超分辨空间谱估计技术应用基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超分辨空间谱估计是阵列信号处理中的一个重要研究方向,其优异的参数估计性能和广阔的应用前景引起了人们极大的兴趣,其应用涉及到雷达、通信、声纳、地震、勘探、射电天文及生物医学工程等众多军事及国民经济领域。经过几十年的发展,空间谱估计技术在理论研究方面取得了丰硕的成果,但在实际应用中仍有诸多问题亟待完善和解决。本文针对空间谱估计技术应用中的几个关键问题进行了深入研究,全文的主要工作概括如下:
     针对相干源的估计问题,从特征矢量的角度,提出了一种新的解相干方法。该方法充分利用阵列接收数据协方差矩阵的最大特征值对应的特征矢量构造了一个秩为信号源数的矩阵,不损失阵列孔径,且构造的新矩阵具有Toeplitz特性。相对于空间平滑类算法和其它利用特征矢量的算法,提出的方法具有很强的解相干能力,在低信噪比情况下也具有较好的估计性能,为基于特征矢量或不损失阵列有效孔径的解相干方法提供了一个新思路。
     根据反射面的不同情况,对米波雷达测高镜面反射模型和漫反射模型进行了研究,并分析了米波雷达有效反射区域。直射信号与反射信号相关性强、空间间隔小,在低信噪比情况下很难分开,针对此问题,对常规的多径阵列模型(模型一)进行了修正(模型二)。模型二中导向矢量为直射分量与反射分量导向矢量的线性组合,当直射信号与反射信号不能分开时,模型二也能粗略估计出直射角,从而得到目标高度。同时,在相同的仿真条件下,模型二的均方根误差小于模型一。实测数据的分析结果进一步证明了提出的模型二在米波雷达测高环境中的有效性。
     为了进一步降低特征子空间类算法的计算量,基于空间平滑及传播算子的思想提出一种适用于米波雷达测高环境的快速算法。该方法充分利用数据协方差矩阵中的信息构造新的矩阵,最后利用传播算子的思想构造噪声子空间。不需要另外的解相干处理,且避免了特征分解,与双向平滑算法性能相当的情况下,计算量更小。计算机仿真实验和实测数据分析结果证明该方法可用于米波雷达测高环境。
     针对L型阵列和十字型阵列的互耦校正问题,利用线阵内互耦矩阵及线阵间互耦矩阵的特性,构造重构矩阵,分别提出L型阵列和十字型阵列的互耦自校正算法。提出的方法对两个线阵内的互耦和两个线阵间的互耦同时进行了校正,实现了二维角与互耦系数的解耦合估计,且估计精度高。提出的方法只需要进行二维搜索,避免了高维参数的非线性搜索,大大降低了计算量。在此基础上,对参数估计的渐近一致性进行了有效证明,讨论了算法参数可辨识性的必要条件,并分析计算了方位角、俯仰角及互耦系数联合估计的克拉美-罗界。
     利用简单的辅助阵列,对L型阵列和十字型阵列的误差校正问题进行了研究。当通道不一致、阵元互耦、阵元位置误差同时存在时,利用辅助阵列可以直接估计信号源的位置和误差导向矢量,且计算量较小。当通道不一致和互耦同时存在时,利用辅助阵列和位置未知的辅助信源,分别提出L型阵列和十字型阵列通道不一致和互耦的解耦合估计方法。提出的方法将复杂的非线性多维搜索问题转化为简单的迭代运算,大大降低了计算量,且不易陷入局部极值。最后给出了L型阵列和十字型阵列误差校正框图,对不同情况下的误差校正方法进行了总结。
Super-resolution spatial spectrum estimation is very important in the field of the array signal processing, and it has received considerable attention because of its better parameter estimation capability and broad application space. Spatial spectrum estimation technique has played a significant role in many fields, such as radar, communication, sonar, seismography, reconnaissance, radio astronomy, biomedicine engineering and so on. Through the research of several decades, spatial spectrum estimation technique has obtained much great progresses in the theory aspect. However, there are a few problems to be solved in the application. In this thesis, the key problems about the spatial spectrum estimation application are been researched deep. The main contributions of the thesis can be summarized as follows:
     In order to solve the DOAs estimation of coherent souces, a novel decorrelation method is proposed fully using the eigenvector corresponding to the maximum eigenvalue obtained by the array received data covariance matrix. This method constructs a new matrix whose rank is equal to the number of coherent sources.The presented method avoids the loss of the array aperture and the constructed matrix has Toeplitz property. Compared with the spatial smoothing algorithms and the other algorithms also using the eigenvector, the proposed method has better decorrelation capability and has better estimation performance in the presence of low SNR. The technique provides a novel idea about the decorrelation method based on the eigenvector or the technique without the loss of array aperture.
