空间目标普测型雷达信号检测与参数估计算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近地轨道空间是关系国家安全的重要领域,也是经济建设的重要资源。伴随着空间目标运行环境的不断恶化,对空间目标进行系统性的监测已经刻不容缓。空间目标普测型雷达作为目标广域探测、捕获的基础性设备,在空间目标监测体系中具有重要的地位。
     本文针对宽波束驻留类的空间目标普测型雷达在信号处理和数据处理中的多项关键技术进行研究,开展的工作和取得的成果包括下面几个方面。
     首先,研究了空间目标相对于测站的运动特征,推导出空间目标相对于测站的运动参数的计算表达式,讨论了轨道偏心率对目标运动参数计算的影响。在此基础上,针对宽波束驻留类普测型雷达,给出了已知轨道根数空间目标的运动参数计算流程,建立了该类型雷达的回波信号模型,即目标回波为线性调频(LFM)信号。之后,从信噪比(SNR)积累增益的角度出发,研究了常用的基于快速傅立叶变换(FFT)的动目标检测方法在空间目标检测中的性能和适用范围。
     然后,开展了基于分数阶傅立叶变换(FrFT)的目标检测与运动参数估计的研究。在给出基于FrFT的LFM信号检测与参数估计流程以及离散型DFrFT的计算过程后,从理论上研究了离散型DFrFT在高斯白噪声下对LFM信号的SNR积累增益与参数估计精度。在对离散型DFrFT的分辨率进行分析后,研究了利用离散型DFrFT对LFM信号处理时造成峰值点搜索偏差的因素,提出了利用内插DFrFT实现LFM信号参数估计的方法。该方法突破了由信号时宽带宽积决定的u域(即分数阶傅立叶域)分辨率的限制,提高了算法对LFM信号参数的估计精度,通过仿真计算验证了算法的有效性。此外,时频平面内的旋转角度α对峰值点搜索也有影响,并对系统处理的实时性起着决定作用。因此,针对空间目标监测这一具体应用,文中还对参数α的搜索区间及搜索间隔的确定进行了研究。
     其后,研究了利用阵列天线实现空间目标到达角(DOA)估计的方法。空域矩阵滤波器通过保持空域通带内的信号,并抑制空域阻带内的干扰与噪声来提高DOA估计的性能。为消除空域矩阵滤波作用后产生的高斯色噪声的影响,进一步地提高对信号源DOA估计的性能,提出了基于四阶累积量的空域矩阵滤波DOA估计算法。分析表明,利用四阶累积量对高斯噪声的不敏感性,该方法能够提高子空间类算法在低信噪比条件下的DOA估计性能,并能够抑制高斯色噪声对子空间类DOA估计算法的影响。此外,通过滑动空域矩阵滤波器的空域通带,使得该方法具有估计出多于阵元个数的目标DOA的能力。之后,将该方法改写为迭代形式来校正阵列通道幅相误差。通过仿真计算对算法的有效性进行了验证。
     最后,对多目标同时穿越雷达视场时的测向数据关联进行了研究。以宽波束驻留类普测型雷达的空间目标位置确定为研究对象,建立了多接收站数据关联的数学模型。之后,推导出空间目标相对于各接收站距离变化率的计算表达式,并在目标运行于圆轨道的假设下,推导出利用接收站获取的多普勒频率信息得到空间目标轨道倾角的计算过程。利用各接收站计算得到的空间目标轨道倾角,构建代价函数,提出了利用轨道倾角差进行多接收站测向数据关联的方法。该方法仅利用两接收站获取的测量值进行数据关联,不需要为增加空间冗余信息而增设接收站,很好地解决了测向数据的关联问题。文中还分析了多普勒频率测量误差、角度测量误差以及轨道偏心率对轨道倾角计算的影响,并通过仿真计算验证了算法的有效性。
The near earth space is a crucial area for the national security as well as an important resource for the economy development. As the degradation of operating environment for the spacecrafts, it is extremely urgent to realize exhaustive space objects surveillance. As the basic instrument for wide-field space objects detection, the general survey type radar plays a very important role in space surveillance system.
     Some key techniques in signal processing and data processing of the“wide resident beam”radar, which is a kind of general survey radar, are studied in this dissertation. The main studies and the contributions can be summarized as follows.
     Firstly, the motion characteristics of space objects with respect to the survey station are studied. The analytical expressions of motion characteristics are derived, and the effects caused by the eccentricity are also discussed. For the application of“wide resident beam”radar, the movement characteristics calculation for space objects with known orbit elements is obtained and the model of radar echo signal is founded. From the point of view of output SNR (signal noise ratio) gain, the performance and applicability of FFT (fast Fourier transform), which is a common moving target detection technique, are analyzed.
     Secondly, the space objects detection and parameters estimation are studied. At the beginning, the principle of LFM (linear frequency modulated) signals detection and parameters estimation based on FrFT (fractional Fourier transform) are summarized. Then, the detection performance and estimation accuracy are analyzed theoretically where LFM signal with WGN (white Gaussian noise) is processed by discrete type DFrFT (discrete fractional Fourier transform). The factors which cause the error in“peak searching”are analyzed when DFrFT is applyed. The results show that the resolution of DFrFT in FrF (fractional Fourier) domain is the dominating one. For solving the finite FrF resolution which is determined by the time-bandwidth product of the signal, a novel approach using DFrFT interpolation is proposed. Using DFrFT interpolation, the method breaks through the FrF resolution and gets higher accuracy of parameters estimation. The results of simulation validate the effectiveness of this approach. The rotation angleαin time-frequency plane affects the“peak searching”as well as the computation complexity, therefore, the rotation range and interval of angleαare also analyzed.
     Subsequently, the DOA (direction of arrival) estimation of space objects with antenna array is studied. As an implementation of spatial filtering, the spatial matrix filter (SMF) improves the performance of DOA estimation of multiple sources through keeping the signals in spatial passband (sector-of-interest) and attenuating the noise and interference in spatial stopband (outside the sector-of-interest). To eliminate the effects caused by SMF, a novel approach based on the fourth-order cumulant (FOC) of the data snapshots is proposed. As the fourth order cumulant of Gaussian noise is zero, this approach is capable of improving the performance of DOA estimation in lower SNR or CGN (colored Gaussian noise) situations. Meanwhile, by sliding the passband of SMF, the approach makes it possible to estimate DOAs of multiple sources with a number more than the array elements. Moreover, the approach is rewritten in an iterative form to calibrate the channel gain and phase error of antenna array. Results of simulation verify the approach’s validity.
