基于多孔介质理论的土体多场耦合模型及其在非饱和土本构建模中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高放废物地下处置、天然气水合物的开发、地热资源的利用、城市建设中的供热管道、埋地高压电缆等众多工程领域,都涉及到土体在应力、渗流、温度和化学等多场作用下的耦合问题。在多场耦合作用下,如何确定土体中土骨架的变形、孔隙水的渗流、热量的传递、组分物质或污染物的迁移与扩散、化学反应以及相变等多种过程,是目前国内外岩土工程研究领域一个迫切需要解决而又十分困难的问题。该问题的解决将为有效地解决许多工程问题,如土木工程的建设、地质灾害防治、环境保护、新能源高效开采等,提供必需的理论基础和分析方法。而建立在严格科学基础上的多场耦合理论却相对较少,传统的土体多场耦合理论大多数都是基于宏观现象学的认识,缺少严格和科学的理论基础。由此所建立的理论适用范围有限,也未能严格和有效地描述土体中多场和多过程耦合的现象,因此,无法满足解决上述实际工程问题的需要。尤其是在高放废物地下处置等一些新兴的岩土工程领域,温度对土体变形强度特性、渗流特性等基本性质的影响都不可忽略,而相关研究工作尚处于起步阶段,缺乏有价值的研究成果,更未形成完善的理论体系。
     本文以多孔介质理论和热力学理论为基础,从系统的平衡方程、熵不等式以及一些本构假定出发,通过严密的理论推导建立了土体非线性多场耦合模型。然后,采用适当的自由能函数和耗散函数,建立了描述非饱和土变形-渗流-传热耦合过程的数学模型。此外,通过对新建立模型的适当简化,基于已有的试验研究成果,重点考虑非饱和土的温度效应,系统研究了温度对非饱和土变形、渗流特性的具体影响,建立了相应的本构模型,并编制计算程序对模型进行了验证。最后,为了更加直观和深入地研究温度对非饱和土基本性质的影响,还研制了温控非饱和土三轴试验装置,并基于此开展了温度对非饱和土土水特征曲线影响的试验研究。主要研究成果包括:
     (1)将非饱和土视为由多组分的弹塑性固体骨架、粘性液体以及理想气体组成的混合物,根据多孔介质理论建立系统内各组分、各相及整体三个层次的平衡方程,在连续介质力学中的决定性原理、等存性原理、坐标不变性原理以及相容性原理等限制条件下进行了合理的本构假设,由此提出了三相土体在非平衡态以及平衡态时建立本构关系的理论框架,从而形成了闭合的场方程系统。其中的关键是提出了有效广义热力学力的概念以及近平衡态时系统内部各广义耗散力和广义流之间的非线性耦合本构关系。并以此为基础给出了固相热弹塑性本构关系、液相粘弹塑性本构关系、广义Fourier定律和广义Darcy定律四种特殊耦合关系的本构方程。在给出某一具体的耗散函数的基础上,还对广义Darcy定律的具体形式进行了推导;最后还指出了不考虑温度和其它场耦合作用时,这一非线性模型可退化为非饱和土的弹塑性本构模型。
     (2)土体的变形-渗流-传热耦合作用是十分普遍的物理现象及工程问题。在已建立的非饱和土多场耦合理论框架基础上,选取适当的自由能函数和耗散函数,对其进行Taylor级数展开,从而得到耦合多种场作用的本构方程,并进一步得到非饱和土变形-渗流-传热耦合的数学模型。该模型统一地描述了变形-渗流-传热耦合作用下土体的弹塑性变形、流体的流动以及热量的传导等现象。与已有的研究土体多场耦合问题不同的是,所给出的守恒方程除增加了与其他场的耦合作用项以及各场之间的界面效应项外,更重要的是在变形-渗流-传热耦合作用时,对考虑各种场影响的非线性本构关系进行了推导。
     (3)在(1)、(2)项研究成果的基础上,结合现有的试验研究成果,重点考察温度对非饱和土变形性质的影响,建立了热-水-力耦合作用下的非饱和土弹塑性本构模型,并通过适当的简化,建立了三轴应力条件下的本构模型。在此基础上利用Fortran语言编制计算程序,对各向同性条件下非饱和土受温度影响的弹塑性变形进行了预测,通过与这方面已有的试验数据的对比和分析,验证了所建立本构模型的适用性。
     (4)基于热力学理论,利用van Genuchten土水特征曲线表达式,建立了一种能考虑温度影响的土水特征曲线方程。该方程综合考虑了温度对表面张力和浸润系数的影响。相对于完全根据试验数据拟合的表达式而言,所给出的方程具有更加坚实的理论基础以及更好的适用性和一般性。在此基础上,提出了一种预测不同温度下非饱和土相对渗透系数的间接方法。该方法适用于土水特征曲线的整个吸力范围,从而其应用范围也会更广。利用MX-80斑脱土和黄土土样的试验结果,验证了所建立的土水特征曲线方程的正确性,并对不同温度下相对渗透系数随吸力的变化进行了预测。
     (5)基于GDS非饱和土三轴仪,开发和研制了全新的压力室系统,并实现了对试验过程中温度的自动控制。所研制的仪器对温度的控制操作简便,数据的测量和采集实现自动化,且所测数据精确。利用所研制的仪器,对取自北京地铁八号线二期某车站基坑的粉质粘土,进行了不同温度下土水特征曲线的试验研究,揭示了温度对土水特征曲线的影响规律。
With the development of modern geotechnical engineering such as the construction of high level radioactive waste repositories, exploitation of natural gas hy-drate and geothermal resources, heat-supply pipelines and high-voltage cables burial in city constructions, research into the multi-field coupled problems in soils including stress, seepage, temperature and chemical effect has become an important issue interna-tionally. Under the effect of multi-field coupling, soil behaviors are different from those under a single field, which including the deformation of soil skeleton, heat transfer, pore-water seepage, advection and diffusion of pollutants in soil pores, the chemical reaction and phase change, etc. And how to determine the soil response under these coupled fields has become an urgent but difficult problem in geotechnical engineering. The study of soil behaviors under multi-fields is of great demand in many applications, e.g., civil engineering construction, geo-disaster prevention, diffusion and migration of pollutants, and high-efficient exploitation of new energies. After several decades're-search on multi-field coupling theory, great achievements have been made. Most of them are based on intuition, experience, or macroscopic recognition, and are lack of a united and consistent scientific theoretical basis. These empirical theories normally have their own limitations and often fail to describe the behaviors of soils under multi-field coupling conditions strictly and effectively. Therefore, the solutions cannot meet the needs of engineering practice. Especially in some modern geotechnical and geoenvi-ronmental engineerings such as high level radioactive waste repositories, the influences of temperature on the deformation-strength and seepage characteristics of unsaturated soils are very significant. However, the related studies are still in its infancy, so valuable research achievement is fewer and the theoretical system has not been established.