     According to the different reflection surfaces, the specular reflection model and the diffuse reflection model of the meter-radar height-finding is researched. Moreover, the effective reflecton region of the meter-wave radar is analyzed. The direct signal and the indirect signal have strong coherence, small spatial spacing, and can not be differentiated for low SNR situations. Therefore, we propose that the conventional array model (called model one) is modified. In the modified model (called model two), the steering vector is the linear combination of the steering vectors of the direct part and the indirect part. When the direct signal and indirect signal can not be differentiated, the model two can give the rough estimation of the direct angle, i.e, the height of the object. In the meantime, the estimation Root Mean Square (RMS) error of the model two is smaller than that of the model one in the same simulation conditions. The real data processing results further show the effectiveness of the model two in the meter-wave radar height-finding applications.
     Based on the spatial smoothing and the propagator operator concept, a novel computationally effective method is presented in order to further reduce the computational load of the eigen-subspace algorithms in the meter-wave radar height-finding applications. The method fully uses the information included in the received data covariance matrix to construct new matrices. Finally, the noise subspace is estimated based on the propagator operator idea. The proposed method avoids the other decorrelation processing and the eigendecomposition. Moreover, compared with the forward-backward spatial smoothing algorithm, the proposed method has less computational load in the case of the same estimation performance. Computer simulations and the real data processing results demonstrate that the proposed method is effective in the meter-wave radar height-finding applications.
     For the mutual coupling calibration of the L-shaped array and the cross array, the self-calibration algorithms for the L-shaped array and the cross array are proposed respectively using the properties of the mutual matrices between sensors in each subarray and those between subarrays. The proposed method calibrates the mutual coupling between subarrays besides the mutual coupling between sensors in each subarray. The method decouples the the 2-D angles and mutual coupling coefficients, and has high estimation precision. The method requires neither the multidimensional nonlinear search nor iterative computation, and then the computational load is greatly reduced. The effective proof for asymptotic equivalence is addressed. A necessary condition for DOA identifiability is discussed, and the relevant CRB is derived also.
     The errors calibration problem for the L-shaped array and the cross array is researched using the simple assistant array. When the channel disaccord, mutual coupling, sensor position error are all exit, the DOAs of signals and the error steering vector can be directly estimated using the assistant array. The computatioanl load is small. When the channel disaccord and the mutual coupling are both exit, a novel method is proposed. Based on the analysis of error characteristic for L-shaped array and cross array, the complex nonlinear multi-dimension search problem is transformed into simple iteration computation, and the computation burden is greatly decreased. Moreover, it can not converge at the local extremum. Finallly, the block diagram is given to summarize the calibration methods under different situations for the L-shaped array and the cross array.
引文
[1]刘德树,罗景青,张剑云.空间谱估计及其应用.合肥:中国科学技术大学出版社, 1997.
    [2]翟伟建,戴国宪.无源雷达浅析.电子对抗, 2003, (2): 41-46.
    [3]张宣卫,杨宇华.对无源雷达发展的述评和探讨.电子工程, 2003, (4): 1-4.
    [4]张乐平.雷达抗反辐射无人机的几个技术途径.雷达与电子战, 2004, (4): 16-20.
    [5]司锡才.雷达抗反辐射导弹的技术途径及其效果分析.现代雷达, 1994, (6): 1-10.
    [6]沈齐,潘健.米波圆接收阵雷达.现代雷达, 2005, 27 (11): 16-18,23.
    [7]张宣卫.米波雷达及其对低可观测目标的探测.电子工程, 2003, (1): 22-29.
    [8]汤子跃,彭世蕤.一种复合型宽带阵列米波雷达方案.空军雷达学院学报, 2000, 14 (1): 5-8.
    [9]张毅,汪纪锋.基于智能天线DOA估计方法.重庆大学学报, 2003, 26 (2): 36-38.
    [10]康玉文,俞正德. DOA技术在第三代移动通信中的应用.国外电子测量技术, 2004, (3): 22-25,43.
    [11]俄广西,龚耀寰.基于用户信号的多径信号分组的DOA估计.电子与信息学报, 2004, 26 (9): 1371-1375.
    [12]马宁.一种简单有效的CDMA信号DOA估计方法.武汉理工大学学报, 2005, 27 (6): 82-84.
