微流控芯片中电渗流输运特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微流控芯片是一种新型的微全分析系统,可用于分析化学和生物医学等领域的分析和检测,具有试剂用量少、分析速度快和成本低等优点。本文在对国内外微流控芯片发展概况和存在问题进行深入分析研究的基础上,针对微流控芯片在加工和应用中存在的表面效应等问题,采用理论分析、数值模拟和实验研究相结合的方法,对微流控芯片中的电渗流输运规律进行了系统的研究。本文完成的主要研究工作和创新成果如下:
     1、研究了微流控中存在的动电现象和微流体的常用驱动与控制机理,基于多物理场耦合特征,提出了电动微流体的总体研究方案,分析了微流控芯片中的一般数学模型,采用有限元方法(FEM)离散控制方程,推导了双电层电场Poisson-Boltzmann方程、外加应用电场Laplace方程及电渗流场Navier-Stokes方程等的求解步骤,为全文的理论分析和数值模拟确定了具体的研究路线。
     2、在光滑微通道电渗流(EOF)特性的基础上,采用基于FEM的COMSOL软件,模拟了具有矩形、三角形、正弦和准分形粗糙表面的微通道EOF,对微通道近壁区、主流区分别进行了分析。研究表明,在近壁区,粗糙表面会导致EOF速度出现局部极大值;在主流区,当粗糙度在微米范围以内时,主流EOF速度基本保持不变;整体范围内,EOF速度会随着粗糙度的增大而非线性降低,当粗糙元高度接近0.3倍EDL厚度时,EOF速度受到粗糙度影响最大。该结果揭示了粗糙结构对EOF的影响机理,对于微流动的摩擦研究具有指导意义。
     3、对疏水和亲水表面微通道内的EOF进行了瞬态和稳态数值模拟,研究表明,亲水表面与疏水表面光滑微通道相同,EOF的稳态时间尺度在毫秒量级,其大小与微通道高度的平方成正比,EOF速度与电场强度成正比;随着溶液浓度的增大,疏水表面较亲水表面微通道EOF速度增大明显。该结果对于提高疏水表面微通道内EOF控制精度有参考价值。
     4、对光滑和粗糙表面的3D微流控芯片中的样品传输、进样和分离过程进行了系统级的数值模拟,结果显示表面粗糙度使样品区带增宽,出现峰面“拖尾”现象,提出可以通过调节微通道内的外加电压场强分布加以解决。该结果对于提高粗糙表面微流控芯片中样品分析的效率和精度有重要意义。
     5、以聚甲基丙烯酸甲酯(PMMA)为材料,设计和制作了两种PMMA微流控芯片,并测量了其表面形貌参数;基于电流监测法原理,设计并组建了多通道EOF检测实验系统,采用虚拟仪器软件LabVIEW开发了检测平台;在此基础上,完成了PMMA微流控芯片内流体流动的测试。
     本文的理论分析、数值模拟和实验结果吻合良好,对于微流控芯片的基础研究、设计开发及其应用具有重要的理论意义和现实意义。
Microfluidic Chip (MFC) is a novel kind of micro total analytical system. It can enhance the performance of chemical analysis with respect to smaller amounts of samples, higher analysis speed, better sensitivity and low cost, which can be used to in the fields of the analytical chemistry, biomedicine, etc. In this thesis, on the basis of deep analyzing and studying domestic and foreign development conditions and existing problems of MFC, aiming at the problems in the process of the manufacturing and application, the transporting rules of fluid in MFC were studied systematically, using the methods of theoretical analysis, numerical simulation and experimental instruments. The main innovative jobs are as followed:
     The electrokinetic phenomena, as well as the driving and controlling mechanism of the microfluid are studied firstly. The total project of electrokinetic microfluid was summarized based on its multiphysics field coupling characters, and the general mathematical models of MFC were also analyzed. Based on the finite element method (FEM), the Poisson-Boltzmann equation of electric double layer electric field, the Laplace equation of external electric field and the Navier-Stokes equation of electroosmotic flow (EOF) field were discretized, which form the detailed research scheme of the theoretical analysis and numerical simulation.
     On the basis of the EOF characteristics in smooth microchannel, the EOF was modeled in rough microchannel with rectangle, triangle, sinusoidal and quasi-fractal roughness element, using the COMSOL Multiphysics based on the FEM, which were all divided into the near-wall and bulk flow area. The simulation results indicate that there is a local max value of EOF velocity in the near-wall area of the rough microchannel and the bulk flow EOF velocity almost keep invariable while the roughness is in the scope of the micrometers. In the whole channel, the average EOF velocity decreased nonlinearly with the increasing of the roughness, which decrease quickly when the roughness element height is 0.3 times of the EDL thickness. The results show the mechanisms of the rough element to EOF, which can guide the friction research of the microflow.
     The transient and the steady state of the EOF were modeled in hydrophobic and hydrophilic microchannel. The results show that the transient characteristics of EOF are similar in hydrophobic and hydrophilic microchannels, the steady time of EOF is proportional to the square of microchannel scale, and the magnitude is microsecond. EOF velocity in hydrophobic microchannel is proportional to the electric strength and independent of the channel height, and decreases slowly with the ionic concentration, which is lower than that in hydrophilic microchannel. The results can provide the reference for the EOF control in hydrophobic microchannel.
     The microflow processes, such as sample transport and separation in smooth and rough 3D MFC, were modeled in the level of system. The results indicate that the surface roughness can enlarge the sample zone and there is a "delay phenomenon" in the profile of the microflow, which can be eliminated by adjusting the applied electric strength in microchannels. The results can improve the separate efficiency and accuracy of sample in rough microfluidic chips.