     Finally, the techniques are investigated to solve the problem of direction data association when multi-targets cross the radar FOV (field of view) synchronously. Towards the position determination problem of“wide resident beam”radar, the model for multi-receiver data association is established at first. Then, the expression of the range rate of space objects with respect to the receiver is derived. Under the assumption that the orbit of space objects is circular, the calculation of inclination using the Doppler measurements is derived. Considering the difference of DI (Doppler inclination) and effects caused by false and miss alarm, the cost function for direction data association is founded. This approach just use the measurements acquired by two receivers to achieve direction data association, so there is no need to set up other receivers for acquiring redundant direction data. At last, the effects caused by the eccentricity and the measurement error on DI calculation are analyzed. The feasibility and validity of this approach is validated by the simulation.
引文
[1]王凤岭.航天力量支援空军作战的特点及启示.中国军网-解放军报网络版, http://www.chinamil.com.cn/item/newar/zzxl/17.htm.
    [2] Space Debris ESA Vedio. Fifth European Conference on Space Debris [C], Darmstadt: ESA/ESOC, 2009.04.
    [3]中国军网,http://www.chinamil.com.cn/site1/2009zt/2009mewxtkxz/index.htm.
    [4]国防科学技术工业委员会.“十一五”空间碎片行动计划.2005.
    [5] IADC Space Debris Mitigation Guidelines [M]. IADC-02-01, 2002.
    [6] Liou J C, Matney M J, Meador A, et al. The new NASA orbital debris engineering model ORDEM2000 [R]. NASA/TP-2002-210780. Houston: NASA Johnson Space Center, 2002.
    [7] Padget S A. Issues in space law and policy [D]. Monterey: Naval Postgraduate School, 1996.
    [8] Office of Science and Technology Policy. Interagency report on orbital debris [R]. NASA, 1995.
    [9]朱毅麟.空间碎片环境近况[J].中国空间科学技术, 1996, 16(6): 19~28.
    [10] National Research Council. Orbital Debris: A Technical Assessment [M]. Washington, DC: National Academy Press, 1995.
    [11]刘林.航天器轨道理论[M].北京:国防工业出版社, 2000.
    [12] Jehn R, Leushacke L. Unknown debris at 1400 km altitude [A]. In: Danesy D ed. Proceedings of the Fourth European Conference on Space Debris [C], Darmstadt: ESA, 2005. 79~82.
    [13]吕洁,吴季,孙波.利用天基雷达观测低地轨道上的危险空间碎片.遥感技术与应用, 2006, 21(2): 103~108.
    [14] Carl J R, Arndt G D, Bourgeois B A, et al. Space-borne radar detection of orbital debris [A]. In: Global Telecommunications Conference, Technical Program Conference Record [C]. Houston: IEEE, 1993.
    [15]易帆,黄春明.空间碎片监测地基激光雷达[A].第四届全国空间碎片专题研讨会论文集[C].南京:中国科学院紫金山天文台, 2007.
    [16]元秀华,王瑾,黄德修.空间碎片地基激光雷达探测技术研究[A].第四届全国空间碎片专题研讨会论文集[C].南京:中国科学院紫金山天文台, 2007.
    [17]董吉辉,胡企.空间碎片的激光雷达探测[J].激光技术, 2007, 31(2): 185~187.
    [18] Takano T, Tajima T, Satoh T, et al. Space debris measurements in Japan [J].Advances in Space Research, 1999, 23(1): 55~65.
    [19] Yajima M, Tsuchikawa K, Murakami T, et al. Study of a bistatic radar system using VLBI technologies for detecting space debris and the experimental verification of its validity [J]. Earth, Moon, and Planets, 2007, 100(1~2): 57~76
    [20] McCall G H. Space Surveillance [R]. Air Force Space Command, 2001.
    [21]史仁杰.美国空间监视网[J].空间碎片研究, 2006, 3:27~32.
    [22] United States Space Surveillance Network. From Wikipedia, the free encyclopedia, http://en.wikipedia.org/.
    [23] Johnson N L. The world state of orbital debris measurements and modeling [J]. Acta Astronautica, 2004, 54(4): 267~272.
    [24] www.fas.org/spp/military/program/track/mccall.pdf.
    [25] Stokely C. Utilizing the ultra-sensitive Goldstone radar for orbital debris measurements. In: Liou J-C, Portman S ed. The Orbital Debris Quarterly News. 2004, 8(3). http://www.orbitaldebris.jsc.nasa.gov.
    [26] Sridharan R and Pensa A F. U.S. space surveillance network capabilities [A]. In: Part of the SPIE Conference on Characteristics and Consequences of Space Debris and Near-Earth Objects [C], San Diego: SPIE, 1998. 3434: 88~99.
    [27] Settecerri T J, Skillicorn A D, Spikes P C. Analysis of the Eglin radar debris fence [J]. Acta Astronautica, 2004, 54(3): 203~213.
    [28] United States Navy Fact Sheet. The Naval Space Surveillance System. Space and Naval Warfare Systems Command, Public Affairs and Corporate Communications, 4301 Pacific Highway, San Diego CA 92110-3127.
    [29] Schumacher P W, Jr, Gilbreath G C, Lydick E D, et al. Error analysis for laser-based metric calibration of the Naval Space Surveillance System [A]. In: Part of the SPIE Conference on Laser Radar Technology and ApplicationsШ[C], Orlando: SPIE, 1998. 3380: 202~215.
    [30] Gilbreath G C, Schumacher P W, Jr, Davis M A, et al. Calibrating the space surveillance fence using simultaneous satellite laser ranging Data [A]. In: Spence L B ed. Proceedings of the 1997 space control conference [C], STK-249, Vol. ?, M.I.T. Lincoln Laboratory, 1997.
    [31] Hoots F R, Pierce G S, Ford L, et al. Catalonging with the upgraded space surveillance fence [A]. AAS/AIAA Space Flight mechanics Conference [C]. Paper AAS 05-125. AAS, 2005.
