Choi, G. Sauer, K. Nielsch, R. P. Wehrsphon, and U. Gosele. Hexagonally ArrangedMonodisperse Silver Nanowires with Adjustable Diameter and High Aspect Ratio [J].Chemistry of Materials,2003,15(3):776-779.
    [19] J. H. Jeong, S. H. Kim, Y. Choi, and S. S. Kim, Microstructure of Nanopores in AAOTemplates Favoring the Growth of Nickel Nanowires by Electrodeposition [J]. Physica StatusSolidi C,2007,4(12):4429-4432.
    [20] O. Rabin, P. R. Herz, Y. M. Lin, A. I. Akinwande, B. S. Cronin, M. S. Dresselhaus. Formationof Thick Porous Anodic Alumina Films and Nanowire Arrays on Silicon Wafers and Glass [J].Advanced Functional Materials,2003,13(8):631-638.
    [21] M. Tian, S. Xu, J. Wang, N. Kumar, E. Wertz, Q. Li, P. M. Campbell, M. H. W. Chan, T.E.Mallouk. Penetrating the Oxide Barrier in Situ and Separating Freestanding Porous AnodicAlumina Films in One Step[J]. Nano Letters,2005,5(4):697-703.
    [22]毛卫民,杨宏,余永宁等.微量Mg对高压电子铝箔腐蚀结构的影响[J].中国有色金属学报,2005,13(5):1057-1060.
    [23] A. V. Blaaderen, R. Ruel, P. Wiltzius.Template-directed Colloidal Crystallization [J]. Nature,1997,385(23):321-324.
    [24] O. D. Velev, A. M. Lenhoff. Colloidal Crystals as Templates for Porous Materials [J].CurrentOpinion in Colloid&Interface Science,2000,5(1-2):56-63.
    [25] M. Ozaki, Y. Shimoda, M. Kasano. Electric Field Tuning of the Stop Band in aLiquid-Crystal-Infiltrated Polymer Inverse Opal [J]. Advanced Materials,2002,14(7):514-518.
    [26] S. H. Park, Y. Xia. Assembly of Mesoscale Particles over Large Areas and Its Application inFabricating Tunable Optical Filters [J].Langmuir,1999,15(1):266-273.