     Two kinds of polymethyl methacrylate (PMMA) microfluidic chips were planed and manufactured. The surface parameters were also tested. Based on the current monitoring method, the multi-channel EOF experimental systems was designed and build up and the virtual instrument LabVIEW software was also used to develop the data acquisition human machine interface. The EOF in PMMA microfluidic chips was achieved on the experiment system at last.
     The results of the theoretical analysis, numerical simulation and experiment coincide very well, which have important theoretical significance and practical values to the fundamental research, development and application of MFC.
引文
[1]林炳承,秦建华著.微流控芯片实验室[M].北京:科学出版社,2006.
    [2]方肇伦主编.微流控分析芯片[M].北京:科学出版社,2003.
    [3]方肇伦主编.微流控分析芯片的制作及应用[M].北京:化学工业出版社,2005.
    [4]Manz A,Graber N,Widmer H M.Miniaturized total chemical analysis systems:A novel concept for chemical sensing[J].Sens.Actuators B Chem.,1990,1:244-248.
    [5]Manz A,Harrison D J,Verpoorte E M J,et al.Planar chips technology for miniaturization and integration of separation techniques into monitoring systems[J].J.Chromatogr.1992,593:253-258.
    [6]Harrison D.J.Fluri K,Seiler K,et al.Micromachining a miniaturized capillary electrophoresis based chemical analysis system on a chip[J].Science,1993,261:895-897.
    [7]Jacobson S C,Hergenroeder R,Koutny L B,et al.Effects of injection schemes and column geometry on the performance of microchip electrophoresis devices[J].Anal.Chem.1994,66:1107-1113.
    [8]Jacobson S C,Ramsey J M.Microchip electrophoresis with sample stacking[J].Electophoresis.1995,16(4):481-486.
    [9]Simpson P C,Woolley A T,Mathies R A.Microfabrication technology for the production of capillary array electrophoresis chips[J].J Biomed Microdev,1998,1:7-26.
    [10]Woolley A T,Mathies R A.Ultra-high-speed DNA sequencing using capillary electrophoresis[J].Anal.Chem.1995,67:3676-3680.
    [11]Woolley A T,Sensabaugh G F,Mathies R A.High-Speed DNA genotyping using microfabricated capillary array electrophoresis chips[J].Anal.Chem.1997,69:2181-2186.
    [12]Woolley A T,Hadley D,Landre P,et al.Functional integration of PCR amplification and capillary electrophoresis in a microfabricated DNA analysis device[J].Anal.Chem.1996,68:4081-4086.
    [13]Wooley A T,Lao K Q,Glazer A N,et al.Capillary electrophoresis chips with integrated electrochemical detection[J].Anal Chem,1998,70(4):684-688.
    [14]Burns M A,Johnson B N,Brahmasandra S N,et al.An integrated nanoliter DNA analysis device[J].Science,1998,282:484-487.
    [15]林炳承.微流控芯片实验室及其功能化[J].中国药科大学学报,2003,34(1):1-6.
    [16]杨蕊,邹明强,冀伟等.微流控芯片分析系统的最新研究进展[J].生命科学仪器,2004,2(6):41-44.
    [17]Michael C.Mitchell,Valerie Spikmans,Manz A,et al.Microchip-based synthesis and total analysis systems(mSYNTAS):Chemical microprocessing for generation and analysis of compound libraries [J]. J. Chem. Soc. Perkin Trans. 1, 2001:514-518.
    [18] Thorsen T, Maerkl S J, Quake S R. Microfluidic large scale integrate chip [J]. Sciences,2002, 298: 580-584.
    [19] Melin J, Quake S R. Microfluidic large-scale integration the evolution of design rules for biological automation [J]. Annu. Rev. Biophys. Biomol. Struct. 2007, 36: 213-231.
    [20] Becker H, Locascio L E. Polymer microfluidic devices [J]. Talanta, 2002, 56: 267-287.
    [21] Nguyen N. T., Wereley S. T., Fundamentals and applications of micro fluidics [M]. Boston:Artech House, 2002.
    [22] Karniadakis G E., Beskok A, Aluru N. Microflows and Nanoflows: fundamentals and simulation [M]. Springer Science+Business Media, Inc, 2005.
    [23] Adams M L, Enzelberger M, Quake S, et al. Microfluidic integration on detectorarrays for absorption and fluorescence microspectrometers [J]. Sens. Actuators A, 2003, 104(1):25-31.
    [24] Weigl B.H., Bardella R.L., Cabrerab C.R. Lab-on-a-chip for drug development [J].Advanced Drug Delivery Reviews, 2003, 55: 349-377.
    [25] Hideaki Hisamoto, Yuya Nakashima, Chihiro Kitamura, et al. Capillary-Assembled microchip for universal integration of various chemical functions onto a single microfluidic device [J]. Anal. Chem. 2004, 76: 3222-3228.
    [26] Wang Joseph. Microchip devices for detecting terrorist weapons [J]. Anal. Chim. Acta,2004, 507: 3-10.
    [27] Stone H A, Stroock A D, Ajdari A. Engineering flows in small devices: microfluidics toward a lab-on-a-chip [J]. Annual Review of Fluid Mechanics.2004, 36:381-411.
    [28] Erickson D, Li D. Integrated microfluidic mevices [J]. Anal. Chim. Acta, 2004, 507: 11-26.
    [29] Kanagasabapathi T.T., Dalton C, Kaler K.V.I.S. An integrated PDMS microfluidic device for dielectrophoretic separation of malignant cells [C]. 3rd International conference on microchannels and minichannels, Toronto, Canada, June 13-15, 2005.
