非同心球对高斯波束散射的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在许多工业过程或科学研究中所遇到的粒子由于本身的性质、形成的机理,其结构呈现明显的非同心特征,如单核生物细胞、大气中的气溶胶粒子、正融化的冰粒子等均可形成非同心球形粒子。为了对这些粒子进行测量或操纵,光散射法是常用且有效的方法,但其前提是需要对粒子内部结构和光学特性有清楚的了解。而在研究光散射时,人们越来越多地使用激光,特别是在用激光束操纵粒子时,波束的直径和粒子的尺寸为同量级或小得多。这时波束对粒子照射的非均匀性必须予以考虑。因此,研究非同心分层球形粒子对有形波束的散射具有重要的理论意义和实用价值。本文在非同心球对平面波散射特性的基础上,系统研究了非同心球对高斯波束散射的特性及其应用。本文主要研究工作和成果如下:
     1.针对平面波非同心球散射和有形波束球面波展开中各自常用矢量球面波函数是不同形式的问题,推导了两种形式矢量球面波函数下加法定理的转换系数,以方便在广义米理论框架下非同心球对波束的散射问题研究。
     2.基于广义米理论(GLMT),研究了非同心球对高斯波束光散射特性,推导了非同心球有型波束的消光效率、散射效率和吸收效率的公式。利用矢量球面波函数加法定理并通过边界条件方程,获得散射场展开系数满足的方程组,通过求解方程组获得散射场的展开系数。以非同心球为模型研究了单核生物细胞对高斯波束的散射特性并给出了相关数值模拟,讨论了离心距、波束的束腰半径和核的大小对散射强度角分布和散射、消光系数的影响。还对高斯波束照射下,非同心球后向散射场的谐振进行了数值模拟和分析。
     3.基于广义米理论,利用高斯波束斜入射情况下波束系数的计算公式,研究了高斯波束斜入射情况下非同心球形粒子的散射特性。推导所得的公式由非同心球对平面波的散射和非同心球对波束的散射两种情况得到了验证。重点研究了高斯波束斜入射情况下的远场散射强度以及消光截面系数。研究了高斯波束照射下硫酸盐包裹着微小碳粒组成的非同心球形粒子以及导体内核的非同心球形粒子的散射特性。
     4.基于广义米理论,推导了高斯波束照射到非同心球时对非同心球纵向和横向辐射力公式,给出了高斯波束对非同心球辐射力数值模拟和相关分析。讨论了离心距对纵向辐射力的影响,也讨论了束腰半径、介质折射率和波长对纵向辐射力的影响。还对高斯波束对非同心球纵向辐射力的谐振进行了数值模拟和分析。
Most of particles encountered in many industrial process and scientific research have eccentric structures caused by many effects for instance its character, mechanism of form, industrial process, practical need, etc. Such as Cell consisting of a nuclei, atmospheric aerosols, melting ice sphere, etc. The incident beam can be considered as plane wave when the scatters are very small compared to the dimension of the incident beam . But more generally, the beam shape must be considered when the size of the scatterer is relatively large and the illumination on the scatterer is not homogeneous. On the basis of scattering of plane wave by a spherical particle with an eccentric spherical inclusion, this thesis is devoted to the systemic research on scattering of Gaussian beam by a spherical particle with an eccentric spherical inclusion and its applications on many techniques. The main works and achievements are summarized as follows:
     1. In order to study the scattering of the Gaussian beam with an eccentrically stratified dielectric sphere easily, formula of vector spherical wave functions and the transform coefficients for corresponding additional theorem are given.
     2. Based on the generalized Lorenz-Mie theory(GLMT),the scattering characteristics of an eccentrically stratified dielectric sphere are studied. The translational addition theorems for spherical vector wave functions and the boundary conditions are used in solving the scattering coefficients. The eccentrically stratified dielectric sphere model is used to study the scattering characteristics of a nucleated biological cell illuminated by a Gaussian beam. Numerical results and the dependence of scattering characteristics on displacement distance, the beam waist radius and the size of the nucleus are discussed. Resonance of backscattered field for eccentric sphere illuminated by Gaussian beam is numerically simulated and analyzed.
     3. Based on the generalized Lorenz-Mie theory,using the formula of beam shape coefficients with arbitrary illumination, the scattering characteristics of Gaussian beam and a eccentric sphere is studied. The simulations are validated for plane wave scattering by an eccentric sphere and shaped beam scattering by a coated sphere. The far-field scattering and extinction efficiency factors of scattering of a Gaussian beam by an eccentric sphere in the general case of oblique illumination are discussed.
