7A04铝合金热流变成形及其构件疲劳性能预测的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采用物理模拟与数值模拟相结合的方法,针对高强度铝合金材料普遍存在的高温塑性成形性能差导致成形件服役性能下降的问题进行了深入的研究。本论文主要针对国产高强度7A04铝合金材料(Al-Zn-Mg-Cu合金)在热成形过程中的高温流动性能及成形构件疲劳性能两个重要环节开展相关研究:(1)建立了针对不同初始晶粒度的热流变本构方程并将其引入DEFORM-3D仿真,优化了实际成形过程中7A04铝合金零件的模锻工艺;(2)获得了经过多级时效处理后7A04铝合金材料的疲劳S-N曲线,将其引入ANSYS和FE-SAFE进行构件疲劳仿真,预测结果符合该构件的实际疲劳台架试验结果。本论文的研究成果对提升高强铝合金锻件生产效率和预测其构件疲劳服役性能具有重要指导意义,该成果已经成功应用于高速列车关键零部件国产化工程需求中。
     采用物理模拟试验技术通过圆柱体单向热压缩实验获得7A04铝合金高温流变时的应力-应变曲线;获得了7A04铝合金在350℃-450。C温度区间、应变速率在0.01s-1~10s-1之间条件下稳态流变应力-应变的自然指数形式的本构方程,并将其引入DEFORM-3D对铝合金推杆模锻过程进行了精确模拟;初始晶粒度组织对流变应力本构关系方程具有显著影响:初始组织晶粒越细小,应力对应变速率的敏感性越强,稳态流变激活能越高;随着变形温度的升高与应变速率的降低7A04铝合金动态再结晶软化机制越来越明显,经过挤压变形的7A04铝合金更利于动态再结晶的进行:采用热加工图理论研究了7A04铝合金的热流变成形性能;建立了7A04铝合金的热流变功率耗散效率图和热流变失稳图,获得挤压态7A04铝合金最优热流变成形温度范围:360℃~430℃;基于7A04铝合金零件模锻工艺仿真,通过正交试验方法优化模锻成形温度参数为:坯料预热温度405℃,模具温度100℃。
     采用轴向加载和四点弯曲疲劳试验法表征了7A04铝合金推杆材料的疲劳性能,建立了7A04铝合金在50%存活率条件下的Basquin方程,获得了推杆在承受脉动疲劳载荷(FMAX=45kN, FMAX=52kN)工况时的应力分布,采用主应力准则计算了构件的疲劳寿命分布,通过实际构件疲劳台架试验验证了理论计算模型的准确性。
     本文主要获得了以下结论:(1)通过自定义本构关系方程采用DEFORM软件实现了7A04铝合金模锻过程的精确模拟,并结合7A04铝合金的热加工图,可以获得最优模锻成形工艺方案;(2)采用有限元仿真方法可以有效地预测构件的疲劳寿命及疲劳失效位置;(3)表面粗晶层组织显著削弱了7A04铝合金材料的疲劳强度,粗晶层组织在生产中应当予以排除;含表面半球形缺陷的推杆在缺陷处将产生严重应力集中,引发构件的疲劳破坏,生产过程中应采用严格的探伤工艺检测并排除缺陷。
     本论文是在科技部、铁道部联合制定的“两部联合行动计划”框架下的高速动车组国产化背景下进行的,其产业化成果已在2010年初装车CRH5动车组安全运行至今,对高速动车组转向架关键零部件的国产化工作做出了重要贡献。
The present dissertation is study on the high strength aluminium alloy with the poor flowability in hot forging process which would weaken the service properity of the components. A series basic research on hot rheologic properity and fatigue properity for7A04aluminium alloy is carried out with the method of physical simulation and numerical simulation:(1) The constitutive equation of7A04aluminium alloy with different initial grain sizes was founded. The forming process of aluminium alloy part was optimized by DEFORM-3D simulation.(2) The fatigue strength of7A04aluminium alloy was predicted by ANSYS and FE-SAFE based on the measured S-N curve, the theoretical results correspond with the bench test. This work provided important guidance to raising productivity of7A04aluminum alloy forgings and predicting the component fatigue performance, this result has been successfully applied in the high-speed train key parts localization.