    [30] Pekas N., Granger M., Tondra M., et al. Magnetic particle diverter in an integrated microfluidic format [J]. J. Magn. Magn. Mater. 2005,293: 584-588.
    [31] Bhatt K.H., Grego S., Velev O.D. An AC Electrokinetic technique for collection and concentration of particles and .cells on patterned electrodes [J]. Langmuir, 2005, 21:6603-6612.
    [32] Erickson D. Towards numerical prototyping of labs-on-chip: modeling for integrated microfluidic devices [J]. Microfluid Nanofluid, 2005, 1: 301-318.
    [33] Todd M. Squires. Microfluidics fluid physics at the nanoliter scale [J]. Reviews of Modern Physics, 2005,77(3): 977-1025.
    [34] Zhang Chunsun, Xu Jinliang, Ma Wenli, et al. PCR microfluidic devices for DNA amplification [J]. Biotechnol. Adv. 2006,24: 243-284.
    [35] Douglas B Weibell, George M Whitesides. Applications of microfluidics in chemical biology [J]. Curr. Opin. Chem. Biol. 2006, 10: 584-591.
    [36]Whitesides GM.The origins and the future of micro fluidics[J].Nature,2006,442:368-373.
    [37]Mohamed Gad-el-Hak.MEMS:Introduction and fundamentals,Second Edition[M].Taylor &Francis Group,LLC,2006.
    [38]Pamela G.Gross,Emil P.Kartalov,Axel Scherer,et al.Applications of microfluidics for neuronal studies[J].Journal of the Neurological Sciences,2007,252:135-143.
    [39]Kwang Hyo Chung,Jung Woo Hong,Dae-Sik Lee,et al.Microfluidic chip accomplishing self-fluid replacement using only capillary force and its bioanalytical application[J].Analytica Chimica Acta,2007,585:1-10.
    [40]Yairi M,Richter C.Massively parallel microfluidic pump[J].Sensor Actuat A,2007,137:350-356.
    [41]Zhang Chunsun,Xing Da,Li Yuyuan.Micropumps,microvalves,and micromixers within PCR microfluidic chips[J].Biotechnol.Adv.,2007,25:483-514.
    [42]Iverson B D,Garimella S V.Recent advances in microscale pumping technologies:a review and evaluation[J].Microfluid Nanofluid,2008,5:145-174.
    [43]Gao Y.,Sherman P.M.,Sun Y.,et al.Multiplexed high-throughput electrokinetically controlled immunoassay for the detection of specific bacterial antibodies in human serum [J].Anal.Chim.Acta,2008,606:98-107.
    [44]邢婉丽主编.生物芯片技术[M].北京:清华大学出版社,2004
    [45]陈忠斌主编.生物芯片技术[M].北京:化学工业出版社,2005
    [46]林炳承,秦建华著.图解微流控芯片实验室[M].北京:科学出版社,2008
    [47]周小棉,罗勇,戴忠鹏等.一种激光诱导荧光芯片分析仪[P].中国专利:CN02340741.7,2002-10-08.
    [48]戴忠鹏,罗勇,林炳承.一种微流控塑料芯片注射成型模具[P].中国专利:CN02274234.4.2002-07-18.
    [49]周小棉,梅晓丹,刘大渔等.SARS病毒的微流控芯片实验室系统检测[J].现代科学仪器,2003,4:13-16.
    [50]吴建刚,岳瑞峰,曾雪锋等.基于介质上电润湿原理的微液滴驱动芯片[J].清华大学学报(自然科学版),2006,46(7):1341-1344.
    [51]陈兴,崔大付,刘长春等.用于提取外周血DNA微流控样品预处理芯片的研制[J].高等学校化学学报,2006,27(4):618-621.
    [52]王彬,陈翔,许宝建等.基于SU-8负胶的微流体器件的制作及研究[J].功能材料与器件学报,2006,12(3):215-219.
    [53]林金明,李海芳,苏荣国.微流控芯片的研制及其相关仪器的集成化研究[J].生命科学仪器,2005,(3)2:7-14.
    [54]金亚,罗国安.微流控芯片中超微电极的制作及其在芯片-电化学检测中的应用[J].高等学校化学学报,2003,24(7):1180-1184.
    [55]罗怡,娄志峰,褚德南等.玻璃微流控芯片的制作[J].纳米技术与精密工程,2004,2(1):20-23.
    [56]刘军山.PMMA集成毛细管电泳芯片制作工艺研究[D].大连:大连理工大学,2005.
    [57]傅新,谢海波,杨华勇.集成微泵式微流控芯片的设计与测试[J].中国科学E辑:工程科学,2005,35(5):549-560.
    [58]杨华勇,谢海波,傅新.微流体机械全流场数字粒子图像测速技术[J].机械工程学报,2001,37(10):31-35.
    [59]谢海波,傅新,杨华勇.基于Micro-PIV的微观流场检测技术研究[J].机械工程学报,2005,41(9):106-111.
    [60]宋沁馨,李正平,周国华等.用芯片电泳快速检测人p53基因外显子8上的突变点[J].中国药科大学学报.2003,34(4):344-346.
    [61]丛辉,王惠民,王跃国.微流控芯片技术及应用展望[J].现代检验医学杂志,2005,20(1):88-89.
    [62]金亚,罗国安.微流控芯片与电喷雾质谱联用接口的制作与应用[J].分析仪器,2003,2:4-10.
    [63]金亚,温涛,王义明等.集成毛细管电泳芯片微流控芯片系统的检测器研究和应用[J].现代科学仪器,2001,(4):15-17.
    [64]高健,殷学锋,方肇伦.微流控芯片系统在单细胞研究中的应用[J].化学进展,2004,16(6):975-983.