     4. Formula of radiation forces exerted on an eccentric sphere by a focused Gaussian beam is developed within the framework of the generalized Lorenz-Mie theory (GLMT). Numerical results of the radiation force for an eccentric sphere are given. By reducing the eccentric sphere to a concentric sphere system, the expression of axial force exerted on an eccentric sphere by a focused Gaussian beam is validated. The effects of distance between centers, beam waist, refractive-index and wavelength on axial radiation force are discussed. Resonance of longitudinal radiation force for eccentric sphere illuminated by Gaussian beam is numerically simulated and analyzed.
引文
[1] L. V. Lorenz. Upon the light reflected and refracted by a transparent sphere. Vidensk, Selsk, Shrifter 6 (1890), 1- 62, In Danish.
    [2] G. Mie. Beitrage zur Optik truber Medien speziell kolloidaler Metallosungen. Ann. Phys., 1908, 25. pp: 377-455.
    [3] H. C. van de Hulst. Light Scattering by Small Particle. John Wiley&Sons. Inc, 1981.
    [4] A. L . Aden, and M. Kerker. Scattering of electromagnetic wave from concertric sphere. J. Appl. Phys., 1951, 22. pp: 1242-1246.
    [5] M. Kerker, The Scattering of Light and Other Electromagnetic Radiation. Academic, San Diegon, Calif, 1969.
    [6] O. B. Toon, and T .P, Ackerman. Algorithms for the calculation of Scattering by stratifield sphere. Appl. Opt., 1981, 20. pp:3657-3660.
    [7] C. F. Bohrenand D. R., Huffman. Absorption and Scattering of Light by Small Particle. Wiley-Interscience, New York, 1983.
    [8] Z. S. Wu and Y.P. Wang. Electromagnetic scattering for multilayered sphere: Recursive algorithms. Radio Sci., 1991, 26(6). pp: 1393-1401.
    [9] J. H. Bruning and Y.T. Lo. Multiple scattering of EM waves by spheres part I-multipole expansion and ray-optical solution. IEEE Trans. Antennas Propag., 1971, 19. pp: 378-390.
    [10] J. H. Bruning and Y.T. Lo. Multiple scattering of EM waves by spheres part II-numerical and experimental results. IEEE Trans. Antennas Propag., 1971, 19. pp: 391-400.
    [11] N. Morita, T. Tanaka, T. Yamasaki and Y. Nakanishi. Scattering of a beam wave by a spherical object. IEEE Trans. Antennas. Propag. AP. 1968, 16. pp: 724-727.
    [12] W. G. Tam and R. Corriveau. Scattering of electromagnetic beams by spherical objects. J. Opt. Soc. Am. 1978, 68. pp: 763-767.
    [13] L. W. Davis. Theory of electromagnetic beam. Phys. Rev. A. 1979, 19. pp: 1177-1179.
    [14] G. Gouesbet, B. Maher and G. Gréhan. Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation. J. Opt. Soc. Am. A, 1988, 5. pp: 1427-1443.
    [15] K. F. Ren, G. Gouesbet and G. Gréhan, Integral localized approximation in generalized Lorenz-Mie theory, Appl. Opt. 1998, 37. pp:4218-4225.
    [16]吴振森,傅新琦.多球对高斯束的散射,电学报. 1995,23, pp: 32-36。
    [17] E. E. M. Khaled, S. C. Hill and P. W. Barber, Light scattering by a coated sphere illuminated with a Gaussian beam. Appl. Opt., 1994, 33. pp: 3308-3314.
    [18] Z. S. Wu, L.X.Guo, K.F. Ren, et al. Improved algorithm for electromagnetic scattering of plane waves and shaped beams by multilayered spheres. Appl. Opt., 1997, 36(21). pp:5188-5198.
    [19]白璐.多对高斯束的相干散射.安电技大学士学位论文,2006年。
    [20]白璐.聚球光散射特性研究.安电技大学硕士学位论文,2002年。
    [21] Lord Rayleigh. Philos Mag. 1881, 12. pp:81-101.
    [22]吴振森,新,崔索民.直入射时无限长多介质圆柱的内、外场计算.电学报. 1995, 23(6). pp:114-116。
    [23] J. R. Wait, Scattering of a plane wave from a circular dielectric cylinder at oblique incidence, Can. J. Phys. 1955, 33. pp: 189-195.
    [24] M. Barabas. Scattering of a plane wave by a radially stratified tilted cylinder. J. Opt. Soc. Am. A. 1987, 14(12). pp: 2240-2248.