     The thermal deformation behavior of7A04aluminium alloy during300℃-450℃was studied by isothermal compression of cylindrical specimens. The steady flow stress of7A04aluminium alloy during350℃-450℃can be represented by exponential correlation with a Zener-Hollomon parameter which discribles the flow stress change with strain rate and temperature.Constitutive equation of different initial grain size of7A04high strength aluminium alloy shows that the strain rate sensitivity factor and activity energy of the flow stress increase with the decrease of the grain sizes. The DRX is the dominant softening mechanism above350℃while DRV below350℃. DRX becomes more obviously with initial grain sizes decreasing. The processing temperature of7A04aluminium alloy was optimized during360℃to430℃based on the processing map method. The die forging process of a connecting rod in friction screw press was simulated with DEFORM-3D. The optimum preheat temperature are405℃for billet,100℃for container by orthogonal experimental design. The optimum processing pranneters are appilied in practical production.
     S-N curve of7A04aluminium was obtained by high frequency axial loading fatigue test. The S-N curve was also describled by Basquin equation at50%survival rate. The effect of surface coarse grain on fatigue properity of7A04aluminium alloy has been studied by high frequency four-point bending fatigue test. The results show that the coarse grain reduced the fatigue crack initiation resistance and weaken the fatigue properties significantly. The accelerated life test was proposed to predict the fatigue fracture mechanism and the fatigue life. The FEM results show that the fracture would be occur at the surface hemisphere defect of the rod according to the actual defect shape under the accelerated life test loading spectrum(FMAX=27.2kN). The similar defect should be avoided in the production. The stress distribution of the connecting rod under the accelerated life testing loading was obtained by ANSYS. The stress and fatigue life distribution of the push rod was obtained and verified by bench test.
     Under the background of "Ministry of Science and Technology and Ministry of Railways Joint Action Plan", the7A04aluminium alloy components completed the localization and run in safe service since2010. The work is significant for the localization of the key components of bogie.
引文
[1]戴光泽.探索高校产业化开发与国家重大需求相结合的新尝试纪高速列车铝合金推杆国产化研发过程,学术动态,2010(4):39-40.
    [2]李庆国.浅谈CRH5型动车组转向架上推杆质量控制方案的优化.铁道车辆,2012(3):38-41.
    [3]Imamura T. Current status and trend of applicable material technology for aerospace structure. Journal of Japan of Light Metals,1999,49(7):302-309.
    [4]Lengfeld P. Microstructure and mechanical behavior of spray deposited Zn modified 7xxx series Al alloys. International Journal of Rapid Solidfication,1995,8(4): 237-265.
    [5]M.M. Sharma, M.F. Amateau, T.J. Eden. Hardening mechanisms of spray formed Al-Zn-Mg-Cu alloys with scandium and other elemental additions. Journal of Alloys and Compounds.2006 (416):135-142.
    [6]李文斌.含Sc的超高强Al-Zn-Cu-Mg-Zr合金微观组织与性能研究.中南大学.2010.
    [7]樊喜刚.Al-Zn-Mg-Cu-Zr合金组织性能和断裂行为的研究.哈尔滨工业大学.2007.
    [8]Feng Wang, Baiqing Xiong, Yongan Zhang, Zhihui Zhang, Zhixing Wang, Baohong Zhu, Hongwei Liu. Microstructure and mechanical properties of spray-deposited Al-Zn-Mg-Cu alloy. Materials & Design.2007,4(28):1154-1158.
    [9]Rokni MR, Zarei-Hanzaki A, Roostaei Ali A, Abedi HR. An investigation into the hot deformation characteristics of 7075 aluminum alloy. Mater Des.2011,32: 2339-2344.
    [10]Zhang Hui, Li Luoxing, Yuan Deng, Peng Dashu. Hot deformation behavior of the new Al-Mg-Si-Cu aluminum alloy during compression at elevated temperatures. Mater Charact.2007,58:168-173.
    [11]S.C. Bergsma, M.E. Kassner, X. Li, M.A. Wall. Strengthening in the new aluminum alloy AA 6069. Mater Sci Eng A.1998,254:112-118.
    [12]H.J. McQueen, O.C. Celliers. Application of hot workability studies to extrusion processing. Part Ⅲ, Physical and mechanical metallurgy of Al-Mg-Si and Al-Zn-Mg alloys. Can Metall Q.1997,36:73-86.