     In light of the thermodynamics-based porous media theory, a nonlinear multi-field coupled model is proposed in this paper. Following the balance equations, entropy in-equalities of the system and reasonable constitutive assumptions, rigorous theoretical derivation for the new model is presented. Based on the theoretical framework, a new mathematical model that describes the coupled skeleton deformation-fluid flow-heat transfer behavior in unsaturated soils is proposed via proper choices of free energy and dissipation function. In addition, a constitutive model that deals with the ther-mal-mechanical modeling of unsaturated soils is proposed based on simplification of the new coupled theoretical model and available experimental results. Temperature effects on volume change and seepage behavior of unsaturated soils is modeled and simulated by self-developed computer programs. Finally, a new temperature controlled triaxial test systerm for unsaturated soils has been developed to verify the proposed model. A series of SWCC tests are carried out on silt samples using the developed equipment at differ-ent temperatures, which show valuable results. The main achievements of this thesis are listed as follows:
     (1) The balance equations with three levels (constituents, phases and the whole mixture soil) are set up under the assumption that soil is composed of multi-constituent elastic-plastic solid skeleton, viscous liquid and ideal gas. With reasonable constitutive assumptions in such restrictive conditions as the principles of determinism, equipre-sence, material frame-indifference and the compatible principle in continuum mechanics, a theoretical framework of constitutive relations modeling three-phase soil in both non-equilibrium and equilibrium states is established, thus the closed field equations are formed. In the theoretical framework, the concept of effective generalized thermody-namic forces is introduced, and the nonlinear coupling constitutive relations between generalized dissipation forces and generalized flows within the system at nonequili-brium state are also presented. On such a basis, four special coupling relations, i.e., sol-id thermal elastic-plastic constitutive relation, liquid visco-elastic-plastic constitutive relation, the generalized Fourier's law, and the generalized Darcy's law are put forward. Based on a specific dissipation function, the concrete form of generalized Darcy's law is deduced; without considering temperature and other coupling effects, the nonlinear coupled model in this thesis can degenerate into a soil elastic-plastic constitutive model.
     (2) The coupled skeleton deformation-fluid flow-heat transfer behavior in unsatu-rated soils is very common physical phenomena and engineering problem. Based on the established theoretical framework, constitutive models and a new mathematical model that describe the coupled skeleton deformation-fluid flow-heat transfer behavior in un-saturated soils are proposed via proper choices of free energy and dissipation function. The difference between the proposed model and the existed models in literatures is the nonlinear constitutive equations that considering the effects from every physical field.
     (3) Based on the nonlinear multi-field coupled model for soils and by using exist-ing experimental results, an elastic-plastic constitutive model of unsaturated soils under non-isothermal conditions is developed. The model is used to predict and analyze the influence of suction and temperature on the deformation properties of unsaturated soils under isotropic conditions. The proposed model is successfully verified by the compar-isons between the model predictions using Fortran-based computer programs and ex-isted experimental results.
     (4) The thermodynamic based expression of suction for unsaturated soils is pre-sented. This expression can consider the temperature effects on suction for both surface tension and wetting coefficients. On contrast of expressions by experimental data fitting, its theoretical basis is more strict, and hence it has broader applicability. By adopting the van Genuchten expression of soil-water characteristic curve, a new model considering the temperature effects is established. On this basis, an indirect method for predicting permeability coefficients of unsaturated soils at different temperatures is presented. The new expressions are made for the entire suction range of SWCC; and hence it has a broader applicability. Based on the experiments of MX-80bentonite and loess, model predictions and the relative permeability coefficients at different temperatures with suc-tions are made.