    [25] I. Gurwich, N. Shiloah, M. Kleiman. The recursive algorithm for electromagnetic scattering by tilted infinite circular multilayered cylinder. J. Quant. Spectrosc. Radiat. Transfer, 1999, 63. pp: 217-229.
    [26] J. A. Lock and C. L. Adler, Debye-series analysis of the first-order rainbow produced in scattering of a diagonally incident plane wave by a circular cylinder, J. Opt. Soc. Am. A., 1997, 14. pp:1316-1328.
    [27] Mees Loic, Ren Kuan Fang, Grehan Gerard, et al. Scattering of a Gaussian beam by an infinite cylinder with arbitrary location and arbitrary orientation: numerical results. Appl. Opt., 1999, 38(9).pp:1867-1876.
    [28] S. Kozaki. Scattering of a Gaussian beam by a homogeneous dielectric cylinder. J. Appl. Phys. 1982, 53. pp. 7195-7200.
    [29] L.X.Guo and Z.S. Wu. Rainbow scattering by an inhomogeneous cylinder with an off–axis Gaussian beam incidence at normal. International Journal of Infrared and Millimeter Waves. 2000, 21(11). pp: 1879-1886.
    [30] Xingchao Yuan, et al. Coupling of Finite Element and Moment Methods for Electromagnetic Scattering from Inhomogeneous Objects. IEEE Trans. on AP. 1990, 39(3), pp: 386-393.
    [31] A. F. Peterson, et al. An improved MFIE formulation for TE-wave scattering from lossy, inhomogeneous dielectric cylinders. IEEE Trans. on AP. 1988, 36(1). pp: 45-49.
    [32] H. E. Bussey et al. Scattering by a lossy dielectric circular cylindrical Multilayer, numerical values. IEEE Trans. on AP. 1975, 23(5). pp: 723-725.
    [33] T. Kojima and Y. Yanagiuchi, Scattering of an offset two-dimensional Gaussian beam wave by a cylinder. J. Appl. Phys., 1979, 50. pp: 41-46.
    [34]姜会芬。非均匀光散射特性及折射率分布量研究。安电技大学士学位论文,2007年。
    [35]姜会芬,韩香娥,先.直入射时无限长分柱电磁散射的改进算法及应用.光学学报. 2007, 27(2). pp: 265-271。
    [36] F. Michael Schulz, Knut Stamnes, and Jakob J. Stamnes. Scattering of Electromagnetic wave by spheroidal particles: a novel approach exploiting the Tmatrix computed in spheroidal coordinates. Appl. Opt., 1998, 37(33). pp: 7875-7896.
    [37] B. P .Sinha and R. H. Macphie. Electromagnetic plane wave scattering by a system of two parallel conducting prolate spheroids. IEEE Trans. Antennas Propag., 1983, AP-31(2). pp: 294-304.
    [38] S. Asano and G. Yamamoto. Light Scatering by a spheroidal particle. Appl. Opt., 1975, 14(1). pp: 29-49.
    [39] S. Asano. Light scattering properties of spheroidal particies. Applied Optics. 1979, 18(5). pp:712-723.
    [40] J. P. Barton, Internal and near-surface electromagnetic fields for a spheroidal particle with arbitrary illumination. Appl. Opt., 1995, 34, pp: 5542-5551.
    [41] J. P. Barton,―Internal and near-surface electromagnetic fields for an absorbing spheroidal particle with arbitrary illumination,‖Appl. Opt., 1995, 34. pp:6471-8473.
    [42]韩一平。椭球高斯束的散射。安电技大学士学位论文。2000年。
    [43]韩一平,吴振森,一种平面在椭球标系展开的计算方法.安电技大学学报(学版) 2000, 27. pp: 795-797.
    [44] Yiping Han and Zhengsen Wu,―Scattering of a spheroidal particle illuminated by a Gaussian beam,‖Appl. Opt., 2001, 40. pp:2501-2509.
    [45] Yiping Han, Huayong Zhang and Guoxia Han. The expansion coefficients of arbitrary shaped beam in oblique illumination. OPTICS EXPRESS, 2007, 15. pp: 735-746.
    [46] F. Xu, K. F. Ren, X. Cai and J. Shen, Extension of geometrical-optics approximation to on-axis Gaussian beam scattering.Ⅱ. By a spheroidal particle with end-on incidence. Appl. Opt., 2006, 45. pp: 5000-5009.
    [47] Feng Xu, Kuanfang Ren and Xiaoshu Cai. Expansion of arbitrarily oriented, located and shaped beam in spheroidal coordinates. J. Opt. Soc. Am. A, 2007, 24. pp: 109-118.