    [13]Hui Zhang, Luoxing Li, Deng Yuan, Dashu Peng. Hot deformation behavior of the new Al-Mg-Si-Cu aluminum alloy during compression at elevated temperatures. Mater Charact.2007,58:168-173.
    [14]T. Sheppard. Extrusion of Aluminium Alloys. Kluwer Academic Publications,1999.
    [15]McQueen HJ. Development of dynamic recrystallization theory. Mater Sci Eng A. 2004,387:203-208.
    [16]Gourdet S, Montheillet F. A model of continuous dynamic recrystallization. Acta Mater.2003,51:2685-2699.
    [17]Kassner M E, Barrabes S R. New developments in geometric dynamic recrystallization. Mater Sci Eng A.2005,152:410-411.
    [18]Rajamuthamilselvan M, Ramanathan S. Hot deformation behaviour of 7075 alloy. J Alloys Compd.2011,509:948-952.
    [19]Rokni MR, Zarei-Hanzaki A, Roostaei Ali A, Abedi HR. An investigation into the hot deformation characteristics of 7075 aluminum alloy. Mater Des 2011,32: 2339-44.
    [20]Luo J, Li MQ, Li H. The correlation between flow behavior and microstructural evolution of 7050 aluminum alloy. Mater Sci Eng A.2011,530:559-564.
    [21]Wu B, Li MQ, Ma DW. The flow behavior and constitutive equations in isothermal compression of 7050 aluminum alloy. Mater Sci Eng A.2012,542:79-87.
    [22]Zener Clarence, Hollomon J. H. Effect of Strain Rate upon Plastic Flow of Steel. Journal of Applied Physics.1944,15:22-32.
    [23]Frank Garofalo and Daniel B. Butrymowicz. Fundamentals of Creep and CreepRupture in Metals. McMillan Series in Materials Science,,1966,5:201-209.
    [24]J.L Lytton, J.E Dorn. Activation energies for creep of high-purity aluminum. Acta Metallurgica 1957,4:219-227.
    [25]O.D. Sherby, P.G. Burke. Mechanical behavior of crystalline solids at elevated temperature. Prog. Mater. Sci.1967,13:325-390.
    [26]Sellars CM, McTegart WJ. On the mechanism of hot deformation. Acta Metall. 1966,14:1136-1138.
    [27]H. J. McQueen, W. A. Wong, J. J. Jonas. Deformation of aluminium at high temperature and strain rates. Canadian Journal of Physics.1967,45:1225-1234.
    [28]S.K. Samanta. Dynamic deformation of aluminium and copper at elevated temperatures. Journal of the Mechanics and Physics of Solids.1971,19:117-122.
    [29]Quan Guo-zheng, Mao Yuan-ping, Li Gui-sheng. A characterization for the dynamic recrystallization kinetics of as-extruded 7075 aluminum alloy based on true stress-strain curves. Comput Mater Sci.2012,55:65-72.
    [30]Cerri E, Evangelista E, Forcellese A, McQueen H.J. Comparative hot workability of 7012 and 7075 alloys after different pretreatments. Mater Sci Eng A.1995,197: 181-198
    [31]Hu HE, Zhen L, Yang L, Shao WZ, Zhang BY. Deformation behavior and microstructure evolution of 7050 aluminum alloy during high temperature deformation. Mater Sci Eng A.2008,488:64-71.
    [32]Jin Nengping, Zhang Hui, Han Yi, Wenxiang Wu, Chen Jianghua. Hot deformation behavior of 7150 aluminum alloy during compression at elevated temperature. Mater Charact.2009,60:530-536.
    [33]Raj R. Development of a possessing map for use in warm forming and hot forming processes. Metall Trans A.1981,12:1089-1097.
    [34]Prasad Y V R K. Dynamic materials model:Base and Principles. Metall Mater Trans A,1996,27:235-236.
    [35]Gegel H L. Synthesis of atomistic and continuum modeling to describe microstructure. Computer simulation in materials science.1986:291-344.
    [36]曾卫东,周义刚,周军,俞汉清,张学敏,徐斌.加工图理论研究进展.稀有金属材料与工程.2006.5(35):673-677.