     (5) A new temperature controlled triaxial test systerm for unsaturated soils is de-veloped, which can be used to study the temperature effect on seepage and strength-deformation characteristics of unsaturated soils. With the organic combination of the existing static GDS triaxial test systerm and a new temperature controlled pres-sure chamber, the new test systerm can realize better control of temperature. Using the new temperature controlled triaxial test systerm, the soil-water characteristic curves of silty clay obtained from a foundation ditch of Beijing under different temperatures are tested, which reveal the variation law of the SWCC due to temperatures.
引文
[1-1]罗嗣海,钱七虎,王驹.高放废物地质处置库的特点及其结构形式[J].地质科技情报,2007,26(5):83-90.
    [1-2]王驹,范显华,徐国庆等.中国高放废物地质处置十年进展[M].北京:原子能出版社,2004.
    [1-3]Gens A, Olivella S. Coupled thermo-hydro-mechanical analysis of engineered barriers for high level radio active waste[J]. Chinese Journal of Rock Mechanics and Engineerin, 2006,25(4):670-680.
    [1-4]Gens A. Soil-environment interactions in geotechnical engineering[J]. Geotechnique, 2010,60(1):3-74.
    [1-5]Makogon Y E, Holditch S A, Makogon T Y. Natural gas-hydrates—A potential energy-source for the 21st Century[J]. Journal of Petroleum Science and Engineering,2007,56(2): 14-31.
    [1-6]郭平,刘十鑫,杜建芬.天然气水合物气藏开发[M].北京:石油工业出版社,2006.
    [1-7]Da Costa A M, Cardoso C D O, Amaral C D S, Andueza A. Soil-structure interaction of heated pipeline buried in soft clay[C].4th International Pipeline Conference, Calgary, Alberta, Canada,2002:457-466.
    [1-8]Cui Y J, Ye W M. On modeling of thermo-mechanical volume change behavior of satu-rated clays[J]. Chinese Journal of Rock Mechanics and Engineering,2005,24(21): 3903-3910.
    [1-9]钱家欢,殷宗泽.土工原理与计算[M].北京:中国水利水电出版社,1996.
    [1-10]张在明.地下水与建筑基础工程[M].北京:中国建筑工业出版社,2001.
    [1-11]龚晓南.深基坑设计施工手册[M].北京:中国建筑工业出版社,1998.
    [1-12]赵成刚,刘艳.连续孔隙介质土力学及其在非饱和土本构关系中的应用[J].岩土工程学报,2009,31(9):1324-1335.
    [1-13]Von Terzaghi K. Die berechnung der durchlassigkeitsziffer des tonesaus dem verlauf der ydrodynamischen spannungerscheinungen[J]. Sitzungsberichte der Akademie der Wissenschaften in Wien, mathematisch-naturwissenschaftliche Klasse, AbteilungⅡa, 1923,132(3/4):125-138.
    [1-14]Von Terzaghi K. Principles of soil mechanics [J]. Engineering News-Record, 1925,94(19):742-746;(20):796-800;(21):832-936;(22):974-978;(23):912-915;(25):987-99 9;(26):1026-1029;(27):1064-1068.
    [1-15]Biot M A. General theory of three-dimensional consolidation[J]. Journal of Applied Physics,1941,12:155-164.
    [1-16]Biot M A. Theory of propagation of elastic waves in a fluid-saturated porous solid[J]. Journal of the Acoustical Society of America,1956,28(2):168-191.
    [1-17]Biot M A. Mechanics of deformation and acoustic propagation in porous media[J]. Jour-nal of Applied Physics,1962,33(4):1482-1498.
    [1-18]Biot M A. Generalized theory of acoustic propagation in porous dissipative media[J]. Journal of the Acoustical Society of America,1962,34(5):1254-1264.
    [1-19]Fillunger P. Der auftrieb in talsperren[J]. Osterreichichische Wochenschrift fur den Offentlichen Baudienst(O W O B),1913,19:532-556.
    [2-1]Bishop A W. The principle of effective stress[J]. Teknisk Ukeblad,1959,106(39): 113-143.
    [2-2]Aitchison G D, Donald I B. Some preliminary studies of unsaturated soils[C]//Pro-ceedings of the 2nd Australian and New Zealand Conference on Soil Mechanics and Foundation Engineering, Wellington, New Zealand:Technical Publications for the New Zealand Institution of Engineers,1956:192-199.
    [2-3]Jennings J E B. A revised effective stress law for use in the prediction of the behaviour of unsaturated soils[C]//Proceedings of Pore Pressure and Suction in Soils, London:But-terworth,1961:26-30.
    [2-4]Bishop A W, Donald I B. The experimental study of partly saturated soils in triaxial ap-paratus[C]//Proceedings of 5th International Conference on Soil Mechanics and Founda-tion Engineering,1961,1:13-21.
    [2-5]Bishop A W, Blight G E. Some aspects of effective stress in saturated and partly saturated soils[J]. Geotechnique,1963,13(3):177-197.
    [2-6]Blight G E. A study of effective stress for volume change[C]//Moisture Equilibria and Moisture Changes in Soils Beneath Covered Areas, Butterworths, Sydney, Australia, 1965:259-269.
    [2-7]Jennings J E B, Burland J B. Limitations to the use of effective stresses in unsaturated soils[J]. Geotechnique,1962,12:125-144.