    [32] http://www.globalsecurity.org/space/library/report/1995/navspace.htm.
    [33] http://en.wikipedia.org/wiki/Globus_II.
    [34] www.fas.org/spp/military/program/track/globusII.pdf.
    [35] www.cdi.org/pdfs/Korsbakken.pdf.
    [36] Grant H S, Curt B, Ramaswamy S, et al. The Space-Based Visible Program [A].AIAA 2000-5334. AIAA Space 2000 Conference & Exposition [C], Long Beach, CA, September, 2000.
    [37] Office of the Secretary of Defense. Department of Defense Space Technology Guide FY2000-01.
    [38] The U.S. Air Force Transformation Flight Plan, 2003.
    [39] Counterspace Operations, Air Force Doctrine Document 2-2.1, 2004.
    [40] Mehrholz D, Leushacke L, Banka D. Beam-park experiments at FGAN [J]. Advances in Space Research, 2004, 34(5): 863~871.
    [41] Mehrholz D. Space object observation with radar [J]. Advances in Space Research, 1993, 13(8): 33~42.
    [42] Mehrholz D, Leushacke L, Flury W, et al. Detecting, tracking and imaging space debris [M]. ESA bulletin, 2002, no.109, 128~134.
    [43] Mehrholz D. Radar observations of geosynchronous orbits [A]. In: Proceedings of the Second European Conference on Space Debris [C]. Darmstadt: ESA, 1997.
    [44] http://www.onera.fr/synindex-en/graves-radar.html.
    [45] Michal T, Eglizeaud J P, Bouchard J. GRAVES: the new French system for space surveillance [A]. In: Danesy D ed. Proceedings of the Fourth European Conference on Space Debris [C], Darmstadt: ESA, 2005. 61~66.
    [46] Mehrholz D. Radar detection of mid-size debris [J]. Advances in Space Research, 1995, 16(11): 17~27.
    [47] Banka D, Leushacke L, Mehrholz D. Beam-park-experiment-1/2000 with TIRA [J]. Space Debris, 2000, 2(2): 83~96.
    [48] Jehn R. Comparison of the 1999 beam-park experiment results with space debris models [J]. Advances in Space Research, 2001, 28(9): 1367~1375.
    [49] Mehrholz D, Leushacke L, Jehn R. The COBEAM-1/96 experiment [J]. Advances in Space Research, 1999, 23(1): 23~32.
    [50] Rihaczek A W, Hershowitz S J. Radar tracking and observation of noncooperation space objects due to reentry of SALYUT-7/KOSMOS-1686 [R]. N92-23968.
    [51] AU Space Primer. Chapter 3 Space Operations and Tactical Application U.S. Navy. 2003.
    [52] Brian Jordan Davis. LORAAS Based Ionospheric Measurements and Their Application to The Navy Space Surveillance Fence [D]. USA: University of Colorado at Denver, 2000. http://www.denverdavis.com/info/thesis.
    [53] Klass P J. Navy improves accuracy, detection range of space surveillance chain [J]. Aviation week & space technology, 1965.08, 56~61.
    [54] Montebugnoli S, Pupillo G, Salerno E, et al. A potential integrated multiwavelength radar system at the medicina radiotelescopes [A]. In:Proceedings of the Fifth European Conference on Space Debris [C]. Darmstadt: ESA, 2009.
    [55] Accidental collisions of cataloged satellites identified. In: Liou J-C, Portman S Eds. The Orbital Debris Quarterly News, 2005, 9(2).
    [56]刘静.空间碎片预警碰撞系统[J].空间碎片研究, 2006, 6(2): 27~32.
    [57]都亨,张文祥,庞宝君等.空间碎片[M].北京:中国宇航出版社, 2007.
    [58] Khakhinov V V, Lebedev V P, Medvedev A V. Capabilities of the Irkutsk incoherent scattering radar for space debris studies [A]. In: Proceedings of the Fifth European Conference on Space Debris [C]. Darmstadt: ESA, 2009.
    [59] Donath T, Schildknecht T, Brousse P, et al. Proposal for a European space surveillance system [A]. In: Danesy D ed. Proceedings of the Fourth European Conference on Space Debris [C], Darmstadt: ESA, 2005. 31~38.
    [60] http://www.globalsecurity.org/space/systems/navspasur.htm.
    [61] Knowles S H, Smith R H, Waltman W B. Experimental observations of naval space surveillance satellite Signals with an out-of-plane receiving station [R]. Naval Research Laboratory, 1982.
    [62] Boashash B. Estimating and interpreting the instantaneous frequency of a signal [J]. Proc of the IEEE, 1992, 80(4):519~569.
    [63] Djuric P M, Kay S M. Parameter estimation of chirp signal [J]. IEEE Trans. on ASSP, 1990, 38(12):2118~2126.
    [64] Barbarossa S, Petrone V. Analysis of polynomial-phase signals by the integrated generalized ambiguity function [J]. IEEE Trans. on SP, 1997, 45(2):316~327.
    [65] Abatzoglou T J. Fast maximum likelihood joint estimation of frequency and frequency rate [J]. IEEE Trans. on AES, 1986, 22(6):708~715.
    [66] Peleg S, Porat B. Linear FM signal parameter estimation from discrete-time observations [J]. IEEE Trans. on AES, 1991, 27(4):607~615.
    [67]刘渝.快速解线性调频技术[J].数据采集与处理, 1999, 14(2):175~178.
    [68]毛用才,保铮.估计时变幅值复线性调频信号的循环平稳方法及其统计性能分析[J].电子学报, 1999, 27(4):135~136.
    [69] Haimovich A M, Peckham C D, Teti J G. SAR imagery of moving targets: Application of time-frequency distributions for estimating motion parameters [A]. In: David P C, Andrew G T. 1994 SPIE Hybrid Image and Signal Processing IV [C]. 1994, SPIE Vol. 2238: 238~247.
    [70] Mullick S K, Topkar V A. A Wigner distribution based receiver. Signal Processing, 1988, 14(2):185~196.
    [71] Frazer G J, Anderson S J. Wigner-Ville analysis of HF radar measurements of an accelerating target. Fifth Int. Sym. Signal Processing and its Applications,ISSPA’99, Brisbane, Australia 1999:317~320.