    [37]Murty S. V. S. Narayana, Rao B. Nageswara. Reinvestigation of dynamic materials model analysis of 99.94% purity aluminium. Materials Science and Technology. 2002,18:571-574.
    [38]Y. V. R. K. Prasad, H. L. Gegel, S. M. Doraivelu, J. C. Malas, J.T.Morgan, K. A. Lark, D.R. Barker. Modeling of dynamic material behavior in hot deformation: Forging of Ti-6242. Metallurgical Transactions A.1984,15:1883-1892.
    [39]Prasad Y V R K, Sastry D H. Processing maps for hot working of a P/M iron aluminide alloy.2000,8:1067-1074.
    [40]J. K. Chakravartty, Y. V. R. K. Prasad, M. K. Asundi. Processing map for hot working of alpha-zirconium. Metall Trans.1991,22:829.
    [41]S.V.S. Narayana Murty, B. Nageswara Rao, B.P. Kashyap. Identification of flow instabilities in the processing maps of AISI 304 stainless steel. Journal of Materials Processing Technology.2005,166:268-278.
    [42]H.Z. Li, H.J.Wang, X.P.Liang, H.T.Liu, Y.Liu, X.M. Zhang. Hot deformation and processing map of 2519A aluminum alloy. Materials Science and Engineering:2011,528:1548-1552.
    [43]J. Luo, M.Q. Li, D.W. Ma. The deformation behavior and processing maps in the isothermal compression of 7A09 aluminum alloy. Materials Science and Engineering:A,2012,532:548-557.
    [44]Feng-Li Sui, Li-Xia Xu, Li-Qing Chen, Xiang-Hua Liu. Processing map for hot working of Inconel 718 alloy Original Research Article. Journal of Materials Processing Technology.2011,211:433-440.
    [45]S. Venugopal, P. Venugopal, S.L. Mannan. Optimisation of cold and warm workability of commercially pure titanium using dynamic materials model (DMM) instability maps. Journal of Materials Processing Technology.2008,202:201-215.
    [46]Narayana Murty S V S, Nage swara Rao B. On the development of instability criteria during hotworking with reference to IN 718. Mater Sci Eng A,1998,254: 76-82.
    [47]权国政,王熠昕,陈涛.基于热加工图的7075铝合金热塑性变形工艺参数优化识别.功能材料.2011,42(09):1673-1677+1681.
    [48]陶乐晓,臧金鑫,张坤等.新型高强Al-Zn-Mg-Cu合金的热变形行为和热加工图.材料工程.2013,(1):16-20.
    [49]Lee C H, Kobayashi. New solutions to rigid plastie deformation problems using a matrix method. Transactions of ASTM. Journal of Engineering for Industry.1973, 95:865-873.
    [50]Zienkiez OC, Godbole PN. A penalty function approach to problem of plastic flow of metals with large surface deformations. J.StrainAnalysis.1975:180-187.
    [51]K Osakada, J Nakano, K Mori. Finite element method for rigid-plastic analysis of metal forming-formulation for finite deformation. Int.J.Meeh.Sei..1982,24: 459-468.
    [52]E. Taupin, J. Breitling, W. T. Wu. Material fracture and burr formation in blanking results of FEM simulations and comparison with experiments. Journal of Materials Processing Technology.1996:68-78.
    [53]J. Liu, B. Westhoff, M.A. Ahmetoglu, T. Altan. Application of viscous pressure forming (VPF) to low volume stamping of difficult to form alloys-results of preliminary FEM simulations. Journal of Materials Processing Technology.1996: 49-58.
    [54]A.N. BramleyU, D.J. Mynors. The use of forging simulation tools. Materials and Design.2000:279-286.
    [55]Grass H, Krempaszky C, Reip T, Werner E.3-D Simulation of hot forming and microstructure evolution. Comput Mater Sci.2003,28:469-477.
    [56]Grass H, Krempaszky C, Werner E.3-D FEM simulation of hot forming processes for the production of a connecting rod. Comput Mater Sci.2006,36:480-489.
    [57]Vazquez Victor, Altan Taylan. Die design for flashless forging of complex parts. J Mater Process Technol.2000,98:81-89.
    [58]陈春.超高强度钢起落架锻造成形:工艺研究.中南大学硕士2012.