    [2-8]Burland J B. Some aspects of the mechanical behaviour of partly saturated soils[C]// Moisture Equilibria and Moisture Changes in Soils Beneath Covered Areas, Butterworth, Sydeny, Australia,1965:270-278.
    [2-9]Aitchison G D. Soils properties, shear strength, and consolidation[C]//Proceedings of 6th International Conference on Soil Mechanics and Foundation Engineering, Toronto: University of Toronto Press,1965,3:319-321.
    [2-10]Matyas E L, Radhakrishna H S. Volume change characteristics of partially saturated soils [J]. Geotechnique,1968,18:432-448.
    [2-11]Brackley I J A. Partial collapse in unsaturated expansive clay[C]//Proceedings of 5th Regional Conference on Soil Mechanics and Foundation Engineering, South Africa, 1971:23-30.
    [2-12]Frelund D G, Morgenstern N R. Stress state variables for unsaturated soils[J]. Journal of the Geotechnical Engineering Division, American Society of Civil Engineering, 1977,103(5):447-466.
    [2-13]Khalili N, Geiser F, Blight G E. Effective stress in unsaturated soils:review with new evidence[J]. International Journal of Geomechanics,2004:115-126.
    [2-14]Coleman J D. Stress-strain relations for partly saturated soils[J]. Correspondence to Geotechnique,1962,12(4):348-350.
    [2-15]Bishop A W, Blight G E. Some aspects of the effective stress in saturated and partially saturated soils[J]. Geotechnique,1963,13(3):177-197.
    [2-16]Blight G E. Effective stress evaluation for unsaturated soils[J]. Journal of the Soil Me-chanics and Foundations Division, American Society of Civil Engineering. 1967,93(SM2):125-148.
    [2-17]Gens A. Soil-environment interactions in geotechnical engineering[J]. Geotechnique, 2010,60(1):3-74.
    [2-18]Alonso E E, Gens A, Josa A. The constitutive model for partially saturated soils[J]. Geo-technique,1990,40(3):405-430.
    [2-19]Gens A, Alonso E E. A framework for the behaviour of unsaturated expansive clays[J]. Canadian Geotechnical Journal,1992,29:1013-1032.
    [2-20]Bolzon G, Schrefler B A, Zienkiewicz O C. Elastoplastic soil constitutive laws genera-lized to partially saturated states [J]. Geotechnique,1996,46(2):279-289.
    [2-21]Bolzon G, Schrefler B A. State surfaces of partially saturated soils:an effective pressure approach[J]. Applied Mechanics Reviews, American Society of Mechanical Engineers, 1995,48(10):643-649.
    [2-22]Wheeler S J, Sivakumar V. An elasto-plastic critical state framework for unsaturated soil[J]. Geotechnique,1995,45(1):35-53.
    [2-23]Sun D A, Matsuoka H. An elasto-plastic model for unsaturated soil in three-dimensional stresses[J]. Soils and Foundations,2000,40(3):17-28.
    [2-24]Chiu C F, Ng C W W. A state-dependent elasto-plastic model for saturated and unsatu-rated soils[J]. Geotechnique,2003,53(9):809-829.
    [2-25]Toll D G A framework for unsaturated soil behavior[J]. Geotechnique,1990,40(1):31-44.
    [2-26]Wheeler S J, Sharma R S, Buisson M S R. Coupling of hydraulic hysteresis and stress-strain behaviour in unsaturated soils[J]. Geotechnique,2003,45(1):35-53.
    [2-27]Gallipoli D, Wheeler S J, Karstune M. Modeling the variation of degree of saturation in a defonnable unsaturated soils[J], Geotechnique,2003,53(1):105-112.
    [2-28]Gallipoli D, Gens A, Sharma R, et al. An elastoplastic models for unsaturated soils in-corporating the effects of suction and degree of saturation on mechanical behavior[J]. Geotechnique,2003,53(1):123-135.
    [2-29]Sheng D C, Sloan S W, Gens A. A constitutive model for unsaturated soils:thermome-chanical and algorithmic aspects[J]. Computational Mechanics,2004,33:453-465.
    [2-30]Li X S. Thermodynamics-based constitutive framework for unsaturated soils 1: Theory[J]. Geotechnique,2007,57(5):411-422.
    [2-31]Li X S. Thermodynamics-based constitutive framework for unsaturated soils 2:A basic triaxial model[J]. Geotechnique,2007,57(5):423-435.
    [2-32]Sun D A, Sheng D C, Cui H B, Sloan S W. A density-dependent elastoplastic hy-dro-mechanical model for unsaturated compacted soils[J]. International Jouranal for Numerical and Analytical Methods in Geomechanics,2007,31(11):1257-1279.
    [2-33]Pereiral J M, Wong H, Dubujet P, et al. Adaptation of existing behaviour models toun-saturated states:Application to CJS model[J]. International Jouranal for Numerical and Analytical Methods in Geomechanics,2005,29:1127-1155.
    [2-34]Tamagnini R. An extended Cam-Clay model for unsaturated soils with hydraulic hystere-sis[J]. Geotechnique,2005,54(3):223-228.
    [2-35]Loret B, Khalili N. A three-phase model for unsaturated soils[J]. International Jouranal for Numerical and Analytical Methods in Geomechanics,2000,24:893-927.
    [2-36]Laloui L, Klubertanz G, Vulliet L. Solid-liquid-air coupling in multiphase porous me-dia[J]. International Jouranal for Numerical and Analytical Methods in Geomechanics, 2003,27:183-206.