    [48] H. Zhang and Y. Han, Scattering by a confocal multilayered spheroidal particle illuminated by an axial Gaussian beam. IEEE Trans. Antennas Propagat, 2005, 53. pp: 1514-1518.
    [49] Le-wei Li et al,―Electromagnetic radiation from a prolate spheroidal antenna enclosed in a confocal spheroidal radome,‖IEEE Trans. Antennas Propag., 2002, 50. pp:1525-1533.
    [50] Abdel R. Sebak and Bateshwar P. Sinha,―Scattering by a conducting spheroidal object with dielectric coating at axial incidence,‖IEEE Trans. Antennas Propag., 1992, 40. pp:268-273.
    [51] B. P. Sinha and R. H. Hacphie―Electromagnetic scattering by prolate spheroids for plane wave with arbitrary polarization and angle of incidence,‖Radio Sci., 1997, 12. pp:171-184.
    [52] V. G. Farafonov , N. V. Voshchinnikov and V. V. Somsikov,―Light scattering by a core-mantle spheroidal particle,‖Appl. Opt., 1996, 35. pp:5412-5426.
    [53] J. P. Barton, Electromagnetic-field calculations for irregularly shaped, layered cylindrical particles with focused illumination. Appl. Opt., 1997, 36. pp: 1312-1319.
    [54] J. P. Barton, Electromagnetic-field calculations for a sphere illuminated by ahigher-order Gaussian beam. I. Internal and near-field effects. Appl. Opt., 1997, 36. pp: 1303-1311.
    [55] J. P. Barton, Electromagnetic-field calculations for a sphere illuminated by a higher-order Gaussian beam. II. Far-field scattering. Appl. Opt., 1998, 37. pp: 3339-3344.
    [56] B. Friedman and J. Russek. Addition theorems for spherical waves. Quart. Appl. Math, 1954, 12. pp: 13-23.
    [57] S. Stein. Addition theorems for spherical wave functions. Quart.Appl.Math. 1961, 19, pp: 15-24.
    [58] O. R. Cruzan. Translational addition theorems for spherical vector wave functions. Quart. Appl. Math, 1962, 20. pp: 33-40.
    [59] J. G. Fikioris, N. K. Uzunoglu. Scattering from an eccentrically stratified dielectric sphere. J Opt Soc Am, 1979, 69(10). pp: 1359-1366.
    [60] F. Borghese, P. Denti, R. Saija, O. I. Sindoni. Optical properties of spheres containing a spherical eccentric inclusion. J. Opt. Soc. Am. A, 1992, 9 (8). pp: 1327-1335.
    [61] D. Ngo, G. Videen, P. Chylek. A FORTRAN code for the scattering of EM waves by a sphere with a nonconcentric spherical inclusion. Comput. Phys. Commun., 1996, 99. pp: 94-112.
    [62] D.Ngo, Light scattering from a sphere with a nonconcentric spherical inclusion. Ph.D. dissertation, Dept. of Physics, New Mexico State University, Las Cruces, 1994.
    [63] Kyutae Lim and Sang Seol Lee. Analysis of electromagnetic scattering from an eccentric multilayered sphere. IEEE Trans. Antennas Propag., 1995, 43 (11). pp: 1325-1328.
    [64] G. Videen, D. Ngo, P. Chylek, and R. G. Pinnick. Light scattering from a sphere with an irregular inclusion. J. Opt. Soc. Am. A, 1995, 12 (5). pp: 922-928.
    [65] G. Videen, D. R. Prabhu, M. Davies, F. Gonzalez, and F. Moreno. Light scattering fluctuations of a soft spherical particle containing an inclusion. Appl. Opt., 2001, 40 (24). pp: 4054-4057.
    [66] G. Gouesbet, G. Grehan. Generalized Lorenz-Mie theory for a sphere with an eccentrically located spherical inclusion. J. Mod. Opt., 2000, 47(5). pp: 821-837.
    [67] W. Y. Yin, H. L. Zhao, and W. Wan. Parametric study on the scatteringcharacteristics of two impedance cylinders eccentrically coated with Faraday chiral materials. Journal of Electromagnetic Waves and Applications, 1996, 10. pp: 1467-1484.
    [68] J. A. Roumeliotis and S. P. Savaidis. Scattering by an infinite circular dielectric cylinder coating eccentrically an elliptic metalic one. IEEE Trans. Antennas Propag., 1996, 44. pp: 757-763.
    [69] S. P. Savaidis and J. A. Roumeliotis. Scattering by an infinite elliptic dielectric cylinder coating eccentrically a circular metalic or dielectric cylinder. IEEE Transactions on Microwave Theory and Techniques, 1997, 45. pp: 1792-1799.