    [59]张龙,孙明月,李殿中.高速列车制动盘盘毂锻造工艺数值模拟.塑性工程学 报.2012,19:56-62.
    [60]龙伟,周迪生,张恒华,邵光杰,许珞萍.6061铝合金轮毅的力学性能与锻造工艺的计算机模拟.上海金属.2012,03:29-32.
    [61]邓磊.铝合金精锻成形的应用基础研究.华中科技大学博士2011.
    [62]卜继玲.动车组系统动力学与结构可靠性.中国铁道出版社.2009.
    [63]阳光武.机车车辆零部件的疲劳寿命预测仿真.西南交通大学博士.2005.
    [64]米彩盈.高速动力车承载结构疲劳强度工程方法研究.西南交通大学博士2006.
    [65]缪炳荣.基于多体动力学和有限元法的机车车体结构疲劳仿真研究.西南交通大学博士.2006.
    [66]唐兆.机车车辆疲劳强度仿真分析平台研究.西南交通大学博士.2011.
    [67]卢耀辉.铁道客车转向架焊接构架疲劳可靠性研究.西南交通大学博士.2011.
    [68]M.A.Miner. Cumulative damage in fatigue. Journal of Applied Mechanics,1945, 67:159-164.
    [69]ASM International Handbook Committee. ASM Handbook, Volumel 9.Fatigue And Fracture.
    [70]赵永翔,杨冰,彭佳纯,张卫华.铁道车辆疲劳可靠性设训Goodman-Smith图的绘制与应用.中国铁道科学.2005,6:6-21.
    [71]茆诗松,王玲玲.加速寿命试验.科学出版社.2000.
    [72]张春华,温熙森,陈循.加速寿命试验技术综述.兵工学报,2004,25:485-490.
    [73]张春华,陈循,温熙森.步降应力加速寿命试验-方法篇.兵工学报.2005,26:661-665.
    [74]张春华,陈循,温熙森.步降应力加速寿命试验-统计分析篇.兵工学报.2005,26:666-669.
    [75]LIN Zhengning, FEI He liang. A nonparamet ric approach to progressive stress accelerated life testing. IEEE Transactions on Reliability.1991,40:173-176.
    [76]YANG Guang bin. Optimum constant stress accelerated life test plans. IEEE Transactions on Reliability.1994,43:575-581.
    [77]Khamis I H, Higgins J J. Optimum 3 step stress tests. IEEE Transactions on Reliability.1996,45:341-345.
    [78]张苹苹.航空产品加速寿命试验研究及应用.北京航空航天大学学报.1995,21:124-129.
    [79]Meek W Q. Limited failure population life tests:application to integrated circuit reliability. Technomet rics.1987,29:51-65.
    [80]陈循,陶俊勇,张春华.可靠性强化试验与加速寿命试验综述.国防科技大学学报.2002,24:29-32.
    [81]McLinn J A. New analysis methods of multilevel accelerated life tests. IEEE Proceedings of Annual Reliability and Maintain ability Symposium.1999:38-42.
    [82]Yurkowsky W, Schafter R E, Finkelstein J M. Accelerated testing technology report RADC-TR-67-420. Rome Air Development Center.1967:1-2.
    [83]Criscimagna N H. Accelerated testing Selected Topics in Assurance Related Technologies. RAC.1999,6:1-6.
    [84]Nelson W. Accelerated testing:statistical methods, test plans, and data analysis. John Wiley Press,1990.
    [85]Nelson W B, Meeker W Q. Theory for optimum censored accelerated life tests for Weibull and extreme value distributions. Technomet rics.1978,20:171-177.
    [86]Nelson W B. Accelerated life testing step stress models and data analysis. IEEE Transactions on Reliability.1980,29:103-108.
    [87]GE Guang ping, MA Hai xun, HE You hua. Data analysis f romaccelerated life test using step stress and weibull dist ribution. ICRMS.1994:39-41.
    [88]罗安民,吴富民.相对miner法则和局部应力应变场结合预测复杂载荷下构件的疲劳寿命.固体力学学报.1985.
    [89]]王秋景,管迪华.汽车零部件加速疲劳试验方法.汽车技术.1997,11:14-16
    [90]徐灏.疲劳强度.高等教育出版社.1988.