    [2-37]黄义,张引科.非饱和土本构关系的混合物理论(Ⅰ)——非线性本构方程和场方程[J].应用数学和力学,2003a,24(2):111-123.
    [2-38]黄义,张引科.非饱和土本构关系的混合物理论(Ⅱ)——非线性本构方程和场方程[J].应用数学和力学,2003b,24(2):124-164.
    [2-39]赵成刚,张雪东,郭璇.土的本构方程与热力学[J].力学进展.2006,36(4):611-618.
    [2-40]Ziegler H. An introduction to thermomechanics[M].2nd ed. Amsterdan:North-Holland, 1983.
    [2-41]Ziegler H, Wehrli C. The derivation constitutive relations from the free energy and the dissipation function[J]. Advanees in Applied Mechanics,1987,25:183-238.
    [2-42]Collins I F, Houlsby G T. Application of thermo-mechanical principles to the modeling of geotechnical materials, OUEL2100/96[R]. Department of Engineering Science, Univer-sity of Oxford,1997.
    [2-43]Collins I F, Hilder T. A theoretical framework for constructing elastic/plastic constitutive models of triaxial tests[J]. International Journal for Numerical Analytical Methods in Geomechanics,2002,26:1313-1347.
    [2-44]Collins I F, Kelly P A. A thermomechanical analysis of a family of soil models[J]. Geo-technique,2002,52(7):507-518.
    [2-45]Collins I F. Associated and non associated aspects of the constitutive laws for coupled elastic/plastic materials[J]. The International Journal of Geomechanies,2002,2:259-267.
    [2-46]Collins I F, Muhunthan B. On the relationship between stress-dilatancy, anisotropy andplastic dissipation for granular materials[J]. Geotechnique,2003,53(7):611-618.
    [2-47]Collins I F. The concept of stored plastic work for frozen elastic energy in soil mechan-ics[J]. Geotechnique,2005,55(5):373-382.
    [2-48]Houlsby G T, Puzrin A M. A thermomechanical famework for constitutive models for-rate-independent dissipative materials[J]. International Journal of Plasticity, 2000,16(9):1017-1047.
    [2-49]Houlsby G T, Puzrln A M. Rate-dependent plasticity models derived from potential func; tions[J]. Journal of Rheology,2001,46(1):113-126.
    [2-50]Puzrin A M, Houlsby G T. A thermomechanical framework for rate-independent dissipa-tive materials with internal functions[J]. International Journal of Plasticity, 2001,17(8):1147-1165.
    [2-51]Puzrin A M, Houlsby G T. Rate-dependent hyperplasticity with internal functions[J]. Journal of Engineering Mechanics,2003,129(3):252-263.
    [2-52]Puzrin A M, Houlsby G T. Fundamentals of kinematic hardening hyperplasticity[J]. In- ternational Journal of Solids and Structures,2001,38(21):3771-3794.
    [2-53]Houlsby G T, Amorosi A, Rojas E. Elastic moduli of soils dependent on pressure:ahype-relastic formulation[J]. Geotechnique,2005,55(5):383-392.
    [2-54]周家伍,刘元雪,陆新,郑颖人.土体耗散势的不存在与不可解耦[J].岩土工程学报,2011,33(4):607-617.
    [2-55]蔡国庆,黄启迪,何旭珍.关于“土体耗散势的不存在与不可解耦”的讨论[J].岩土工程学报,2011,33(11):1812-1814.
    [2-56]Truesdell C. Sulle basi della termomeccanicia[J]. Rendiconti della Reale Accademianazionale dei Lincei, Roma Classe di Scienze fisiche, matematiche e Naturali, 1957,22(8):33-38,158-166.
    [2-57]Truesdell C. Euler's Leistungen in der Mechanik[J]. L'Enseignement Mathematique, 1957,3:251-262.
    [2-58]Truesdell C. Rational thermodynamics[M].2nd ed. New York, Berlin, Tokyo:Springer, 1984.
    [2-59]Kelly P D. A reacting continuum[J]. International Journal of Engineering Science, 1964,2:129-153.
    [2-60]Adkins J E. Non-linear diffusion Ⅰ:diffusion and flow of mixtures of fluids[J]. Philo-sophical Transactions of the Royal Society of London,1963,A255:607-633.
    [2-61]Adkins J E. Non-linear diffusion Ⅱ:constitutive equations for mixtures of isotropic flu-ids[J]. Philosophical Transactions of the Royal Society of London,1963,A255:635-648.
    [2-62]Adkins J E. Non-linear diffusion Ⅲ:diffusion through isotropic highly elastic solids[J]. Philosophical Transactions of the Royal Society of London,1964,A256:301-316.
    [2-63]Coleman B D, Noll W. The thermodynamics of elastic materials with heat conduction andviscosity[J]. Archive for Rational Mechanics and Analysis,1963,13(1):167-178.
    [2-64]Eringen A C, Ingram J D. A continuum theory of chemically reacting media Ⅰ [J]. Inter-national Journal of Engineering Science,1965,3:197-212.
    [2-65]Ingram J D, Eringen A C. A continuum theory of chemically reacting media Ⅱ [J]. Inter-national Journal of Engineering Science,1967,5:289-322.