    [13] Merrill S, George L. Senrad: An advanced wideband air-surveillance radar. IEEE Trans. Aerospace and Electronic Systems, 2001, 37 (4): 1163-1175.
    [14] Katarina B, Petre S. Low angle estimation: models, methods and bounds. Digital Signal Processing, 2001, 11 (1): 35-79.
    [15] Weiss A J, Friedlander B. Manifold interpolation for diversely polarized arrays. Proc. IEEE Conference on Radar, Sonar Navig, 1994: 19-24.
    [16] Swindleburst A L, Kailath T. A performance analysis of subspace-based methods in the presence of model errors, PartⅠ: the MUSIC algorithm IEEE Trans. Signal Processing, 1992, 40 (7): 1758-1774.
    [17] Friedlander B. A sensitivity analysis of the MUSIC algorithm. IEEE Trans. Acoustic, Speech and Signal Processing, 1990, 38 (10): 1740-1751.
    [18]苏卫民,顾红,倪晋麟.通道幅相误差条件下MUSIC空间谱的统计性能.电子学报, 2001, 28 (6): 105-107.
    [19]苏卫民,倪晋麟,刘国岁.通道失配对MUSIC空间谱及其分辨力的影响.电子学报, 1998, 26 (9): 143-145.
    [20] Schmidt R O. Multiple emitter location and signal parameter estimation. IEEE Trans. Antennas and Propagation, 1986, 34 (3): 276-280.
    [21] Cadzow J A, Kim Y S. General direction-of-arrival estimation: a signal subspace approach. IEEE Trans. Aerospace and Electronic Systems, 1989, 25 (1): 31-46.
    [22] Rao B D, Hari K V S. Performance analysis of Root-MUSIC. IEEE Trans. Acoustic, Speech and Signal Processing, 1989, 37 (12): 1939-1949.
    [23] Kumaresan R, Tufts D W. Estimating the angles of arrival of multiple plane waves. IEEE Trans. Aerospace and Electronic Systems, 1983, 19 (1): 134-139.
    [24] Roy R K T. ESPRIT—a subspace rotation approach to estimation o f parameters of cissoids in noise. IEEE Trans. Acoustic, Speech and Signal Processing, 1986, 34 (10): 1340-1342.
    [25] Roy R, Kailath T. ESPRIT—estimation of signal parameters via rotational invariance techniques. IEEE Trans. Acoustic, Speech and Signal Processing, 1989, 37 (7): 984-995.
    [26] Rao B D, Hari K V S. Performance analysis of ESPRIT and TAM in determining the direction of arrival of plane waves in noise. IEEE Trans. Acoustic, Speech and Signal Processing, 1989, 40 (12): 1990-1995.
    [27] Bohme J F. Estimation of source parameters by maximum likelihood and nonlinear regression. Proc. ICASSP, USA, 1984: 731-734.
    [28] Stoica P, Nehorai A. MUSIC, maximum likelihood and Cramer-Rao bound. Proc. ICASSP, 1988: 2296-2299.
    [29] Cadzow J A. A high resolution direction-of-arrival algorithm for narrow-band coherent and incoherent sources. IEEE Trans. Acoustic, Speech and Signal Processing, 1988, 36 (7): 965-979.
    [30] Viberg M, Ottersten B. Sensor array processing based on subspace fitting. IEEE Trans. Signal Processing, 1991, 39 (5): 1110-1121.
    [31] Krim H, Viberg M. Two decades of array signal processing research. IEEE Signal Processing Magazine, 1996, 13 (4): 67-94.
    [32] Clergeot H, Tressens S. Performance of high resolution frequencies estimation methods compared to the Cramer-Rao bounds. IEEE Trans. Acoustic, Speech and Signal Processing, 1989, 37 (11): 1703-1720.
    [33] Wax M, Kailath T. Detection of signals by information theoretic criteria. IEEE Trans. Acoustic, Speech and Signal Processing, 1985, 37 (8): 1190-1196.
    [34] Wax M, Ziskind I. Detection of the number of coherent signals by the MDL principle. IEEE Trans. Acoustic, Speech and Signal Processing, 1989, 37 (8): 1190-1196.
    [35] Yin Y, Krishnaiah P. On some nonparametric methods for detection of the number of signals. IEEE Trans. Acoustic, Speech and Signal Processing, 1987, 35 (11): 1533-1538.
    [36] Wu H T, Yang J F. Source number estimation using transformed gerschgorin radii. IEEE Trans. Signal Processing, 1995, 43 (6): 1325-1333.