    [70] A. A. Kishk, R. P. Parrikar, and A. Z. Elsherbeni. Electromagnetic scattering from an eccentric multilayered circular cylinder. IEEE Trans. Antennas Propag.,1992, 40. pp: 295-303.
    [71] L. G. Stratigaki, M. P. Ioannidou, and D. P. Chrissoulidis. Scattering from a dielectric cylinder with multiple eccentric cylindrical dielectric inclusions. IEE Pro.-Microw. Antennas Propag., 1996, 143. pp: 505-511.
    [72] H. A. Yousif, A. Z. Elsherbeni. Oblique incidence scattering from two eccentric cylinders. Journal of Electromagnetic Waves and Applications, 1997, 11. pp: 1273-1288.
    [73] H. A. Yousif, A. Z. Elsherbeni. Electromagnetic scattering from an eccentric multilayered cylinder at oblique incidence. Journal of Electromagnetic Waves and Applications, 1999, 13. pp: 325-336.
    [74] A. Ashkin, Acceleration and trapping of particles by radiation pressure. Phys. Rev. Lett., 1970, 24. pp: 156-159.
    [75] A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett., 1986, 11. pp: 288-290.
    [76] J. P. Barton, D. R. Alexander, and S. A. Schaub, Internal and near-surface electromagnetic fields for a spherical particle irradiated by a focused light beam. J. Appl. Phys., 1988, 64. pp: 1632-1639.
    [77] J. P. Barton, D. R. Alexander, and S. A. Schaub, Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam. J. Appl. Phys., 1989, 66. pp: 4594-4602.
    [78] K. F. Ren, G. Grehan, and G. Gouesbet, Radiation pressure forces exerted on aparticle arbitrarily located in a Gaussian beam by using the generalized Lorenz-Mie theory, and associated resonance effects. Opt. Commun., 1994, 108. pp: 343-354.
    [79] K. F. Ren, G. Grehan, and G. Gouesbet, Prediction of reverse radiation pressure by generalized Lorenz–Mie theory. Appl. Opt., 1996, 35. pp: 2702-2710.
    [80] F. Onofri, G. Grehan, and G. Gouesbet, Electromagnetic scattering from a multilayered sphere located in an arbitrary beam. Appl. Opt., 1995, 34. pp: 7113- 7124.
    [81] J. A. Lock, Calculation of the radiation trapping force for laser tweezers by use of generalized Lorenz-Mie theory. I. Localized model description of an on-axis tightly focused laser beam with spherical aberration. Appl. Opt., 2004, 43. pp: 2532-2544.
    [82] J. A. Lock, Calculation of the radiation trapping force for laser tweezers by use of generalized Lorenz-Mie theory. II. On-axis trapping force. Appl. Opt., 2004, 43. pp: 2545-2554.
    [83]韩一平,杜云刚,张华永。高斯束对双的辐射俘获力。物学报, 2006,55 (9). pp: 4557-4562.
    [84] Y. Harada and T. Asakura, Radiation forces on a dielectric sphere in Rayleigh scattering regime. Opt. Commun., 1996, 124. pp: 529-541.
    [85] P. C. Chaumet and M. Nieto-Vesperinas, Time-averaged total force on a dipolar sphere in an electromagnetic field. Opt. Lett., 2000, 25. pp: 1065-1067.
    [86] T. C. Bakker Schut, G. Hesselink, B. G. de Grooth, and J. Greve, Experimental and theoretical investigations on the validity of the geometrical optics model for calculating the stability of optical traps. Cytometry, 1991, 12. pp: 479-485.
    [87] S. Nemoto and H. Togo, Axial force acting on a dielectric sphere in a focused laser beam. Appl. Opt., 1998, 37. pp: 6386-6394.
    [88] R. C. Gauthier, Laser-trapping properties of dual-component spheres. Appl. Opt., 2002, 41. pp: 7135-7144.
    [89] E. Fallman and O. Axner, Influence of a glass-water interface on the on-axis trapping of micrometer-sized spherical objects by optical tweezers. Appl. Opt., 2003, 42. pp: 3915-3926.
    [90] T. A. Nieminen, H. Rubinsztein-Dunlop, N. R. Heckenberg, Numerical modelling of optical trapping. Comput. Phys. Commun., 2001, 142. pp: 468-471.