    [2-66]Green A E, Naghdi P M. A general theory of an elastic-plastic continuum[J]. Archive for Rational Mechanics and Analysis,1965,18(4):251-281.
    [2-67]Gurtin M E, De La Penha G M. On the thermodynamics of mixtures[J]. Archive for Ra-tional Mechanics and Analysis,1970,36(5):390-410.
    [2-68]Cross J J. Mixtures of fluids and isotropic solids[J]. Archives of Mechanics, 1973,25:1024-1039.
    [2-69]Bowen R M,昆合物理论,现代连续统力学从书[M].董务民,译.南京:江苏科技出版社,1983.
    [2-70]Bedford A, Drumheller D S. Theories of immiscible and structured mixtures[J]. Interna-tional Journal of Engineering Science,1983,21(80):863-960.
    [2-71]Atkin R J, Craine R E. Continuum theories of mixture:basic theory and historicaldeve-lopment[J]. The Quarterly Journal of Mechanics and Applied Mathematics, 1976,29(2):209-244.
    [2-72]Simon B R, Zienkiewicz O C, Paul D K. An analytical solution for the transient response of saturated porous elastic solids [J]. International Journal for Numerical and Analytical Methods in Geomechanics,1984,8(4):381-398.
    [2-73]Zienkiewicz O C, Paul D K, Chan A H C. Unconditionally stable staggered solution pro-cedure for soil-pore fluid interaction problems[J]. International Journal for Numerical Methods in Engineering,1988,26(5):1039-1055.
    [2-74]Gawin D, Baggio P, Schrefler B A. Coupled heat, water and gas flow in deformable po-rousmedia[J]. International Journal for Numerical Methods in Fluids,1995,20(8-9): 969-987.
    [2-75]Zienkiewicz O C, Chan A H C, Pastor M, Paul D K, Shiomi T. Static and dynamic beha-viour of soils:a rational approach to quantitative solutions I:fully saturated prob-lems[C]//Proceedings of the Royal Society of London, Series A, Mathematical and Physical Sciences, London:The Royal Society,1990,429:285-309.
    [2-76]Zienkiewicz O C, Xie Y M, Schrefler B A, Ledesma A, Bicanic N. Static and dynamic behaviour of soils:a rational approach to quantitative solutions Ⅱ:Semi-saturated prob-lems[C]//Proceedings of the Royal Society of London, Series A, Mathematical and Physical Sciences, London:The Royal Society,1990,429:311-321.
    [2-77]Zienkiewicz O C, Huang M, Wu J, Wu S. A new algorithm for coupled soil-pore fluid problem[J]. Shock and Vibration,1993,1:3-13.
    [2-78]Schrefler B A, D'Alpaos L, Zhan X Y, Simoni L. Pollutant transport in deforming porous media[J]. European Journal of Mechanics A/Solids,1994,13:175-194.
    [2-79]Schrefler B A, Sanavia L, Majorana C. A multiphase media model for localisation and post-localisation simulation in geomaterials[J]. Mechanics of Cohesive-Frictional Mate-rials,1996,1(1):102-121.
    [2-80]Bowen R M. Incompressible porous media models by use of the theory of mixturesfJ]. International Journal of Engineering Science,1980,18(9):1129-1148.
    [2-81]Bowen R M. Compressible porous media models by use of the theory of mixtures[J]. International Journal of Engineering Science,1982,20(6):697-735.
    [2-82]De Boer R. Highlights in the histirical development of the porous media:toward a con-sistent macroscopic theory[J]. Applied Mechanics Reviews,1996,49(4):201-262.
    [2-83]Eringen A C. Continuum theory of swelling porous elastic soil[J]. International Journal of Engineering Science,1994,32(8):1337-1349.
    [2-84]Atkinson C, Appleby S. Variational principles developed for and applied to porous elas-ticsolidsfJ]. International Journal of Engineering Science,1994,32(6):955-977.
    [2-85]Coussy O. A general theory of thermoporo elastoplasticity for saturated porous mate-rials[J]. Transport in Porous Media,1989,4:281-293.
    [2-86]Coussy O. Mechanics of porous media[M]. New York:Wiley,1995.
    [2-87]Hansen A C. Reexamining some basic deformations of modern mixture theory [J]. Inter-national Journal of Engineering Science,1989,27(12):1531-1544.
    [2-88]Hansen A C, Crane R T, Damson M H, Donovan R P, Horning D T. Some notes on a vo-lume fraction mixture theory and a comparison with the kinetic theory of gases[J]. Inter-national Journal of Engineering Science,1991,29(5):561-573.
    [2-89]Reid C R, Jafari F. The kinematics and general field equations for continuum mixtures[J]. International Journal of Engineering Science,1995,33(3):411-428.
    [2-90]Costa Mattos H S. A thermodynamically consistent constitutive theory for fluids[J]. In-ternational Journal of Non-Linear Mechanics,1998,33(1):97-110.
    [2-91]Samohyl I, Willi Pabst. The Eshel by relation in mixtures[J]. International Journal of Non-Linear Mechanics,1997,32(2):227-233.
    [2-92]Samohyl I. Thermodynamics of non-reacting mixtures of any symmetry with heat con-duction, diffusion and viscosity[J]. International Journal of Non-Linear Mechanics, 1997,32(2):235-240.