    [65]张卫英,张红河,邵听军等.微流体芯片在乙型肝炎病毒基因型检测中的应用[J].放射免疫学杂志,2006,19(1):63-65.
    [66]毕颖楠,张惠静.微流控分析芯片在医学领域的应用[J].生物工程学报,2006,22(1):167-171.
    [67]Kong J.,Jiang L.,Su X,et al.Integrated microfluidic immunoassay for the rapid determination of clenbuterol[J].Lab on a Chip,2009,DOI:10.1039/b818430e.
    [68]Ma Bo,Zhang Guohao,Qin Jianhua,et al.Characterization of drug metabolites and cytotoxicity assay simultaneously using an integrated microfluidic device[J].Lab on a chip,2009,9(2):232-238.
    [69]张维冰.毛细管电色谱理论基础[M].北京:科学出版社,2006.
    [70]Burgreeen D,Nakache F R.Electrokinetic flow in ultrafine capillary slits[J].J.Phys.Chem.1964,68(5):1084-1091.
    [71]Rice C L,Whitehead R.Electrokinetic flow in a narrow cylindrical capillary[J].J Phys Chem,1965,69:4017-4024.
    [72]Hildreth Douglas.Electrokinetic flow in fine capillary channels[J].The Journal of Physical Chemistry.1970,74(9):2006-2015.
    [73]Soderman,O.,Jonsson,B.J.Electro-osmosis:Velocity profiles in different geometries with both temporal and spatial resolution[J].Chem.Phys.1996,105:10300-10311.
    [74]Herr A.E.,Molho J.I.,Santiago J.G.,et al.Electroosmotic capillary flow with nonuniform Zeta potential[J].Anal.Chem.2000,72:1053-1057.
    [75]Dutta P,Beskok A.Analytical solution of combined electroosmotic/pressure driven flows in two-dimensional straight channels:finite Debye layer effects[J].Anal.Chem.2001,73: 1979-1986.
    [76]Cummings E.B.,Griffiths S.K.,Nilson R.H.Irrotationality of uniform electroosmosis[C].Proc.of SPIE microfluidic devices and systems Ⅱ,1999:180-189.
    [77]Cummings,E.B.,Griffiths,S.K.,Nilson,R.H.,et al.Conditions for similitude between the fluid velocity and electric field in electroosmotic flow[J].Anal.Chem,2000,72(11):2526-2532.
    [78]Santiago J.Electroosmotic flow in microchannels with finite inertial and pressure forces[J].Anal.Chem.2001,73(10):2353-2365.
    [79]Dutta P,Beskok A.Analytical solution of time periodic electroosmotic flows:analogies to Stokes' second problem[J].Anal.Chem.2001,73:5097-5102.
    [80]Yang Chun,Ng Chee Beng,Chan Vincent.Transient analysis of electroosmotic flow in a slit microchannel[J].J.Colloid Interface Sci.,2002,248:524-527.
    [81]Erickson D,Li D.Analysis of alternating current electroosmotic flows in a rectangular microchannel[J].Langmuir,2003,19:5421-5430.
    [82]Yang J,Kwok DY.Analytical treatment of electrokinetic microfluidics in hydrophobic microchannels[J].Anal.Chim.Acta,2004,507:39-53.
    [83]Urbanski JP,Levitan JA,Burch DN,et al.The effect of step height on the performance of three-dimensional ac electro-osmotic microfluidic pumps[J].J.Colloid Interface Sci.2007,309(2):332-41.
    [84]Huang Shih-Hao,Wang Shou-Kai,Khoo Hwa Seng,et al.AC electroosmotic generated in-plane microvortices for stationary or continuous fluid mixing[J].Sens.Actuators,B,2007,125:326-336.
    [85]张维冰,尤慧艳,张丽华.复杂电渗泵系统的输液特征[J].高等学校化学学报,2008,29(2):294-297.
    [86]Patankar N A,Hu H H.Numerical simulation of electroosmotic flow[J].Analytical Chemistry.1998,70:1870-1881.
    [87]Li,D.,Electrokinetics in Micro fluidics[M].Elsevier Academic Press,Burlington,MA 2004.
    [88]Hu G,Li D.Multiscale phenomena in microfluidics and nanofluidics[J].Chem.Eng.Sci.,2007,62:3443-3454.
    [89]Arulanandam Sarah,Li D.Liquid transport in rectangular microchannels by electroosmotic pumping[J].Colloids Surf.A,2000,161:89-102.
    [90]Yang C,Li D.Analysis of electrokinetic effects on the liquid flow in rectangular microchannels[J].Colloids Surf.A,1998,143:339-353.
    [91]Santiago J.Electroosmotic flow in microchannels with finite inertial and pressure forces[J].Anal.Chem.2001,73(10):2353-2365.
    [92]Erickson D,Li D.Analysis of alternating current electroosmotic flows in a rectangular microchannel[J].Langmuir,2003,19:5421-5430.
    [93]Erickson D,Li D.Influence of surface heterogeneity on electrokinetically driven microfluidic mixing [J]. Langmuir, 2002,18:1883-1892.
    [94] Ren L, Li D. Electro-Osmotic flow in heterogeneous microchannels [J]. J. Colloid and Interface Science, 2001, 243: 255-261.
    [95] Ermakov SV, Jacobson SC, Ramsey JM. Computer simulations of electrokinetic transport in microfabricated channel structure [J]. Anal. Chem. 1998, 70: 4494-4505.
    [96] Bianchi F, Ferrigno A, Girault H H. Finite element simulation of an electroosmotic driven flow division at a T-Junction of microscale dimensions [J]. Anal. Chem. 2000, 72 (9):1987-1993.