    [91]银妹,《生命学新技术-光镊原技术和应用》,中学技术大学出版社,1996。
    [92]崔强,银妹,环光对光阱有效捕获力的提高,中激光,2001,28。pp: 89-92。
    [93]陈洪涛,银妹,楼等,光阱刚度实验条件的依赖关系,中激光,2004,31。pp: 1361-1366。
    [94]降强。激光的生物学效应。山大学士学位论文。2004年。
    [95]姚新程,兆霖,程丙英,张道中,双介质球体所受光用力的分计算。光学学报,2000,20。pp: 1305-1310。
    [96]红莲,姚新程,兆霖等,光镊系统中微小的位移和所受力的量。中学,2002,32。pp: 97-101。
    [97]红莲。双光镊系统及其在生物学中的应用。中学院物研究所士学位论文。2004年。
    [98]毛方林,岐荣,王锴等,飞秒激光光镊横向光学力的论分,光学报,2004,33。pp: 513-516。
    [99]王小娜。基于激光捕捉技术的微细加工。浙江大学硕士学位论文。2004。
    [100]田洁。光镊技术在光晶体领域应用中的探索。北京工业大学硕士学位论文。2003年。
    [101]徐华。用激光研究微管系统的分力学特征。中农业大学士学位论文。2005。
    [1] C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles, Wiley, New York, 1983.
    [2] H. Polaert, G. Grehan, and G. Gouesbet, Forces and torques exerted on a multilayered spherical particle by a focused Gaussian beam, Opt.Commun. 1998, 155. pp: 169-179.
    [3] GOUESBET G, MAHEU B, GREHAN G. Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation. J Opt Soc Am A, 1988, 5 (9). pp: 1427-1443.
    [4]吕百达。激光光学。高等教育出版社。2002年。.
    [5] L. W. Davis, Theory of electromagnetic beam. Phys. Rev. A, 1979, 19. pp: 1177-1179.
    [6] Van de Hulst H. C., Light scattering by small particles, Dover, New York,1957.
    [7] K. F. Ren, G. Gouesbet and G. Gréhan, Integral localized approximation in generalized Lorenz-Mie theory, Appl. Opt. 1998, 37, 4218-4225.
    [8] A. Doicu and T. Wriedt, Computation of the beam-shape coefficients in the generalized Lorenz-Mie theory by using the translational addition theorem for spherical vector wave functions. Appl Opt., 1997, 36. pp: 2971-2978.
    [9] A. Doicu and T. Wriedt, Plane wave spectrum of electromagnetic beams. Appl. Commu., 1997, 136. pp: 114-124.
    [10] B. Friedman and J. Russek, Addition theorems for spherical waves. Q. Appl. Math., 1954, 12. pp: 13-23.
    [11] S. Stein, Addition theorems for spherical wave functions. Q. Appl. Math., 1961, 19. pp: 15-24.
    [12] O. R. Cruzan, Translational addition theorems for spherical vector wave functions. Q. Appl. Math., 1962, 20. pp: 33-40.
    [13] J. A. Lock, Contribution of high-order rainbows to the scattering of a Gaussian laser beam by a spherical particle, J. Opt. Soc. Am. A, 1993, 10. pp: 693-706.
    [1] A. L. Aden and M. Kerker. Scattering of electromagnetic waves from two concentric spheres. J. Appl. Phys., 1951, 22. pp: 1242-1246.
    [2] R. W. Fenn and H. Oser. Scattering properties of concentric soot-water spheres for visible and infrared light. Appl. Opt., 1965, 4. pp: 1504-1509.
    [3] K. A. Fuller. Scattering of light by coated spheres. Opt. Lett., 1993, 18. pp: 257-259.
    [4] B. Friedman and J. Russek. Addition theorems for spherical waves. Quart. Appl. Math, 1954, 12. pp: 13-23.
    [5] S. Stein. Addition theorems for spherical wave functions. Quart.Appl.Math. 1961, 19, pp: 15-24.
    [6] O. R. Cruzan. Translational addition theorems for spherical vector wave functions. Quart. Appl. Math, 1962, 20. pp: 33-40.
    [7] J. G. Fikioris, N. K. Uzunoglu. Scattering from an eccentrically stratified dielectric sphere. J Opt Soc Am, 1979, 69(10). pp: 1359-1366.
    [8] F. Borghese, P. Denti, R. Saija, O. I. Sindoni. Optical properties of spherescontaining a spherical eccentric inclusion. J. Opt. Soc. Am. A, 1992, 9 (8). pp: 1327-1335.
    [9] D. NGO, G. Videen, P. Chylek. A FORTRAN code for the scattering of EM waves by a sphere with a nonconcentric spherical inclusion. Comput. Phys. Commun., 1996, 99. pp: 94-112.
    [10] D.Ngo, Light scattering from a sphere with a nonconcentric spherical inclusion. Ph.D. dissertation, Dept. of Physics, New Mexico State University, Las Cruces, 1994.