    [72] Hlawatsch F. Interference terms in the Wigner distribution [A]. In: International conference on digital signal processing [C]. Italy, 1984.9.
    [73] Preeti Rao. Application of the Wigner Distribution to problems in time-varying signal analysis [D]. Florida Gainesville: University of Florida, 1990.
    [74] Choi H, Williams W J. Improved time-frequency representation of multicomponent signals using exponential kernels [J]. IEEE Trans. on SP, 1988, 37(6):862~871.
    [75] Barbarossa S, Zanalda A. A combined Wigner-Ville and Hough transform for cross-terms suppression and optimal detection and parameter estimation [J]. IEEE ICASSP Proc., 1992, 5(1):173~176.
    [76] Barbarossa S. Analysis of multicomponent LFM signals by a combined Wigner-Hough transform [J]. IEEE Trans. SP, 1995, 43(6):1511~1515.
    [77] Almeida L B. The fractional Fourier transform and time-frequency representations [J]. IEEE Trans. on SP, 1994, 42(11):3084~3091.
    [78] Akay Olcay, Boudreaux-Bartels G Faye. Fractional autocorrelation and its application to detection and estimation of linear FM signals [A]. In: Proc. of the IEEE-SP international symposium on time-frequency and time-scale analysis [C], 1998:213-216.
    [79]周刚毅,叶中付.线性调频信号的调频斜率估计方法[J].中国科学技术大学学报, 2003, 33(1):34~38.
    [80] Wang Pu, Yang Jianyu, Du Yuming. A fast algorithm for parameter estimation of multi-component LFM signal at low SNR [A]. In: Proc. of 2005 International conference on communications, circuits and systems [C], 2005: 765~768.
    [81]齐林,陶然,周思永等.基于分数阶Fourier变换的多分量LFM信号的检测和参数估计[J].中国科学, E辑, 2003, 33(8):749~759.
    [82]孙泓波,顾红,苏卫民等.利用分数阶Fourier域滤波的机载SAR多运动目标检测[J].航空学报, 2002, 23(1):33~37.
    [83] Sun Hongbo, Liu Guosui, et al. Application of the fractional Fourier transform to moving target detection in airborne SAR [J]. IEEE Trans. on AES, 2002, 38(4):1416~1424.
    [84] Tao Ran, Ping Xianjun, Zhao Xinghao, et al. Detection and estimation of Moving targets based on Fractional Fourier transform [A]. In: Proc. of the 6th ICSP [C], 2002:102~105.
    [85]邵智超,吴彦鸿,贾鑫.基于时频分析的LFM信号检测与参数估计[J].装备指挥技术学院学报, 2004, 15(2):71~75.
    [86]刘建成,王雪松,刘忠,等.基于分数阶Fourier变换的LFM信号参数估计精度分析[J].信号处理, 2008, 24(2):197~200.
    [87] Ozaktas H M, Arikan O, Kutay M A, et al. Digital computation of the fractional Fourier transform [J]. IEEE Trans. on SP, 1996, 44(9):2141~2150.
    [88] Bultheel A, Sulbaran H E M. Computation of the fractional Fourier transform [J]. Applied and Computational Harmonic Analysis, 2004, 16:182~202.
    [89] Krim H, Viberg M. Two decades of array signal processing research [J]. IEEE signal processing magazine, 1996:67~94.
    [90] http://en.wikipedia.org/wiki/Rayleigh_limit.
    [91] Schmidt R. O. Multiple emitter location and signal parameter estimation [J]. IEEE Trans. on AP, 1986, 34(3): 276~280.
    [92] Cadzow J A, Kim Y S. General direction-of-arrival estimation: a signal subspace approach [J]. IEEE Trans. on AES, 1989, 25(1):31~46.
    [93] Rao B D, Hari K V S. Performance analysis of Root-MUSIC [J]. IEEE Trans. on ASSP, 1989, 37(12):1939~1949.
    [94] Kumaresan R, Tufts D W. Estimating the angles of arrival of multiple plane waves [J]. IEEE Trans. on AES, 1983, 19(1):134~139.
    [95] Roy R K T. ESPRIT-a subspace rotation approach to estimation o f parameters of cissoids in noise [J]. IEEE Trans. on ASSP, 1986, 34(10):1340~1342.
    [96] Roy R, Kailath T. ESPRIT-estimation of signal parameters via rotational invariance techniques [J]. IEEE Trans. on ASSP, 1989,37(7):984~995.
    [97] Rao B D, Hari K V S. Performance analysis of ESPRIT and TAM in determining the direction of arrival of plane waves in noise [J]. IEEE Trans. on ASSP, 1989, 40(12):1990~1995.
    [98] Bohme J F. Estimation of source parameters by maximum likelihood and nonlinearregression [A]. Proc. ICASSP [C], USA, 1984:731~734.
    [99] Stoica P, Nehorai A. MUSIC, maximum likelihood and Cramer-Rao bound [A]. Proc. ICASSP [C], 1988:2296~2299.
    [100] Cadzow J A. A high resolution direction-of-arrival algorithm for narrow-band coherent and incoherent sources [J]. IEEE Trans. on ASSP, 1988, 36(7): 965~979.
    [101] Viberg M, Ottersten B. Sensor array processing based on subspace fitting [J]. IEEE Trans. on SP, 1991, 39(5):1110~1121.
    [102] Krim H, Viberg M. Two decades of array signal processing research [J]. IEEE Signal Processing Magazine, 1996, 13(4):67~94.
    [103] Clergeot H, Tressens S. Performance of high resolution frequencies estimation methods compared to the Cramer-Rao bounds [J]. IEEE Trans. on ASSP, 1989, 37(11):1703~1720.
    [104] Vaccaro R J, Harrison B F. Optimal matrix-filter design [J]. IEEE Trans. on SP, 1996, 44(3):705~709.
    [105] Zhu Z W, Wang S, Leung H, et al. Matrix filter design using semi-infinite programming with application to DOA estimation [J]. IEEE Trans. on SP, 2000, 48(1):267~271.
    [106] Vaccaro R J, Harrison B F. Matrix filter for passive sonar [A]. In: IEEE International Conference on Acoustics Speech and Signal Processing [C], 2001:2921~2924.