    [2-93]Samohyl I. Thermodynamics of mixtures of reacting and non-reacting fluids with heat conduction, diffusion and viscosity[J]. International Journal of Non-Linear Mechanics, 1997,32(2):241-257.
    [2-94]Svendsen B, Hutter K. On the thermodynamics of a mixture of isotropic materials with constraints[J]. International Journal of Engineering Science,1995,33(14):2021-2054.
    [2-95]Hutter K, Laloui L, Vulliet L. Thermodynamically based mixture models of saturated and unsaturated soils[J]. Mechanics of Cohesive-Frictional Materials,1999,4:295-338.
    [2-96]Hassanizadeh S M, Gray W G General conservation equations for multiphase systems:1. averaging procedure[J]. Advances in Water Resources,1979,2:131-144.
    [2-97]Hassanizadeh S M, Gray W G. General conservation equations for multiphase systems:2. mass, momenta, energy, and entropy equations[J]. Advances in Water Resources, 1979,2:191-208.
    [2-98]Hassanizadeh S M, Gray W G. General conservation equations for multiphase systems:3. Constitutive theory for porous media[J]. Advances in Water Resources,1980,3:25-40.
    [2-99]Hassanizadeh S M, Gray W G. Thermodynamics basis of capillary pressure in porous media[J]. Water Resources Research,1993,29(10):3389-3405.
    [2-100]Reeves P C, Celia M A. A functional relationship between capillary pressure, saturation, and interfacial area[J]. Water Resources Research,1996,32(8):2345-2358.
    [2-101]Celia M A, Reeves P C, Dahle H K. On the use of pore-scale computational models for two-phase porous media flows[C]//Burganos V N, et al, Computational Methods in Contamination and Remediation of Water Resources, Boston, USA, Computational Me-chanics Publications,1998:397-404.
    [2-102]Muraleetharan K K, Wei C F. Dynamic behaviour of unsaturated porous media:govern-ing equations using the theory of mixtures with interfaces(TMI)[J]. International Journal for Numerical and Analytical Methods in Geomechanics,1999,23:1579-1608.
    [2-103]Wei C F. Static and dynamic behavior of multiphase porous media:governing equations and finite element implementation[D]. Norman:University of Oklahoma,2001.
    [2-104]Wei C F, Muraleetharan K K. A continuum theory of porous media saturated by multiple immiscible fluids:Ⅰ. Linear poroelasticity[J]. International Journal of Engineering Science,2002,40(16):1807-1833.
    [2-105]Wei C F, Muraleetharan K K. A continuum theory of porous media saturated by multiple immiscible fluids:Ⅱ. Lagrangian description and variational structure[J]. International Journal of Engineering Science,2002,40(16):1835-1854.
    [2-106]Wei C F, Muraleetharan K K. Acoustical characterization of fluid-saturated porous media with local heterogeneities:theory and application[J]. International Journal of Solids and Structures,2006,43:982-1008.
    [2-107]Hassanizadeh S M. Derivation of basic equations of mass transport in porous media, Part 1. Macroscopic balance laws[J]. Advances in Water Resources,1986,9:196-206.
    [2-108]Hassanizadeh S M. Derivation of basic equations of mass transport in porous media, Part 2. Generalized darcy's and fick's law[J]. Advances in Water Resources,1986,207-222.
    [2-109]Schrefler B A. Mechanics and thermodynamics of saturated/unsaturated porous materials and quantitative solutions[J]. Applied Mechanics Reviews,2002,55(4):351-388.
    [2-110]Achanta S, Cushman J H. On multicomponent, multiphase thermomechanics with inter-faces[J]. International Journal of Engineering Science,1994,32(11):1717-1738.
    [2-111]Murad M A, Cushman J H. Multiscale flow and deformation in hydrophilic swelling porous media[J]. International Journal of Engineering Science,1996,34(3):313-338.
    [2-112]Murad M A, Cushman J H. Thermomechanical model of hydration swelling in smectitic clays:I Two-scale mixture-theory approach[J]. International Journal for Numerical and Analytical Methods in Geomechanics,1999,23(7):673-696.
    [2-113]Bennethum L S, Cushman J H. Multiscal, hybrid mixture theory for swelling systems-I: balance laws[J]. International Journal of Engineering Science,1996,34(2):125-145.
    [2-114]Bennethum L S, Cushman J H. Multiscal, hybrid mixture theory for swelling systems-II: constitutive theory [J]. International Journal of Engineering Science,1996,34(2):147-169.
    [2-115]Bennethum L S, Cushman J H. Clarifying mixture theory and the macroscale chemical potential for porous media[J]. International Journal of Engineering Science, 1996,34(14):1611-1621.
    [2-116]Bennethum L S, Murad M A, Cushman J H. Macroscale thermodynamics and the chem-ical potential for swelling porous media[J]. Transport in Porous Media, 2000,39(2):187-225.
    [2-117]Bennethum L S, Murad M A, Cushman J H. Modified Darcy's law, Terzaghi's effective stress principle and Fick's law for swelling clay soils[J]. Computers and Geotechnics, 1997,20(3/4):245-266.
    [2-118]Bennethum L S, Cushman J H. Coupled solvent and heat transport of mixture of swelling porous particles and fluids:single time-scale problem[J]. Transport in Porous Media, 1999,36(2):211-244.