    [11] P. A. Bobbert and J. Vlieger. Light scattering by a sphere on a substrate. Physica A, 1986, 137. pp: 209—241.
    [1] J. G. Fikioris, N. K. Uzunoglu. Scattering from an eccentrically stratified dielectric sphere. J Opt Soc Am, 1979, 69(10). pp: 1359-1366.
    [2] F. Borghese, P. Denti, R. Saija, O. I. Sindoni. Optical properties of spheres containing a spherical eccentric inclusion. J. Opt. Soc. Am. A, 1992, 9 (8). pp: 1327-1335.
    [3] D. NGO, G. Videen, P. Chylek. A FORTRAN code for the scattering of EM waves by a sphere with a nonconcentric spherical inclusion. Comput. Phys. Commun., 1996, 99. pp: 94-112.
    [4] K. F. Ren, G. Grehan, G. Gouesbet. Radiation pressure forces exerted on a particle arbitrarily located in a Gaussian beam by using the generalized Lorenz-Mie theory, and associated resonance effects. Opt. Commun., 1994, 108. pp: 343-354.
    [5] K. F. Ren, G. Grehan, G. Gouesbet. Prediction of reverse radiation pressure by generalized Lorenz–Mie theory. Appl. Opt., 1996, 35 (15). pp: 2702-2710.
    [6] G. Gouesbet, B. Maheu, G, Grehan. Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation. J. Opt. Soc. Am. A, 1988, 5 (9). pp: 1427-1443.
    [7] K. F. Ren, G. Grehan, G. Gouesbet. Localized approximation of generalized Lorenz-Mie theory:faster algorithm for computations of beam shape coefficients mg n. Part Part Syst. Charact., 1992, 9. pp: 144-150.
    [8] K. F. Ren, G. Gouesbet, G. Grehan. Integral localized approximation ingeneralized Lorenz-Mie theory. Appl. Opt., 1998, 37(19). pp: 4218-4225.
    [9] K. F. Ren, G. Grehan, G. Gouesbet. Symmetry relations in generalized Lorenz-Mie theory. J. Opt. Soc. Am. A, 1994, 11(6). pp: 1812-1817.
    [10] G. Gouesbet, G. Grehan. Generalized Lorenz-Mie theory for a sphere with an eccentrically located spherical inclusion. J. Mod. Opt., 2000, 47(5). pp: 821-837.
    [11] P. A. Bobbert and J. Vlieger. Light scattering by a sphere on a substrate. Physica A, 1986, 137. pp: 209--241.
    [12] A, Brunsting and P. F. Mullaney. Differential light scattering from spherical mammalian cells. Biophys. J., 1974, 14 (6). pp: 439-453.
    [13] E. E. M. Khaled, S. C. Hill, and P. W. Barber. Light scattering by a coated sphere illuminated with a Gaussian beam. Appl. Opt., 1994, 33 (15). pp: 3308-3314.
    [14] A. Ashkin and J. M. Dziedzic. Observation of optical resonances of dielectric spheres by light scattering. Appl. Opt., 1981, 20. pp: 1803-1814.
    [1] G. Gouesbet, B. Maheu, G. Grehan. Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation. J Opt Soc Am A, 1988, 5 (9). pp: 1427-1443.
    [2] Yiping Han, Huayong Zhang and Guoxia Han. The expansion coefficients of arbitrary shaped beam in oblique illumination. OPTICS EXPRESS, 2007, 15 . pp: 735-746.
    [3] Feng Xu, Kuanfang Ren and Xiaoshu Cai. Expansion of arbitrarily oriented, located and shaped beam in spheroidal coordinates. J. Opt. Soc. Am. A, 2007, 24 . pp: 109-118.
    [4] A.R.Edmonds, Angular momentum in quantum mechanics, Princeton University Press, N.J, Chap.4, 1957.
    [5] J. G. Fikioris and N. K. Uzunoglu. Scattering from an eccentrically stratified dielectric sphere. J. Opt. Soc. Am. A, 1979, 69(10). pp: 1359-1366.
    [6] D.Ngo, Light scattering from a sphere with a nonconcentric spherical inclusion. Ph.D. dissertation, Dept. of Physics, New Mexico State University, Las Cruces, 1994.
    [7] J. A. Roumeliotis and G. Fikioris, Scattering of plane waves from aneccentrically-coated metallic sphere, J. Franklin Inst., 1981, 312. pp: 41-59.
    [8] K. Lim and S. S. Lee. Analysis of electromagnetic scattering from an eccentric multilayered sphere. IEEE Trans. Antennas Propagat., 1995, 43. pp: 1325-1328.