    [97] Mitchell MJ, Qiao R, Aluru NR. Meshless analysis of steady-state electro-osmotic transport [J]. Journal of MEMS, 2000,9(4): 435-449.
    [98] Dutta P, Warburton TC, Beskok A. Numerical simulation of mixed electroosmotic/pressure driven micro flows [J]. Numer. Heat Transfer, Part A, 2002,41: 131-148.
    [99] Dutta P, Warburton TC, Beskok A. Electroosmotic flow control in complex microgeometries [J]. Journal of MEMS, 2002,11(1): 36-44.
    [100] Manoel Ferreira Borges, Sergio Lus Lopes Verardi, Jose Marcio Machado. Electroosmotic pumping in rectangular microchannels: a numerical treatment by the finite element method [J]. Applied Mathematics E-Notes, 2002,2: 10-15.
    [101] Qiao R., Aluru N. R. Transient analysis of electro-osmotic transport by a reduced-order modelling approach [J]. Int. J. Numer. Meth. Engng 2003, 56:1023-1050.
    [102] Qiao R., Aluru N. R. Transient analysis of electroosmotic flow in nano-diameter channels [J]. Modeling and Simulation of Microsystems, 2002: 28-31.
    [103] Michal Pribyl, Dalimil Snita, Milan Kubicek. Adaptive mesh simulations of ionic systems in microcapillaries based on the estimation of transport times [J]. Comput. Chem. Eng.,2006, 30: 674-685.
    [104] Tian Fuzhi, Li Baoming, Kwok Daniel Y. Simulation of electroosmotic flows in micro- and nanochannels using a lattice Boltzmann model [J]. J. Comput. Theor. Nanosci. 2004, 1:417-423.
    [105] Li Baoming, Kwok Daniel Y. A lattice Boltzmann model for electrokinetic microchannel flow of electrolyte solution in the presence of external forces with the Poisson-Boltzmann equation [J]. Int. J. Heat Mass Transfer, 2003,46: 4235-4244.
    [106] Li Baoming, Kwok Daniel Y. Lattice Boltzmann model of microfluidics in the presence of external forces [J]. J. Colloid Interface Sci., 2003, 263: 144-151.
    [107] Wang J, Wang M, Li Z. Lattice Poisson-Boltzmann simulations of electro-osmotic flows in microchannels [J]. J. Colloid Interface Sci., 2006, 296: 729-736.
    [108] Wang M, Wang J, Chen S, et al. Electrokinetic pumping effects of charged porous media in microchannels using the lattice Poisson-Boltzmann method [J]. J. Colloid Interface Sci.2006, 304: 246-253.
    [109] Hu J.S., Chao Christopher Y.H., Numerical study of electroosmotic (EO) flow in microfabricated EO pump with overlapped electrical double layer (EDL) [J]. International journal of refrigeration,2007,30:290-298.
    [110]S.Bhattacharyya,A.K.Nayak,Time periodic electro-osmotic transport in a charged micro/nano-channel[J].Colloids Surf.A,2008,325:152-159.
    [111]Guo Zhaoli,Zhao T S,Shi Yong.A lattice Boltzmann algorithm for electro-osmotic flows in microfluidic devices[J].J.Chem.Phys.,2005,122:144907-1:9.
    [112]Yang R-J,Fu L-M,Hwang C-C.Electroosmotic entry flow in a microchannel[J].J.Colloid Interface Sci.,2001,244:173-179.
    [113]Fu LM,Yang R-J,Lee GB.Analysis of geometry effects on band spreading of microchip [J].Electrophoresis,2002,23:602-612.
    [114]Kao P-H,Ren T-F,Yang R-J.An investigation into fixed-bed microreactors using lattice Boltzmann method simulations[J].Int.J.Heat Mass Transfer,2007,50:4243-4255.
    [115]黄经孝.微管道电渗流物理特性之数值模拟[D].台湾:国立中央大学,2004.
    [116]李战华,崔海航.微尺度流动特性[J].机械强度,2001,23(4):476-480.
    [117]范博源,闫卫平,马灵芝.毛细管电泳芯片微沟道内电场分布的数值计算[J].分析实验室,2003,33(4):89-92.
    [118]仲武,陈云飞,庄苹.电渗流泵的机理分析[J].东南大学学报(自然科学版),2003,33(3):307-311.
    [119]仲武,陈云飞.毛细管电渗流微泵的流体动力学的数值模拟[J].机械工程学报,2004,40(2):73-77.
    [120]陈敏,陈云飞,仲武等.纳米通道中离子输运机理的分子动力学仿真[J].中国科学E 辑:技术科学,2009,39(2):249-255.
    [121]王瑞金.微通道中流体扩散和混合机理及其微混合器的研究[D].杭州:浙江大学,2005.
    [122]江涛.基于MEMS技术的直流电渗流微泵的研究[D].哈尔滨:哈尔滨工业大学,2006.
    [123]刘晓为,田丽,霍明学等.集成毛细管电泳芯片的设计[J].传感器技术,2003,22(2):61-64.
    [124]田丽,刘晓为,王喜莲等.毛细管电泳芯片的模拟设计与实验研究[J].微纳电子技术,2003,(7-8):340-343.
    [125]张鹏.微流控芯片中多物理场耦合问题的数值模拟研究[D].长春:吉林大学,2006.
    [126]Taylor J.B.,Carrano A L,Kandlikar S.G.Characterization of the effect of surface roughness and texture on fluid flow-past,present,and future[J].International Journal of Thermal Sciences,2006,45:962-968.
    [127]Hu Y,Werner C,Li D.Electrokinetic transport through rough microchannels[J].Anal.Biochem.2003,75:5747-5758.