    [107] Vaccaro R J, Chhetri A, Harrison B F. Matrix filter design for passive sonar interference suppression [J]. Acoustical Society of America Journal, 2004, 115(6):3010~3020.
    [108] MacInnes C S. Source localization using subspace estimation and spatial filtering [J]. IEEE Journal of Oceanic Engineering, 2004, 29(2):488~497.
    [109] Hassanien A, Elkader A S, Gershman A B, et al. Beamspace preprocessing with an improved robustness against out-of-sector sources using second-order cone programming [A]. In: Sensor Array Multichannel Signal Processing Workshop Proc. [C], Spain, 2004:347~351.
    [110]鄢社锋,马远良.匹配场噪声抑制:广义空域滤波方法[J].科学通报, 2004, 49(18):1909~1912.
    [111] Hassanien A, Elkader A S, Gershman A B, et al. Convex optimization based beam-space preprocessing with improved robustness against out-of-sector sources [J]. IEEE Trans. on SP, 2006, 54(5):1587~1595.
    [112]鄢社锋,侯朝焕,马晓川.矩阵空域预滤波目标方位估计[J].声学学报, 2007, 32(2):151~157.
    [113] Shan T J, Wax M. Adaptive beamforming for coherent signals and interference [J]. IEEE Trans. on ASSP, 1985, 33(3):527~536.
    [114] Valaee S, Kabal P. Wideband array processing using a two-sided correlation transformation [J]. IEEE Trans. on SP, 1995, 43(1):160~172.
    [115] Hung H, Kaveh M. Focusing matrices for coherent signal-subspace processing [J]. IEEE Trans. on ASSP, 1988, 36(8):1272~1281.
    [116] Doron M A, Weiss A J. On focusing matrices for wide-band array processing [J]. IEEE Trans. on SP, 1992, 40(6):1295~1302.
    [117] Valace S, Champagne B. Localization of wideband signals using least-squares and total least-squares approaches [J]. IEEE Trans. on SP, 1999, 47(5): 1213~1222.
    [118] Schell S V. Performance analysis of the cyclic MUSIC method of direction estimation for cyclostationary signals [J]. IEEE Trans. on SP, 1994, 42(11): 3043~3050.
    [119] Lee Y T, Lee J H. Direction-finding methods for cyclostationary signals in the presence of coherent sources [J]. IEEE Trans. on AP, 2001, 49(12):1821~1826.
    [120] Xin J M, Sano A. Linear prediction approach to direction estimation of cyclostationary signals in multipath environment [J]. IEEE Trans. on SP, 1992, 49(4):710~719.
    [121]汪仪林.利用信号的循环平稳性改善DOA估计性能的研究[D].西安:西安交通大学博士论文,2000.
    [122]于宏毅.循环平稳信号波达方向估计的算法和性能研究[D].西安:西安电子科技大学博士论文,1996.
    [123] Moffet A T. Minimum redundancy linear arrays [J]. IEEE Trans. on AP, 1968, 16:172~175.
    [124] Chambers C, Tozer T C. Temporal and spatial sampling influence on the estimates of superimposed narrowband signals: when less can mean more [J]. IEEE Trans. on SP, 1996, 44(12):3085~3098.
    [125] Mathews C P, Zoltowski M D. Eigenstructure techniques for 2-D angle estimation with uniform circular arrays [J]. IEEE Trans. on SP, 1994, 42(9): 2395~2407.
    [126] Friedlander B, Weiss A J. Direction finding using spatial smoothing with interpolated arrays [J]. IEEE Trans. on AES, 1992, 4(28):574~587.
    [127]王永良,陈辉等.一种有效的超分辨空间谱估计方法虚拟阵列变换法[J].中国科学E辑, 1999, 26(6):518~524.
    [128]陈辉,王永良等.利用阵列几何设置改善方位估计[J].电子学报, 1999, 27 (9):97~99.
    [129] Zoltowski M D, Mathews C P. Real time frequency and 2-D angle estimation with sub-nyquistspatio-temporal sampling [J]. IEEE Trans. on SP, 1994, 42(10): 2781~2797.
    [130] Li J, Compton T R. Two-dimensional angle and polarization estimation using ESPRIT algorithm [J]. IEEE Trans. on AP, 1991, 39(9): 1376~1383.
    [131] Kuduvall C R, Rangayyan R M. An algorithm for direct computation of 2-D linear prdiction coefficients [J]. IEEE Trans. on SP, 1993, 42(2): 996~999.
    [132] Chen H, Wang Y L. A modified method of frequency and 2-D angle estimation. Proc [A]. IEEE Antennas and Propagation Society Internationary Symposium [C], 2003(3): 920-923.
    [133]贾永康,保铮.时-空二维信号模型下波达方向估计的克拉美-罗界[J].电子学报, 1997, 25(9):15~19.
    [134] Shich C S, Lin C T. Direction of arrival estimation based on phase differences usingneural fuzzynetwork [J]. IEEE Trans. on AP, 2000, 48(7): 1115~1124.
    [135] Poral B, Friedlander B. Direction finding algorithms based on high-order statistics [J]. IEEE Trans. on SP, 1991, 39(9):2016~2023.
    [136] Dogan M C, Mendel J M. Applications of cumulants to arrayprocessing part I: aperture extension and array calibration [J]. IEEE Trans. on SP, 1995, 43(5): 1200~1216.
    [137] Maryuyama T, Kuwahara Y. Estimation of propagation structure by means of Hopfield neural network [A]. Proc. IEEE Antennas and Propagation Society International Symposium [C], 2001:476~479.
    [138] Shamsumder S, Giannakis G B. Modeling of non-Gaussian array data using cumulants: DOA estimation of more sources with less sensors [J]. Signal Processing, 1993, 30:279~297.
    [139] Zoltowski M D, Kautz G M, Silverstein S D. Multifrequency beam space Root-MUSIC: an experimental evaluation [A]. In: SPIE, Advanced signal processing algorithms, architectures, and implementations [C], 1991, 1566: 452~462.
    [140] Mccormick W S, Tsui J B Y. Suboptimal real-time frequency/incident angle estimation for multiple radar pulsed [J]. IEE Proc.-F, 1991, 138(1):247~254.