    [37] Shan T J, Wax M. Adaptive beamforming for coherent signals and interference. IEEE Trans. Acoustic, Speech and Signal Processing, 1985, 33 (3): 527-536.
    [38] Valaee S, Kabal P. Wideband array processing using a two-sided correlation transformation. IEEE Trans. Signal Processing, 1995, 43 (1): 160-172.
    [39] Hung H, Kaveh M. Focusing matrices for coherent signal-subspace processing. IEEE Trans. Acoustic, Speech and Signal Processing, 1988, 36 (8): 1272-1281.
    [40] Doron M A, Weiss A J. On focusing matrices for wide-band array processing. IEEE Trans. Signal Processing, 1992, 40 (6): 1295-1302.
    [41] Valace S, Champagne B. Localization of wideband signals using least-squares and total least-squares approaches. IEEE Trans. Signal Processing, 1999, 47 (5): 1213-1222.
    [42] Schell S V. Performance analysis of the cyclic MUSIC method of direction estimation for cyclostationary signals. IEEE Trans. Signal Processing, 1994, 42 (11): 3043-3050.
    [43] Lee Y T, Lee J H. Direction-finding methods for cyclostationary signals in the presence of coherent sources. IEEE Trans. Antennas and Propagation, 2001, 49 (12): 1821-1826.
    [44] Xin J M, Sano A. Linear prediction approach to direction estimation of cyclostationary signals in multipath environment. IEEE Trans. Signal Processing, 1992, 49 (4): 710-719.
    [45]汪仪林.利用信号的循环平稳性改善DOA估计性能的研究.西安:西安交通大学博士论文, 2000.
    [46]于宏毅.循环平稳信号波达方向估计的算法和性能研究.西安:西安电子科技大学博士论文, 1996.
    [47] Moffet A T. Minimum redundancy linear arrays. IEEE Trans. Antennas and Propagation, 1968, 16 172-175.
    [48] Chambers C, Tozer T C. Temporal and spatial sampling influence on the estimates of superimposed narrowband signals: when less can mean more. IEEE Trans. Signal Processing, 1996, 44 (12): 3085-3098.
    [49] Mathews C P, Zoltowski M D. Eigenstructure techniques for 2-D angle estimation with uniform circular arrays. IEEE Trans. Signal Processing, 1994, 42 (9): 2395-2407.
    [50] Friedlander B, Weiss A J. Direction finding using spatial smoothing withinterpolated arrays. IEEE Trans. Aerospace and Electronic Systems, 1992, 4 (28): 574-587.
    [51]王永良,陈辉等.一种有效的超分辨空间谱估计方法虚拟阵列变换法.中国科学E辑, 1999, 26 (6): 518-524.
    [52]陈辉,王永良等.利用阵列几何设置改善方位估计.电子学报, 1999, 27 (9): 97-99.
    [53] Zoltowski M D, Mathews C P. Real time frequency and 2-D angle estimation with sub-nyquistspatio-temporal sampling. IEEE Trans. Signal Processing, 1994, 42 (10): 2781-2797.
    [54] Li J, Compton T R. Two-dimensional angle and polarization estimation using ESPRIT algorithm. IEEE Trans. Antennas and Propagation, 1991, 39 (9): 1376-1383.
    [55] Kuduvall C R, Rangayyan R M. An algorithm for direct computation of 2-D linear prdiction coefficients. IEEE Trans. Signal Processing, 1993, 42 (2): 996-999.
    [56] Chen H, Wang Y L. A modified method of frequency and 2-D angle estimation. Proc. IEEE Antennas and Propagation Society Internationary Symposium, vol. 2003: 920-923.
    [57]贾永康,保铮.时-空二维信号模型下波达方向估计的克拉美-罗界.电子学报, 1997, 25 (9): 15-19.
    [58] Shich C S, Lin C T. Direction of arrival estimation based on phase differences using neural fuzzy network. IEEE Trans. Antennas and Propagation, 2000, 48 (7): 1115-1124.
    [59] Poral B, Friedlander B. Direction finding algorithms based on high-order statistics. IEEE Trans. Signal Processing, 1991, 39 (9): 2016-2023.
    [60] Dogan M C, Mendel J M. Applications of cumulants to array processing—partⅠ: aperture extension and array calibration. IEEE Trans. Signal Processing, 1995, 43 (5): 1200-1216.
    [61] Maryuyama T, Kuwahara Y. Estimation of propagation structure by means of Hopfield neural network. Proc. IEEE Antennas and Propagation Society International Symposium, 2001: 476-479.