    [128]Wang D.,Summers J.L.,Gaskell Philip H.Modelling of electrokinetically driven mixing flow in microchannels with patterned blocks[J].Computers and Mathematics with Applications,2008,55:1601-1610.
    [129]Wang M,Wang J,Chen S.Roughness and cavitations effects on electro-osmotic flows in rough microchannels using the lattice Poisson-Boltzmann methods[J].Journal of Computational Physics,2007,226:836-851.
    [130]徐征,黎永前,刘冲等.微通道壁面突起对片上电泳分离流动特性影响数值计算研究[J].计算力学学报,2007,24(1):25-29.
    [131]Kang S,Suh YK.Numerical analysis on electroosmotic flows in a microchannel with rectangle-waved surface roughness using the Poisson-Nernst-Planck model[J].Microfluid Nanofluid(in press),2008[DOI 10.1007/s10404-008-0321-5].
    [132]Dasgupta S,Bhagat A S,Horner M et al.Effects of applied electric field and microchannel wetted perimeter on electroosmotic velocity[J].Microfluid Nanofluid,2008,5:185-192.
    [133]Souders D,Khan I,Yao GF,et al.A numerical model for simulation of combined electroosmotic and pressure driven flow in microdevices[C].7th Int symp on fluid control,measurement and visualization,2004,7(11):167-170.
    [134]Glatzel T,Litterst C,Cupelli C,et al.Computational fluid dynamics(CFD) software tools for microfluidic applica tions-a case study[J].Computers & Fluids,2008,37:218-235.
    [135]Chein R,Chen H,Liao C.Analysis of electro-kinetic pumping efficiency through finite-length nano-scale surface-charged capillaries[J].J.Electroanal.Chem.(2009),doi:10.1016/j.jelechem.2009.01.025.
    [136]Lanzilloto A.M.,Leu T S.,Amabile M,et al.A study of structure and motion in fluidic Microsystems[C].28th Fluid Dynamics Conference AIAA Paper 97-1790.
    [137]Molho J,Herr A,Desphande M,et al.Fluid transport mechanisms in micro fluidic devices [C].In ASME Micro-Electro-Mechanical-Systems(MEMS) DSC,1998,66:69-76.
    [138]Paul P.,Graguilo M.Rakestraw D.Imaging of pressure and electrokinetically driven flows through open capillaries[J].Anal.Chem.1998,70:2459-2467.
    [139]Meinhart C,Wereley S,Santiago J.PIV measurements of a microchannel flow[J].Experiments in Fluids,1999,27:414-419.
    [140]Cummings E B.PIV measurement of electroosmotic and pressure-driven flow components in microfluidic systems[C].Proc.of ASME MEMS-Vol.1,Microelectromechanical Systems(MEMS),1999:377-384.
    [141]Cummings E B.A comparison of theoretical and experimental electrokinetic and dielectrophoretic flow fields[J].AIAA Paper,2002:3093.
    [142]Herr A,Molho J,Santiago J,et al.Electoosmotic capillary flow with non uniform zeta potential[J].Anal.Chem.2000,72:1053-1057.
    [143]Jacobson S.,McKnight T.,Ramsey J.Microfluidic devices for electrokinetically driven parallel and series mixing[J].Anal.Chem.1999,71:4455-4459.
    [144]Sadr R,Yoda M,Zheng Z,et al.An experimental study of electro-osmotic flow in rectangular microchannels[J].J.Fluid Mech.2004,506:357-367.
    [145]Keisuke Horiuchi.Electrokinetic flow diagnostics using micro particle image velocimetry [D].Washington State University,2005.
    [146]Elaine Biddiss.Experimental and numerical development of an electrokinetic micro-mixer and a concentration gradient generator using surface charge patterning[D].University of Toronto,2004.
    [147]Renaud L,Malhaire C,Kleimann P,et al.Theoretical and experimental studies of microflows in silicon microchannels[J].Mater.Sci.Eng.,C,2008,28(5-6):910-917.
    [148]Fu L-M,Wang L-M,L W-B,et al.Experimental and numerical investigation into the joule heating effect for electrokinetically driven microfluidic chips utilizing total internal reflection fluorescence microscopy[J].Microfluid Nanofluid,[DOI 10.1007/s 10404-008-0328-y].
    [149]金庆辉.微信道电泳芯片系统的原理、方法和应用研究[D].上海:中科院上海微系统与信息技术研究所,2002.
    [150]Hao Peng-Fei,He Feng,Zhu Ke-Qin.Flow characteristics in a trapezoidal silicon microchannel[J].J.Micromech.Microeng.2005,15:1362-1368.
    [151]罗坚,黄晟,畲铭钢等.多通道流动电泳的计算流体力学模拟与实验研究(Ⅱ)流场模拟与设备放大研究[J].化工学报,2004,55(1):1-8.
    [152]傅新,谢海波,杨华勇.集成微泵式微流控芯片的设计与测试[J].中国科学E:工程科学,2005,35(5):549-560.
    [153]陈东,闫卫平,郝应光等.芯片毛细管电泳激光诱导荧光检测系统的研究[J].微纳电子技术,2003,(7-8):324-327.
    [154]杨丙成,谭峰,关亚风.毛细管电泳-473nm固体激光诱导荧光检测系统的建立[J].分析试验室,2004,23(12):14-16.
    [155]冯焱颖,周兆英,叶雄英等.微流体驱动与控制技术研究进展[J].力学进展,2002,32(1):1-16.
    [156]章莉娟,郑忠.胶体与界面化学[M].广州:华南理工大学出版社,2006.
    [157]Usui S.Electrical double-layer interaction between oppositely charged dissimilar oxide surfaces with charge regulation and Stern-Grahame layers[J].J Colloid Interface Sci,2008,320:353-359.