    [91]S.Abdullah, J.C.Choi, J.A.Giaeomin. Bun Pextraetion algorithm for variable am plitude fatigue loading. Internation Joumal of Fatigue.2006,28:675-691.
    [92]Xiong.J.J, Shenoi.R.A. A load history generation approach for full scale aeeelerated fatigue tests. Engineering Fraeture Meehanies.2008,75:3226-3243.
    [93]Dipti Samantaray, Sumantra Mandal, A.K. Bhaduri. Constitutive analysis to predict high temperature flow stress in modified 9CrlMo (P91) steel. Materials & Design. 2010,31:981-984.Chen Wayne.
    [94]Wenjun Zhao, Fuyang Cao, Xiaolong Gu, Zhiliang Ning, Ying Han, Jianfei Sun. Isothermal deformation of spray formed Al-Zn-Mg-Cu alloy. Mechanics of aterials. 2013,56:95-105.
    [95]Gleeble System and Application. Gleeble System School,1998.
    [96]J. P. Lin, T. C. Lei, X. Y. An. Dynamic Recrystallization during Hot Compression in Al-Mg Alliy. Scripta Metall Mater.1992,26:1869-1874.
    [97]潘金生生材料科学基础.清华大学出版社.1998:176.
    [98]崔建忠,吴庆令,马龙翔.形变热处理对Al-Zn-Mg合金的超塑性影响.东北工学院学报.1987(1):63-67.
    [99]C.M. Cepeda-Jimenez, J.M. Garcia-Infanta, O.A. Ruano, F. Carreno. High strain rate superplasticity at intermediate temperatures of the Al 7075 alloy severely processed by equal channel angular pressing. Journal of Alloys and Compounds. 2011,10(509):9589-9597.
    [100]James C., Malas Ph.D., Venkat Seetharaman. Using material behavior models to develop process control strategies. JOM.1992,44:8-13.
    [101]I.SAMAJDAR, R.D.DOHERTY. Cube recrystallization texture in warm deformed aluminum:understanding and prediction. Acta Materialia.1998 (46):3145-3158.
    [102]Juipen Tang, W.T. Wu, John Walters. DEFROM system structure and description. SFTC paper,1995.
    [103]王以华.锻模设计技术及实例.机械工业出版社.2009.
    [104]周世杰.7A04铝合金复杂接头类构件等温精密成形工艺研究.哈尔滨工业大学硕士.2010.
    [105]刘郎儒,刘晖.铝型材粗、细晶疲劳性能对比试验研究.航空工艺技术.1997,6:37-38.
    [106]Hamada A.S., Karjatainen, L.P., Surya P.K.C.V., Misra R.D.K.. Fatigue behavior of ultrafine-grained and coarse-grained Cr-Ni austenitic stainless steels. Materials Science & Engineering A,2011(528):3890-3896.
    [107]Kee-Ho Hwang, M.R. Plichta, J.K. Lee. Grain size gradient nickel alloys Ⅱ: Fatigue properties. Materials Science and Engineering:A,1989,15(144):61-71.
    [108]P.S. Pao, R.L. Holtz, H.N.Jones, C.R. Feng. Effect of environment on fatigue crack growth in ultrafine grain Al-Mg. International Journal of Fatigue 2009(31):1678-1683.
    [109]A. K. ZUREK, M.R. JAMES, W.L. MORRIS. The Effect of Grain Size on Fatigue Growth of Short Cracks. METALLURGICAL TRANSACTIONS A, 1983,14:1697-1705.
    [110]束德林.工程材料力学性能. (第二版).机械工业出版社.2007:100.
    [111]FE-SAFE. Fatigue Theory Reference Manual.
    [112]米彩盈,李芾.基于谱载荷的高速列车转向架构架的疲劳强度.西南交通大学学报.2006,41:383-386.
    [113]米彩盈,李芾.焊接转向架构架疲劳强度评定的工程方法.内燃机车.2002,6:112-114.
    [114]赵少汴,王忠保.抗疲劳设计-方法与数据.机械工业出版社.1997.
    [115]Gough H J. Crystalline structure in relation to failure of metals especially fatigue. Proc.ASTM.1933,33:3-14.
    [116]Gough HJ, Pollard H V. The strength of metals under combined alternating stress. Proc. Inst. Mech. Engrs.1935,131:3-18.