    [62] Shamsumder S, Giannakis G B. Modeling of non-Gaussian array data using cumulants: DOA estimation of more sources with less sensors. Signal Processing, 1993, (30): 279-297.
    [63]王永良,陈辉等.空间谱估计理论与算法.北京:清华大学出版社, 2004.
    [64] Di A. Multiple sources location-a matrix decomposition approach. IEEE Trans. Acoustic, Speech and Signal Processing, 1985, 33 (4): 1086-1091.
    [65]高世伟,保铮.利用数据矩阵分解实现对空间相干源的超分辨处理.通信学报, 1988, 9 (1): 4-13.
    [66] Evans J E, Johnson J R. High resolution angular spectrum estimation techniques for terrain scattering analysis and angle of arrival estimation. Proc. The First ASSP Workshop Spectral Estimation, 1981: 134-139.
    [67] Pillai S U, Kwon B H. Forward/backward spatial smoothing techniques for coherent signal identification. IEEE Trans. Acoustic, Speech and Signal Processing, 1989, 37 (1): 8-15.
    [68] Moghaddamjoo A, Chang T C. Signal enhancement of the spatial smoothing algorithm. IEEE Trans. Signal Processing, 1991, 39 (8): 1907-1911.
    [69] Rao B D, Hari K V S. Weighted subspace methods and spatial smoothing analysis and comparison. IEEE Trans. Signal Processing, 1993, 41 (2): 788-803.
    [70] Linebarger D A, Degroat R D. Efficient direction finding methods employing forward/backword averaging. IEEE Trans. Signal Processing, 1994, 42 (8): 2136-2145.
    [71] Wei X D, Kirlin R L. Improved spatial smoothing techniques for DOA estimation of coherent signals. IEEE Trans. Signal Processing, 1991, 39 (5): 1208-1210.
    [72] Bachl R. Subspace-based coherent source localization with forward backward covariance matrices. IEEE Trans. Signal Processing, 2002, 43 (11): 145-151.
    [73] Park H R, Kim Y S. A solution to the narrow-band coherency problem in multiple source location. IEEE Trans. Signal Processing, 1993, 41 (1): 473-476.
    [74] Hung H, Kaveh M. On the statistical sufficiency of the coherently averaged covariance matrix for the estimation of the parameters of wideband sources. Proc. ICASSP, 1987: 33-36.
    [75] Wang B H, Wang Y L. A new criterion for DOA estimation of coherent sources based on weighted spatial smoothing. Proc. IEEE International Antennas and Propagation Symposium and USNC/CNC/URSI North American Radio Science Meeting, United States, 2003: 276-279.
    [76] Zheng H G, Gunawan E. A performance analysis of multipath direction finding with temporal smoothing. IEEE Signal Processing Letters, 2003, 10 (7): 200-203.
    [77]齐崇英,张永顺.相干信源DOA估计的非对称加权空间平滑差分算法.航天电子对抗, 2005, 21 (5): 35-39.
    [78]黄磊,吴顺君.一种快速的相干信源超分辨方法.西安电子科技大学学报, 2006, 33 (1): 57-61.
    [79]薛峰,高梅国.一种新的去相关算法-随机空间增益法.电子学报, 2003, 31 (9): 1407-1410.
    [80] Xin J M, Sano A. Computationally efficient subspace-based method for direction-of-arrival estimation without eigendecomposition. IEEE Trans. SignalProcessing, 2004, 52 (4): 876-893.
    [81]齐崇英,王永良.色噪声背景下相干信源DOA估计的空间差分平滑算法.电子学报, 2005, 33 (7): 1314-1318.
    [82] Fang M H, Zhang X D. An ESPRIT-like algorithm for coherent DOA estimation. IEEE Antennas and Wireless Propagation Letters, 2005, 4 443-446.
    [83]西安电子科技大学雷达信号处理重点实验室.一种新型的米波雷达—稀布阵综合脉冲孔径雷达.火控雷达技术, 1995, 24 1-13.
    [84]沈晓华,樊元东.俄罗斯雷达技术的发展动态和启示.半导体情报, 1999, 36 (4): 35-36,40.
    [85]杨成惠翻译.俄罗斯计划年内部署反隐身米波雷达.雷达与电子战, 2004, (3): 47-48.
    [86]反隐身雷达的现状与发展.军事电子, 2002, 77-78.
    [87] Skolnik M.雷达手册Radar Handbook(Second Edition).电子工业出版社, 2003.
    [88]陈伯孝,刘国栋,张守宏.一种简易的米波雷达测高方法.第九届全国雷达学术年会, 2004: 381-384.