    [158]Lim J I.Transient Finite Element Analysis of electric double layer using Nernst-Planck-Poisson equations with a modified stern layer[D].Texas A&M University,2006.
    [159]Kirby BJ,Hasselbrink Jr.Zeta potential of microfluidic substrates:1.Theory,experimental techniques,and effects on separations[J].Electrophoresis,2004,25:187-202.
    [160]Honig B.,Nicholls A.,Classical electrostatics in biology and chemistry[J].Science,1995,5214(268):1144-1149.
    [161]Ali Mansouri,Carl Scheuerman,Subir Bhattacharjee,et al.Transient streaming potential in a finite length microchannel[J].J Colloid Interface Sci,2002,292:567-580.
    [162]Hlushkou D,Kandhai D,Tallarek U.Coupled lattice-Boltzmann and finite difference simulation of electrosmosis in microfluidic channel[J].Int.J.Num.Meth.Fluids,2004,46:507-532.
    [163]龚磊,吴健康.微扩散通道中的流动电位势和电黏性效应分析[J].微纳电子技术,2007,44(6):312-318.
    [164]Wong S H,Ward M.C.L.,Wharton,C.W.Micro T-mixer as a rapid mixing micromixer[J].Sensor Actuat B-Chem.,2004,100:359-379.
    [165]Wang Moran,Chen Shiyi.On applicability of Poisson-Boltzmann equation for micro- and nanoscale electroosmotic flows[J].Commun.Comput.Phys.2008,3(5):1087-1099.
    [166]Chang Chih-Chang,Yang Ruey-Jen,Electrokinetic mixing in microfluidic systems[J].Microfluid Nanofluid,2007,3:501-525.
    [167]李开泰,黄艾香,黄庆怀编著.有限元方法及其应用[M].北京:科学出版社,2006.
    [168]Hu Xin.Simulation of single molecular dynamics in hydrodynamics and electrokinetic flows[D].The Ohio State University,2006.
    [169]Park HM,Lee JS,Kim TW.Comparison of the Nernst-Planck model and the Poisson-Boltzmann model for electroosmotic flows in microchannels[J].J Colloid Interface Sci,2007,315:731-739.
    [170]Zhang Yali,Wong Teck Neng,Yang Chun,et al.Dynamic aspects of electroosmotic flow [J].Microfluid Nanofluid,2006,2:205-214.
    [171]Mitchell MJ,Qiao R,Aluru NR.Meshless analysis of steady-state electro-osmotic transport [J].Journal of MEMS,2000,9(4):435-449.
    [172]Arulanandam S,Li D.Liquid transport in rectangular microchannels by electroosmotic pumping[J].Colloid Surf.A,2000,161:89-102.
    [173]Yang C,Ng C B,Chan V.Transient analysis of electroosmotic flow in a slit microchannel [J].J.Colloid Interface Sci,2002,248:524-527.
    [174]Christian Kunert,Jens Harting.Roughness induced apparent boundary slip in microchannel flows[J].Phys Rev Lett.,2007,99(17):176001-4.
    [175]Hu Y,Xuan X,Werner C,et al.Electroosmotic flow in microchannels with prismatic elements[J].Microfluid Nanofluid,2007,3:151-160.
    [176]Hu Y,Werner C,Li D.Influence of the three-dimensional heterogeneous roughness on electrokinetic transport in microchannels[J].J.Colloid Interface Sci,2004,280:527-536.
    [177]Qiao R.Effects of molecular level surface roughness on electroosmotic flow[J].Microfluid Nanofluid,2007,3:33-38.
    [178]杨大勇,刘莹.粗糙表面微通道电渗流的数值模拟[J].化工学报,2008,59(10):2577-2581.
    [179]Yang D,Liu Y.Numerical simulation of electroosmotic flow in microchannels with sinusoidal roughness[J].Colloids Surf.A,2008,328:28-33.
    [180]Lhernould MS,Delchambre A,R(?)gnier S,et al.Electrostatic forces in micromanipulations:Review of analytical models and simulations including roughness[J].Appl.Surf.Sci.2007,253:6203-6210.
    [181]陈辉,胡元中,王慧等.粗糙表面分形特征的模拟及其表征[J].机械工程学报,2006,42(9):219-223.
    [182]王安良,杨春信.机械加工表面形貌分形特征的计算方法[J].中国机械工程,2002,13(8):714-718.
    [183]Wang AL,Yang CX,Yuan XG.Evaluation of the wavelet transform method for machined surface topography 2:fractal characteristic analysis[J].Tribology International,2003,36:527-535.
    [184]杨大勇,刘莹,李小兵.基于小波变换的分形曲线维数计算方法的研究[J].润滑与密封,2007,32(1):40-43.
    [185]赵宁,卢晓英,张晓艳等.超疏水表面的研究进展[J].化学进展,2007,19(6):860-871.
    [186]Vinogradova,O I.Drainage of a thin liquid film confined between hydrophobic surfaces[J].Langmuir.1995,11:2213-2220.
    [187]Spikes H,Granick S.Equation for slip of simple liquids at smooth solid surfaces[J].Langmuir.2003,19:5065-5071.
    [188]王慧,胡元中,郭炎.超薄润滑膜界面滑移现象的分子动力学研究[J].清华大学学报(自然科学版),2000,40(4):107-110.
    [189]Joly L,Ybert C,E.Trizac,et al.Liquid friction on charged surfaces:from hydrodynamic slippage to electrokinetics[J].J Chem.Phys.,2006,125(20):204716.
    [190]Pit R,Hervet H,L(?)ger L.Direct experimental evidence of slip in hexadecane:solid interfaces[J].Phys Rev Lett,2000,85(5):980-983.