    [141] Ho J C, Yang J F, Kaveh M. Parallel adaptive rooting algorithms for general frequency estimation and direction finding [J]. IEE Proc.-F, 1992, 139(1):43~48 .
    [142] Zoltowski M D, Mathews C P. Real-time frequency and 2-D angle estimation with sub-Nyquist spatio-sampling [A]. Proc, ICASSP [C], 1993, 117~120.
    [143] Rao C R, Zhao L C, Zhou B. A novel algorithm for 2-D frequency estimation [A]. Proc. Asilomar conf. signals, systems, computers [C], 1993, 199~202.
    [144]唐斌.空间信号多维参数估计方法研究[D].成都:成都电子科技大学博士论文, 1996.
    [145]唐斌,肖先赐.信号频率和2-D到达方向分离估计方法[J].信号处理, 1996, 12(3):218~223.
    [146]周云钟,陈天麒.多信号极化与到达角联合估计[J].成都电子科技大学学报, 1996, 25(6):574~578.
    [147]贾永康,保铮.利用多普勒信息的波达方向最大似然估计方法[J].电子学报, 1997, 25(6):71~76.
    [148]王建英,陈天麒.频率、二维到达角和极化联合估计[J].电子学报, 1999, 27(11):74~76.
    [149]蒋伯峰,王文杰.适用于任意阵列的多径信道二维方向角与相对时延的联合估计方法[J].电子学报, 2000, 28(12):1~4.
    [150] Boyd S P, Barrat C H. Linear Controller Design: Limits of Performance [M].Englewood Cliffs, NJ: Prentice-Hall,1991.
    [151] Wang Shi, Zhu Zhiwen, Leung Henry. Semi-infinite optimization technique for the design of matrix filters [A]. IEEE Signal Processing workshop on statistical signal and array processing [C], 1998:204-207.
    [152] Polak E. Optimization: algorithms and consistent approximations [M]. New York: Springer-Verlag, 1997.
    [153] Friedlander B. A sensitivity analysis of the MUSIC algorithm [J]. IEEE Trans. on ASSP, 1990, 38(10):1740~1751.
    [154] Li Fu, Vaccaro R J. Sensitivity analysis of DOA estimation algorithms to sensor errors [J]. IEEE Trans. on AES, 1992, 28(3):708~717.
    [155] Swindlehurst A L, Kailath T. A performance analysis of subspace-based methods in the presence of model errors, part I: The MUSIC algorithm [J]. IEEE Trans. on SP, 1992, 40(7):1758~1773.
    [156] Swindlehurst A L, Kailath T. A performance analysis of subspace-based methods in the presence of model errors, part II: Multidimensional algorithm [J]. IEEE Trans. on SP, 1993, 41(9):2882~2890.
    [157] Schmidt R O. Multilinear array manifold interpolation [J]. IEEE Trans. on SP, 1992, 40(4):857~866.
    [158] Weiss A J, Friedlander B. Manifold interpolation for diversely polarized arrays [J]. IEE proceedings-radar, sonar navig., 1994, 141(1):19~24.
    [159] Ng B C, See C M S. Sensor-array calibration using a maximum-likelihood approach [J]. IEEE Trans. on AP, 1996, 44(6):827~835.
    [160] Hung E. Computation of the coupling matrix among the elements of an array antenna [A]. In: Proc. the International Conference on Radar (Radar 94) [C], Paris, May 1994:703~706.
    [161] Hung E. Matrix-construction calibration method for antenna arrays [J]. IEEE Trans. on AES, 2000, 36(3):819~828.
    [162] Zhang M, Zhu Z D. DOA estimation with sensor gain, phase and position perturbations [A]. In: Proc. the IEEE National Aerospace and Electronics Conference [C], NAECO, 1993:67~69.
    [163] Zhang M, Zhu Z D. Array shape calibration using sources in known locations [A]. In: Proc. the IEEE National Aerospace and Electronics Conference [C], NAECO, 1993:70~73.
    [164] Fistas N, Manikas A. A new general global array calibration method [A]. In: Proc. of IEEE ICASSP’94 [C], 1994, 4:73~76.
    [165] Ng B C, Ser W. Array shape calibration using sources in known locations [A]. In: Proc. of Singapore ICCS/ISITA’92 [C], 1992:836~840.
    [166] Rockah Y, Schultheiss P M. Localization Performance of Arrays Subject to Phase Errors [J]. IEEE Trans. on AES, 1988, 24(4):402~409.
    [167] Rockah Y, Schultheiss P M. Array shape calibration using sources in unknown locations-Part I: Far-field sources [J]. IEEE Trans. on ASSP, 1987, 35: 286~299.
    [168] Rockah Y, Schultheiss P M. Array shape calibration using sources in unknown locations-Part II: Near-field sources and estimator implementation [J]. IEEE Trans. on ASSP, 1987, 35:724~735.
    [169] Weiss A J, Friedlander B. Array shape calibration using eigenstructure methods [J]. Signal Processing, 1991, 22(3):251~258.
    [170] Friedlander B, Weiss A J. Eigenstructure methods for direction finding with sensor gain and phase uncertainty [A]. In: Proc. IEEE ICASSP [C], 1988: 2681~2684.
    [171] Friedlander B, Weiss A J. Direction finding in the presence of mutual coupling [J]. IEEE Trans. on AP, 1991, 39(3):273~284.
    [172] Hung E. A critical study of a self-calibration direction-finding method for arrays [J]. IEEE Trans. on SP, 1994, 42(2):471~474.
    [173] Pierre J, Kaveh M. Experimental performance of calibration and direction finding algorithms [A]. ICASSP[C], 1991, 2:1365~1368.
    [174] Wylie M, Roy S. Joint DOA estimation and phase calibration of linear equispaced (LES) arrays [J]. IEEE Trans. on SP, 1994, 42(12):3449~3459.
    [175] Soon V C, Tong L, Huang Y F, et al. A subspace method for estimating sensor gains and phases [J]. IEEE Trans. on SP, 1994, 42(4):973~976.
    [176] Svantesson T. Modeling and estimation of mutual coupling in a uniform linear array of dipoles [R]. Dept. Signals and Systems, Chalmers Univ. of Technology, G?teborg, Sweden, Tech. Rep. S-412 96, 1999.