    [89]陈伯孝,胡铁军.基于波瓣分裂的米波雷达低仰角测高方法及其应用.电子学报, 2007, 35 (6): 1021-1025.
    [90]李文峰,陈伯孝. DBF技术在扩大米波雷达测高范围中的应用.雷达科学与技术, 2006, 4 (2): 65-70.
    [91]杨克虎,保铮.应用阵列超分辨方法实现米波雷达多目标回波信号的方向估计.西安电子科技大学学报, 1994, 21 (3): 249-255.
    [92]储晓彬,陆裕科.应用子空间方法实现米波雷达超角分辨实验研究.现代雷达, 1998, 20 (4): 35-40.
    [93]何子述,黄振兴,向敬成.米波雷达方位角超分辨外场实验研究.电子科技大学学报, 2000, 29 (2): 111-114.
    [94]赵永波,张守宏.雷达低角跟踪环境下的最大似然波达方向估计方法.电子学报, 2004, 32 (9): 1520-1523.
    [95]吴向东,张守宏,董玫.一种基于线性预处理的米波雷达低仰角处理算法.电子学报, 2006, 34 (9): 1668-1671.
    [96] Schmidt R O. Multilinear array manifold interpolation. IEEE Trans. Signal Processing, 1992, 40 (2): 857-866.
    [97] Stavropoulos K, Manikas A. Array calibration in the presence of unknown sensor characteristics and mutual coupling. Proc. European Signal Processing Conference, vol. 3, 2000: 1417-1420.
    [98] Gupta I J, Baxter J R, Ellingson S W. An experimental study of antenna array calibration. IEEE Trans. Antennas and Propagation, 2003, 51 (3): 664-667.
    [99] Hung E. Matrix-construction calibration method for antenna arrays. IEEE Trans. Aerospace and Electronic Systems, 2000, 36 (3): 819-828.
    [100] Zhang M, Zhu Z D. Array shape calibration using sources in known locations. Proc. IEEE National Aerospace and Electronics Conference, 1993: 70-73.
    [101] Zhang M, Zhu Z D. DOA estimation with sensor gain, phase and position perturbations. Proc. IEEE National Aerospace and Electronics Conference, 1993: 67-69.
    [102] Viberg M, Swindlehurst A L. A Bayesian approach to auto-calibration for parametric array signal processing. IEEE Trans. Signal Processing, 1994, 42 (12): 3495-3507.
    [103] Friedlander B, Weiss A J. Direction finding in the presence of mutual coupling. IEEE Trans. Antennas and Propagation, 1991, 39 (3): 273-284.
    [104] Jaffer A G. Constrained mutual coupling estimation for array calibration. Proc. Thirty-fifth Asilomar Conference on Signals, Systems and Computers, 2001: 1273-1277.
    [105] Jaffer A G. Sparse mutual coupling matrix and sensor gain/phase estimation for array auto-calibration. Proc. IEEE Radar Conference, 2002: 294-297.
    [106] Hong J S. Genetic approach to bearing estimation with sensor location uncertainties. Electronics Letters, 1993, 29 (23): 2013-2014.
    [107]游志刚.自校正通道相位不一致的研究.合肥:解放军电子工程学院硕士论文, 1997.
    [108]贾永康,保铮.线性阵相位误差校正约束条件性能分析.电子学报, 1998, 26 (4): 104-106.
    [109]刘宏伟,张守宏.多馈源空间馈电阵列误差校正.电子学报, 1999, 27 (9): 105-107.
    [110] See C M S, Poh B K. Parametric sensor array calibration using measured steering vectors of uncertain locations. IEEE Trans. Signal Processing, 1989, 47 (4): 1133-1137.
    [111] Lindmark B, Lundgren S. Dual polarized array for signal processing applications in wireless communications. IEEE Trans. Antennas and Propagation, 1998, 46 (6): 758-763.
    [112] Gupta I J, Ksienski A A. Effect of mutual coupling on the performance of adaptive arrays. IEEE Trans. Antennas and Propagation, 1983, 31 (5): 785-791.
    [113] Yeh C, Leou M, Ucci D R. Bearing estimation with mutual coupling present. IEEE Trans. Antennas and Propagation, 1989, 37 (10): 1332-1335.
    [114] Steyskal H, Herd J S. Mutual coupling compensation in small array antennas.IEEE Trans. Antennas and Propagation, 1990, 38 (12): 1971-1975.