    [191]Ou J,Rothstein J P.Direct velocity measurements of the flow past drag-reducing ultrahydrophobic surfaces[J].Phys Fluids,2005,17:103606.
    [192]Cottin-Bizonne C,Cross B,Steinberger A,et al.Boundary slip on smooth hydrophobic surfaces:intrinsic effects and possible artifacts[J].Phys Rev Lett,2005,94(2):056102.
    [193]Cho J-H J,Law B M,Rieutord F.Dipole-dependent slip of Newtonian liquids at smooth solid hydrophobic surfaces[J].Phys.Rev.Lett,2004,92:166102.
    [194]Park H.M.,Kim T.W.Simultaneous estimation of zeta potential and slip coefficient in hydrophobic microchannels[J].Anal Chim Acta,2007,593:171-177.
    [195]霍素斌,于志家,李艳峰等.超疏水表面微通道内水的流动特性[J].化工学报,2007,58(11):2721-2726.
    [196]Tretheway D C,Meinhart C D.A generating mechanism for apparent fluid slip in hydrophobic microchannels[J].Phys Fluids,2004,14(5):1509-1515.
    [197]Eijkel J.Liquid slip in micro- and nano-fluidics:recent research and its possible implications[J].Lab Chip,2007,7:299-301.
    [198]Vourdas N,Tserepi A,Boudouvis A G,et al.Plasma processing for polymeric microfluidics fabrication and surface modification:Effect of super-hydrophobic walls on electroosmotic flow[J].Microelectron Eng,2008,85(5-6):1124-1127.
    [199]Ngoma G D,Erchiqui F.Heat flux and slip effects on liquid flow in a microchannel[J].Int J Therm Sci,2007,46:1076-1083.
    [200]Ou J,Moss G R,Rothstein J P.Enhanced mixing in laminar flows using ultrahydrophobic surfaces[J].Phys Rev E,2007,76:016304.
    [201]陈义编著.毛细管电泳技术及应用(第二版)[M].北京:化学工业出版社,2006.
    [202]Lagally E T,Simpson P C,Mathies R A.Monolithic Integrated Microfluidic DNA amplification and capillary electrophoresis analysis system[J].Sensor Actuat B,2000,63:138-146.
    [203]Gottschlich N,Gulbertson CT,Mcknight TE.Integrated microchip for digestion,separation and postcolumn labeling of proteins and peptides[J].Journal of Chromatography B,2000,745:243-249.
    [204]Garcia C.D.,Henry,C.S.,Direct determination of carbohydrates,amino acids,and antibiotics by microchip electrophoresis with pulsed amperometdc detection[J].Anal Chem,2003,75:4778-4783.
    [205]李舟,徐光明,方群.微流控芯片毛细管电泳中电动进样和分离对分离效率的影响[J].浙江大学学报(理学版),2004,31(6):657-660.
    [206]Katoh T,Nishi N,Fukagawa M,et al.Direct writing for three-dimensional microfabrication using synchrotron radiation etching[J].Sens.Actuators,2001,89:10-15.
    [207]Li H F,Lin J M,Su R G,et al.A polymeric master replication technology for mass fabrication of poly(dimethylsiloxane) microfluidic devices[J].Electrophoresis.2005,26(9):1825-1833.
    [208]Gerlach A,Knebel G,Guber A E,et al.Microfabrication of single-use plastic microfluidic,devices for high-throughput screening and DNA analysis[J].Microsystem Technologies.2002,7(5-6):265-268.
    [209]Rotting O,Ropke W,Becker H,et al.Polymer microfabrication technologies[J].Microsystem Technologies.2002,8(1):32-36.
    [210]Klank H,Kutter J P,Geschke O.CO_2-laser micromachining and back-end processing for rapid production of PMMA-based microfluidic systems[J].Lab Chip.2002,2(4):242-246.
    [211]Duffy D C,McDonald J C,Schueller O J A,et al.Rapid prototyping of microfluidic systems in poly(dimethylsiloxane)[J].Anal.Chem.1998,70(23):4974-4984.
    [212]韩建超,王晓东,刘冲等.塑料微流控芯片热压成形温度控制装置[J].机械与电子,2004,5:49-53.
    [213]朱学林.电化学检测的PMMA集成毛细管电泳芯片制作工艺研究[D].合肥:中国科学技术大学,2006.
    [214]王晓东,罗怡,刘冲等.塑料(PMMA)微流控芯片微通道热压成形工艺参数的确定[J].中国机械工程,2005,16(22):2061-2063.
    [215]Sinton D,Escobedo-Canseco C,Ren L,et al.Direct and indirect electroosmotic flow velocity measurements in m icrochannels[J].J.Colloid Interf.Sci.,2002,254:184-189.
    [216]Ren L,Masliyah J,Li D.Experimental and theoretical study of the displacement process between two electrolyte solutions in a microchannel[J].J.Colloid Interf.Sci.2003,257(1):85-92.
    [217]Ren L,Escobedo C,Li D.Electroosmotic flow in a microcapillary with one solution displacing another solution[J].J.Colloid Interf.Sci.,2002,242(1):264-272.
    [218]Hsieh S-S,Lin H-C,Lin C-Y.Electroosmotic flow velocity measurements in a square microchannel[J].Colloid Polym Sci,2006,284:1275-1286.
    [219] Xuan X. Streaming potential and electroviscous effect in heterogeneous microchannels [J].Microfluid Nanofluid, 2008,4(5): 457-462.
    [220] Wang W, Zhou F, Zhao L, et al. Measurement of electroosmotic flow in capillary and microchip electrophoresis [J]. J. Chromatogr. A, 2007,1170:1-8.