    [177] Wahlberg B, Ottersten B, Viberg M. Robust signal parameter estimation in the presence of array perturbations [A]. IEEE ICASSP[C], 1991:3277~3280.
    [178] Viberg M, Swindlehurst A L. A Bayesian approach to auto-calibration for parametric array signal processing [J]. IEEE Trans. on SP, 1994, 42(12): 3495~3507.
    [179] Weiss A J, Friedlander B. Array shape calibration using sources in unknown locations-A maximum likelihood approach [J]. IEEE Trans. on ASSP, 1989, 37(12):1958~1966.
    [180] Viberg M, Ottersten B, Kailath T. Detection and estimation in sensor arrays using weighted subspace fitting [J]. IEEE Trans. on SP, 1991, 39(11): 2436~2448.
    [181] Jansson M, Swindlehurst A L, Ottersten B. Weighted subspace fitting for general array error models [J]. IEEE Trans. on SP, 1998, 46(9):2484~2497.
    [182]曹志斌,徐劲,马剑波,等.电子篱笆稀疏资料定轨方法研究[J].天文学报, 2008, 49(4):444~454.
    [183] Stephen H K. Use of a NAVSPASUR-type radar to track and catalog orbital debris [A]. In: Proceedings of the 1995 Space Surveillance Workshop [C]. Massachusetts, USA:M.I.T. Lincoln Laboratory, 1995,(1):121~127.
    [184] Easton R L, Fleming J J. The Navy Space Surveillance System [J]. Proceedings of IRE, 1960, (48):663~669.
    [185] Rossi A. The earth orbiting space debris [J]. Serbian Astronomical Journal, 2005, 170(170):1~12.
    [186]高勇,肖先赐.无先验信息时去除两基站交叉定位中得到的假定位[J].信号处理, 1999, 15(3):230~234.
    [187]吴伟,吴耀云,王东进.利用信号幅度信息的多基地雷达系统多目标跟踪算法[J].电子学报, 2007, 35(6):1193~1198.
    [188] Winter M, Favier G. A neural network for data association [A]. In: Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing [C]. Washington: IEEE Computer Society, 1999, (2):1041~1044.
    [189] Ku B, Yoon J, Han D K, et al. Data Association for deghosting in Y-shaped passive linear array sonars [J]. IEEE Trans. on AES, 2004, 40(1):103~113.
    [190]刘宗香,谢维信,杨烜.被动传感器系统分层快速关联算法[J].电子学报, 2004, 32(12):2038~2040.
    [191]衣晓,何友,关欣.多目标跟踪的动态多维分配算法[J].电子学报, 2005, 33(6):1120~1123.
    [192] Becker K. Passive localization of frequency-agile radars from angle and frequency Measurement [J]. IEEE Trans. on AES, 1999, 35(4):1129~1144.
    [193]徐涛,金昶明,孙晓玮,等.一种采用变周期调频连续波雷达的多目标识别方法[J].电子学报, 2002, 30(6):861~863.
    [194] Settecerri T J, Stansbery E G. An introduction to processing orbital debris radar data [A]. AIAA-2000-0761. 38th aerospace sciences meeting and exhibition [C], Reno: AIAA, 2000.
    [195] Irfan A, Naofal Al-Dhahir, and Hershey J E. Doppler characterization for LEO satellites [J]. IEEE Trans. on Communications, 1998, 46(3):309~313.
    [196] Kelly E J, Wishner R P. Matched-Filter theory for high-velocity, accelerating targets [J]. IRE Trans. on military electronics, 1965, 9(1):56~69.
    [197]赵宏钟,付强.雷达信号的加速度分辨性能分析[J].中国科学E辑:技术科学, 2003, 33(7):638~646.
    [198]赵宏钟,付强,周剑雄.雷达信号的加速度分辨力分析及应用[J].电子学报, 2003, 21(6):958~961.
    [199] Jain V H, Collins W L, Davis D C. High-accuracy analog measurements viainterpolated FFT [J]. IEEE Trans. on Instrum. Meas., 1979, 1(28):113~126.
    [200] Namias V. The fractional Fourier Transform and its application in quantum mechanics [J]. J Inst Appl Math, 1980, 25:241~265.
    [201] Claasen T A C, Mecklenbrauker W F G. The Wigner distribution - a tool for time-frequency signal analysis, part 1: continuous-time signals [J]. Philips Journal of Research, 1980, 35(3):217~251.
    [202] Pei S C, Ding J J. Relations between fractional operations and time-frequency distributions, and their applications [J]. IEEE Trans. on SP, 2001, 49(8):1638~1654.
    [203] Saxena R, Singh K. Fractional Fourier transform: a novel tool for signal processing [J]. J. Indian Inst. Sci., 2005, 85:11~26.
    [204] Pei S C, Yeh M H, Tseng C C. Discrete fractional Fourier transform based on orthogonal projections [J]. IEEE Trans. on SP, 1999, 47(5):1335~1348.
    [205]赵兴浩,邓兵,陶然.分数阶傅立叶变换数值计算中的量纲归一化[J].北京理工大学学报, 2005, 25(4):360~364.
    [206] Peleg S, Porat B. The Cramer-Rao lower bound for signals with constant amplitude and polynomial phase [J]. IEEE Trans. on SP, 1991, 39(3):749~752.
    [207]邓兵,陶然,杨曦.分数阶Fourier域的采样及分辨率分析[J].自然科学进展, 2007, 17(5):655~661.
    [208] Johnson D H, Dudgeon D E. Array signal processing: concepts and techniques [M]. Prentice-Hall, 1993.
    [209] Prabhakar S, Naidu. Sensor array signal processing [M]. CRC Press, 2001.
    [210] Hong T D, Russer P, Comparing performance of direction-ofarrival estimation methods for wideband signal sources [A]. In: 2002 Eur. Conf. Wireless Technology Proc. [C], Sept. 2002:201~204.
    [211] Hong T D, Russer P. Analysis and simulation of direction-of-arrival estimation for closely spaced wideband sources using arbitrary antenna arrays [A]. In: 2002 Eur. Conf. Wireless Technology Proc. [C], Sept. 2002:197~200.
    [212]王永良,陈辉等.空间谱估计理论与算法[M].北京:清华大学出版社, 2004.