    [115] Adve R S, Sarkar T K. Compensation for the effects of mutual coupling on direct data domain adaptive algorithms. IEEE Trans. Antennas and Propagation, 2000, 48 (1): 86-94.
    [116] Hui H T. A new definition of mutual impedance for application in dipole receiving antenna arrays. IEEE Antennas and Wireless Propagation Letters, 2004, 3 (1): 364-367.
    [117] Hui H T. Improved compensation for the mutual coupling effect in a dipole array for direction finding. IEEE Trans. Antennas and Propagation, 2003, 51 (9): 2498-2503.
    [118] Zhang T T, Hui H T. Compensation for the mutual coupling effect in the ESPRIT direction finding algorithm by using a more effective method. IEEE Trans. Antennas and Propagation, 2005, 53 (4): 1552-1555.
    [119]伍裕江,聂在平.一种新的互耦补偿方法及其理论分析.电子学报, 2007, 35 (3): 492-496.
    [120]伍裕江,聂在平.一种新的互耦补偿方法及其在DOA估计中的应用.电波科学学报, 2007, 22 (4): 541-545.
    [121] Wang B H, Wang Y L, Chen H. A robust DOA estimation algorithm for uniform linear array in the presence of mutual coupling. Proc. IEEE Antennas and Propagation Society International Symposium, vol. 3, 2003: 924-927.
    [122]王布宏,王永良,陈辉.均匀线阵互耦条件下的鲁棒DOA估计及互耦自校正.中国科学E辑, 2004, 34 (2): 229-240.
    [123] Qi C Y, Wang Y L, Zhang Y S. DOA estimation and self-calibration algorithm for uniform circular array. IEE Electronics Letters, 2005, 41 (20): 1092-1094.
    [124] Qi C Y, Chen Z J, Zhang Y S. DOA estimation and self-calibration algorithm for multiple subarrays in the presence of mutual coupling. IEE Proceedings-Radar Sonar and Navigation, 2006, 153 (4): 333-337.
    [125] Hui H T. Compensating for the mutual coupling effect in direction finding based on a new calculation method for mutual impedance. IEEE Antennas and Wireless Propagation Letters, 2003, 2 26-29.
    [126] Sellone F, Serra A. A novel online mutual coupling compensation algorithm for uniform and linear arrays. IEEE Trans. Signal Processing, 2007, 55 (2): 560-573.
    [127]俄广西,龚耀寰.一种新的阵列天线校正方法.信号处理, 2003, 19 (5): 404-406.
    [128]俄广西,蒋谷峰.基于MUSIC的阵列天线通道误差的盲估计算法.电子与信息学报, 2006, 28 (4): 667-670.
    [129] See C M S. Sensor array calibration in the presence of mutual coupling and unknown sensor gains and phases. Electronics Letters, 1994, 30 (5): 373-374.
    [130]贾永康,保铮.一种阵列天线阵元位置、幅度及相位误差的有源校正方法.电子学报, 1996, 24 (3): 47-52.
    [131]李琼,叶中付,徐旭.均匀线阵中幅相及位置误差的快速校正方法.数据采集与处理, 2003, 18 (4): 383-388.
    [132]王鼎,张莉,吴瑛.改进的阵列幅相差和阵元位置误差自校正算法.数据采集与处理, 2008, 23 (2): 176-181.
    [133]章宏,陈荆花.阵列天线阵元位置误差、通道不一致和互耦的校正.上海交通大学学报, 2002, 36 (9): 1284-1287, 1290.
    [134]王布宏,王永良,陈辉.方位依赖阵元幅相误差校正的辅助阵元法.中国科学E辑, 2004, 34 (8): 906-918.
    [135] Zhong F Y, Chao l. 2-D DOA estimation in the presence of mutual coupling. IEEE Trans. Antennas and Propagation, 2008, 56 (10): 3150-3158.
    [136] Zhang T T, Lu Y L. Simultaneous estimation of mutual coupling matrix and DOAs for UCA and ULA. Proc. International Zurich Symposium on Electromagnetic Compatibility, 2006: 265-268.
    [137]于斌,尹成又.阵列误差对测向性能的影响及校正方法.现代雷达, 2007, 29 (4): 34-38,42.
    [138]韩芳明,张守宏.阵列误差对MUSIC算法性能的影响与校正.西安电子科技大学学报, 2003, 30 (5): 585-589.
    [139] Hua Y B, Sarkar T K, Weiner D D. An L-shaped array for estimating 2-D directions of wave arrival. IEEE Trans. Antennas and Propagation, 1991, 39 (2): 143-146.