    [9] D.Ngo, Light scattering from a sphere with a nonconcentric spherical inclusion. Ph.D. dissertation, Dept. of Physics, New Mexico State University, Las Cruces, 1994.
    [1] A. Ashkin, Acceleration and trapping of particles by radiation pressure. Phys. Rev. Lett., 1970, 24. pp: 156-159.
    [2] A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett., 1986, 11. pp: 288-290.
    [3] G. Gouesbet, B. Maheu, and G. Grehan, Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation. J. Opt. Soc. Am. A. 1988, 5. pp: 1427-1443.
    [4] K. F. Ren, G. Grehan, and G. Gouesbet, Radiation pressure forces exerted on a particle arbitrarily located in a Gaussian beam by using the generalized Lorenz-Mie theory, and associated resonance effects. Opt. Commun., 1994, 108. pp: 343-354.
    [5] K. F. Ren, G. Grehan, and G. Gouesbet, Prediction of reverse radiation pressure by generalized Lorenz–Mie theory. Appl. Opt., 1996, 35. pp: 2702-2710.
    [6] J. P. Barton, D. R. Alexander, and S. A. Schaub, Internal and near-surface electromagnetic fields for a spherical particle irradiated by a focused light beam. J. Appl. Phys., 1988, 64. pp: 1632-1639.
    [7] J. P. Barton, D. R. Alexander, and S. A. Schaub, Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam. J. Appl. Phys., 1989, 66. pp: 4594-4602.
    [8] F. Onofri, G. Grehan, and G. Gouesbet, Electromagnetic scattering from a multilayered sphere located in an arbitrary beam. Appl. Opt., 1995, 34. pp: 7113- 7124.
    [9] H. Polaert, G. Grehan, and G. Gouesbet, Forces and torques exerted on amultilayered spherical particle by a focused Gaussian beam. Opt.Commun., 1998, 155. pp: 169-179.
    [10]韩一平,杜云刚,张华永.高斯束对双的辐射俘获力.物学报, 2006,55 (9). pp: 4557-4562.
    [11] A. Ashkin, Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime. Biophys. J., 1992, 61. pp: 569-582.
    [12] Y. Harada and T. Asakura, Radiation forces on a dielectric sphere in Rayleigh scattering regime. Opt. Commun., 1996, 124. pp: 529-541.
    [13] S. B. Kim, J. H. Kim, and S. S. Kim, Theoretical development of in situ optical particle separator: cross-type optical chromatography. Appl. Opt., 2006, 45. pp: 6919-6924.
    [14] A. Rohrbach and E. H. Stelzer, Trapping forces, force constants, and potential depths for dielectric spheres in the presence of spherical aberrations. Appl. Opt., 2002, 41. pp: 2494-2507.
    [15] R. Drezek, A. Dunn, and R. Richards-Kortum, Light scattering from cells: finite-difference time-domain simulations and goniometric measurements. Appl.Opt., 1999, 38, pp: 3651-3661.
    [16] T. C. Bakker Schut, G. Hesselink, B. G. de Grooth, and J. Greve, Experimental and theoretical investigations on the validity of the geometrical optics model for calculating the stability of optical traps. Cytometry, 1991, 12. pp: 479-485.
    [17] Shojiro Nemoto and Hiroyoshi Togo, Axial force acting on a dielectric sphere in a focused laser beam. Appl. Opt.,1998, 37. pp: 6386-6394.
    [18] R. C. Gauthier and S. Wallace, Optical levitation of spheres: analytical development and numerical computations of the force equations. J. Opt. Soc. Am. B, 1995, 12. pp: 1680-1686.
    [19] Tran X. Phuoc, A numerical study of the radiation forces on an absorbing particle using the ray optics approach. Opt. Commu., 2004, 241. pp: 271-277.
    [20] M. E. Friese, J. Enger, H. Rubinsztein-Dunlop, et al., Optical angular-momentum transfer to trapped absorbing particles. Phys. Rev. A, 1996, 54 (2). pp: 1592-1596.
    [21] A. P. Mehte, M. Rief, J. A. Spudich, et al., Single-molecule biomechanics with optical methods. Science, 1999, 5408. pp: 1689-1695.
    [22] M. J. Lang, S. M. Block, Resource letter: LBOT-1: laser-based optical tweezers. American Journal of Physics, 2003, 71. pp: 201-215.
    [23] Feng Xu, Shaped beam scattering by a spherical and online wet steam measurement by using spectral light extinction method. Thesis, Roune University, France, 1995.