    [213] Haykin S, Reilly J P, Kezys V, et al. Some aspects of array signal processing [J]. Radar and signal Processing, IEE Proc. F, 1992, 139(1):1~26.
    [214] Stoica P, Nehorai A. MUSIC, maximum likelihood and Cramer-Rao bound [J]. IEEE Trans. on ASSP, 1989, 37(5):720~741.
    [215] Stoica P, Nehorai A. MUSIC, maximum likelihood and Cramer-Rao bound: further results and comparisons [J]. IEEE Trans. on ASSP, 1990, 38(12): 2140~2150.
    [216] Stoica P, Nehorai A. Performance comparison of subspace rotation and MUSIC methods for direction estimation [J]. IEEE Trans. on SP, 1991, 39(2):446~453.
    [217] Viberg M, Ottersten B. Sensor array processing based on subspace fitting [J]. IEEE Trans. on SP, 1991, 39(5):1110~1121.
    [218] Stoica P, Soderstrom T. Statistical analysis of MUSIC and subspace rotation estimates of sinusoidal frequencies [J]. IEEE Trans. on SP, 1991, 39(8): 1836-1847.
    [219] Capon J. High-resolution frequency-wavenumber spectrum analysis [J]. Proceedings of the IEEE, 1969, 57(8):1408~1418.
    [220]马远良.任意结构形状传感器阵方向图的最佳化[J].中国造船, 1984, 87(4):78~85.
    [221] Cox H, Zeskind R M, Owen M M. Robust adaptive beamforming [J]. IEEE Trans. on ASSP, 1987, 35(10):1365~1376.
    [222] Carlson B D. Covariance matrix estimation errors and diagonal loading in adaptive arrays [J]. IEEE Trans. on AES, 1988, 24(4):397~401.
    [223] Olen C A, Compton R T J. A numerical pattern synthesis algorithm for arrays [J]. IEEE Trans AP, 1990, 38(10):1666~1676.
    [224] Wu L, Zielinski A. Equivalent linear array approach to array pattern synthesis [J]. IEEE J Ocean Eng., 1993, 18(1):6~14.
    [225] Wu L, Zielinski A, An iterative method for array pattern synthesis [J]. IEEE J. Ocean Eng., 1993, 18(1):280~286.
    [226] Ng B P, Er M H, Kot C. A flexible array synthesis method using quadratic programming [J]. IEEE Trans AP, 1993, 41(11):1541~1550.
    [227] Van Veen B D, Buckley K M. Beamforming: A versatile approach to spatial filtering [J]. IEEE ASSP Magazine, 1998, 5(2):4~24.
    [228] Zhou P Y, Ingram M A. Pattern synthesis for arbitrary arrays using an adaptive array method [J]. IEEE Trans. on AP, 1999, 47(5):862~869.
    [229] Nordebo S, Zang Z, Claesson I. A semi-infinite quadratic programming algorithm with applications to array pattern synthesis [J]. IEEE Trans. on Circuits ans Systems, 2001, 48(3):225~232.
    [230]鄢社锋,马远良.二阶锥规划方法对于时空域滤波器的优化设计与验证[J].中国科学E辑:信息科学, 2006, 36(2):153~171.
    [231] Lobo M, Vandenberghe L, Boyd S, et al. Applications of the second-order cone programming [J]. Linear Algebra. Appl., 1998, 284:193~228.
    [232] Sturm J F. Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones [J]. Optim. Meth. Software, 1999, 11-12(1~4):625~653.
    [233]魏平,肖先赐,李乐民.基于四阶累积量特征分解的空间谱估计测向方法[J].电子科学学刊, 1995, 17(3):243~249.
    [234]张贤达.现代信号处理[M].北京:清华大学出版社, 1995.
    [235] Comon P. Separation of sources using high-order cumulants [A]. In: SPIE conf.on advanced algorithms and architectures for signal processing, Real-time signal processing [C]. CA, 1989, VII:170~181.
    [236] Shi Z, Fariman F W. DOA estimation via higher-order cumulants: a generalized approach [A]. 1992 ICASSP [C], 5, 209~212.
    [237] Moulines E, Cardoso J F. Direstion finding algorithms using fourth order statistics: asymptotic performance analysis [A]. 1992 ICASSP [C], 2, 437~440.
    [238] Papadopoulos C K, Nikias C L. Parameter estimation of exponentially damped sinusoids using higher order statistics [J]. IEEE Trans. on ASSP, 1998, 38(8):1424~1436.
    [239] Dandekar K R, Ling H, Xu G. Experiment study of mutual coupling compensation in smart antenna applications [J]. IEEE Trans. on Wireless Commun. , 2002, 1(3):480~487.
    [240] Yeh C C, Leou M L, Ucci D R. Bearing Estimations with Mutual Coupling Present [J]. IEEE Trans. on AP, 1989, 37:1332~1335.
    [241] Krishna R P, Somnath D, Yaakov B S, et al. A new relaxation algorithm and passive sensor data association [J]. IEEE Trans. on Automatic Control, 1992, 37(2):198~213.
    [242] Chummun M R, Kirubarajan T, Pattipati K R, et al. Fast data association using multidimensional assignment with clustering [J]. IEEE Trans. on AES, 2001, 37(3):898~913.
    [243]叶西宁,潘泉,程咏梅等.多维分配的剪枝法及其在无源探测跟踪中的应用[J].电子学报, 2003, 31(6):847~850.
    [244]刘梅,权太范,姚天宾等.多传感器多目标无源定位跟踪算法研究[J].电子学报, 2006, 34(6):991~995.
    [245]王鼎,张莉,吴瑛.基于角度信息的约束总体最小二乘无源定位算法[J].中国科学E辑:信息科学, 2006, 36(8):880~890.
    [246] Antoni R E F, Antoni B I, Jordi P A, et al. CFAR data fusion center with inhomogeneous receivers [J]. IEEE Trans on AES, 1992, 28(1):276~285.
    [247]张志涌等.精通MATLAB 6.5版[M].北京:北京航空航天大学出版社, 2003.
    [248]任萱.人造地球卫星轨道力学[M].长沙:国防科技大学出版社, 1988.
    [249]何友,王国宏,彭应宁等.多传感器信息融合及应用[M].北京:电子工业出版社, 2000.