    [140] Svantesson T. The effects of mutual coupling using a linear array of thin diploes of finite length. Proc. The 8th IEEE Signal Processing Workshop on Statistical Signal and Array Processing, 1998: 232-235.
    [141] Svantesson T. Modeling and estimation of mutual coupling in a uniform linear array of dipoles. Proc. IEEE ICASSP, 1999: 2961-2964.
    [142] Svantesson T. Mutual coupling compensation using subspace fitting. Proc. IEEE Sensor Array and Multichannel Signal Processing Workshop, 2000: 494-498.
    [143] Kung S Y, Lo C K, Foka R. A Toeplitz approximation approach to coherent source direction finding. Proc. ICASSP, Japan, 1986: 193-196.
    [144] Du W, Kirlin R L. Improved spatial smoothing techniques for DOA estimation of coherent signals. IEEE Trans. Signal Processing, 1991, 39 (5): 1208-1210.
    [145]叶中付.一种改进的信号特征矢量法.数据采集与处理, 1996, 11 (4): 249-253.
    [146]叶中付.一种新的相干信号源的波达方向估计方法——信号特征矢量重排法.电子测量与仪器学报, 1996, 10 (3): 1-8.
    [147] Shan T J, Wax M, Kailath T. On spatial smoothing for estimation of coherent signals. IEEE Trans. Acoustic, Speech and Signal Processing, 1985, 33 (4): 806-811.
    [148]张贤达.矩阵分析与应用.北京:清华大学出版社, 2004.
    [149]蒋全庆.反隐身雷达技术发展探析.火控雷达技术, 2004, 33 (2): 28-31,47.
    [150] Ostrovityanov R V, Basalov F A. Statistical theory of extended radar targets. Artech House, 1985.
    [151] Lo T, Litva J. Use of a highly deterministic multipath signal model in low-angle tracking. IEEE proceedings-F, 1991, 138 (2): 163-171.
    [152] Bassem R M. Radar systems analysis and design using MATLAB. CHAPMAN&HALL/CRC, 2000.
    [153] Bar S Y, Kumar A, Blair W D. Tracking low elevation targets in presence of multipath. IEEE Trans. Aerospace and Electronic Systems, 1994, 30 (3): 973-979.
    [154] Barton D K. Low-angle radar tracking. IEEE 1974, 62 (7): 687-704.
    [155]张瑜,李玲玲.低角雷达跟踪时的多路径散射模型.电波科学学报, 2004, 19 (1): 83-87.
    [156]张尉.米波雷达阵地地面有效反射区的探讨.现代雷达, 2003, 25 (4): 1-3.
    [157]张尉,王军.抛物线用作雷达阵地地面有效反射区曲线.火力与指挥控制, 2003, 28 (6): 47-49.
    [158] Sylvie M, Alain M. The propagator method for source bearing estimation. Signal Processing, 1995, (42): 121-138.
    [159] S. Marcos A M a M B. Performance analysis of the propagator method for source bearing estimation. Proc. Conference on Acoust, Speech Signal Processing, Australia, 1994: 237-240.
    [160] Rio J E F d, Catedra-perez M F. The matrix pencil method for two-dimensional direction of arrival estimation employing an L-shaped array. IEEE Trans. Antennas and Propagation, 1997, 45 (11): 1693-1694.
    [161] Nizar T, Hyuck M K. L-shaped 2-dimensional arrival angle estimation with propagator method. IEEE Trans. Antennas and Propagation, 2005, 53 (5): 1622-1630.
    [162]陈建,王树勋.基于MEMP算法的二维DOA估计.系统工程与电子技术, 2007, 29 (5): 703-706.
    [163]黄志强,王树勋,黄丽.高阶累积量的近场源四维参数联合估计方法.现代雷达, 2008, 30 (5): 57-60.
    [164]石宇,余涛,王树勋.基于十字形天线阵列的目标参数估计算法.弹箭与制导学报, 2008, 28 (2): 310-314.
    [165]梁军利,冀邦杰,赵峰,张军英.一种基于平行因子分析的近场源定位新方法.电子学报, 2007, 35 (10): 1909-1915.
    [166] Ng B C, See C M S. Sensor-array calibration using a maximum-likelihood approach. IEEE Trans. Antennas and Propagation, 1996, 44 (6): 827-835.
    [167] Xiang L, Ye Z, Xu X. Direction of arrival estimation for uniform circular array based on fourth-order cumulants in the presence of unknown mutual coupling. IET Microwave Antennas and Propagation, 2008, 2 (3): 281-287.