    [2-119]Singh P P, Cushman J H, Maier D F. Themomechanics of swelling biopolymeric sys-terms[J]. Transport in Porous Media,2003,53(1):1-24.
    [2-120]Singh P P, Cushman J H, Maier D E. Multiscale fluid transport theory for swelling bio-polymers[J]. Chemical Engineering Science,2003,58(11):2409-2419.
    [2-121]Singh P P, Cushman J H, Maier D E. Three scale thermomechanical theory for swelling biopolymeric systems[J]. Chemical Engineering Science,2003,58(17):4017-4035.
    [2-122]赵成刚,刘艳.连续孔隙介质十力学及其在非饱和土本构关系中的应用[J].岩土工程学报,2009,31(9):1324-1335.
    [2-123]黄璐,赵成刚.微极性多组分多孔介质材料的混合物理论[J].应用数学与力学,2009, 30(5):575-586.
    [2-124]Hopmans J W, Dane J H. Temperature dependence of soil water retention curves [J]. Soil Science Society of America,1986,50:562-567.
    [2-125]Constantz J, Murphy F. The temperature dependence of ponded infiltration under iso-thermal conditions[J]. Journal of Hydrology,1991,122:119-128.
    [2-126]张富仓.温度对土壤水分运动和保持的影响[D].西安:西北农业大学,1993.
    [2-127]Haridasan M, Jensen, R D. Effect of temperature on pressure head-water content rela-tionship and conductivity of two soils [J]. Soil Science Society of America, 1972,36:703-708.
    [2-128]Hopmans J W, Dane J H. Temperature dependence of soil hydraulic properties [J]. Soil Science Society of America,1986,50:4-9.
    [2-129]Hopmans J W, Dane J H. Thermal conductivity of two porous media as a function of wa-ter content, temperature, and density[J]. Soil Science Society of America, 1986,142(4):187-195.
    [2-130]Giakoumakis S G, Tsakiris G P. Eliminating the effect of temperature from unsaturated soil hydraulic functions[J]. Journal of Hydrology JHYDA7,1991,129:109-125.
    [2-131]杨金忠,蔡树英.十壤中水、汽、热运动的耦合模型和蒸发模拟[J].武汉水利电力学院学报,1989,22(4):35-44.
    [2-132]冯浩,韩仕峰.土壤非饱和导水率温度效应研究[J].土壤侵蚀与水土保持学报,1997,3(3):76-83,93.
    [2-133]Gardner W R. Solution of the flow equation for the drying of soils and the porous me-dia[J]. Soil Science Society of America Proceedings,1959,23:183-187.
    [2-134]Philip J R. The theory of infiltration:4. sorptivity and algebraic infiltration equations[J]. Soil Science.1957,84:257-264.
    [2-135]Jackson R D. Temperature and soil-water diffusivity relation[J]. Soil Science Society of America Journal,1963,27:363-366.
    [2-136]Swartzendruber D. The flow of water in unsaturated soils[M]. Academic Press, New York,1969.
    [2-137]Green W H, Ampt G A. Study in soil physics I:flow of air and water through soils[J]. Journal of Agricultural Science,1991,(4):1-24.
    [2-138]汪志荣,张建丰,王文焰,冯保平.温度影响下土壤水分运动模型[J].水利学报,2002,10:46-50.
    [2-139]Holman J P.传热学[M].北京:机械工业出版社,2005.
    [2-140]Fredlund D G, Rahardjo H非饱和土土力学[M].陈仲颐,等,译.北京:、中国建筑工业出版社,1997.
    [2-141]Philip J R, De Vries D A. Moisture movement in porous materials under temperature gragients[J]. Transactions, American Geophysical Union,1957,38(2):222-232.
    [2-142]De Vries D A. "Heat transfer in soils" in Heat and mass transfer in the biosphere:1. Transfer processes in plant environment[M]. Washington, D. C.:Scripta,1975:5-28.
    [2-143]Dakshanamurthy V, Fredlund D G. Transient flow processes in unsaturated soils (Tem-perature, Relative humidity, Evaporation and infiltration)[R]. CD-16.4 Transportation and Geotechnical group, University of Saskatchewan, Saskatoon, Sask, Canada,1981:92.
    [2-144]Wilson G W. Soil evaporative fluxes for geotechnical engineering problems[D]. Saska-toon, Canada:University of Saskatchewan,1990:464.
    [2-145]Hartley J G, Black W Z. Transient simultaneous heat and mass transfer in moist, unsatu-rated soils[J]. Journal of Heat Transfer,1981,103:376-382.
    [2-146]Geraminegad M, Saxena S K. A coupled thermoeleastic model for saturated-unsaturated porous media[J]. Geotechnique,1986,36(4):539-550.
    [2-147]Pollock D W. Simulation of fluid flow and energy transport processes associated with high-level radioactive waste disposal in unsaturated alluvium[J]. Water Resource Re-search,1986,22(5):765-775.
    [2-148]Ewen J, Thomas H R. Heating unsaturated medium sand[J]. Geotechnique, 1989,39(3):455-470.
    [2-149]Thomas H R, King S D. Coupled temperature/capillary potential variations in unsatu-rated soil[J]. Journal of the Engineering Mechanics Division, American Society of Civil Engineering,1991,117(11):2475-2491.
    [2-150]Thomas H R, He Y. Analysis of coupled heat, moisture and air transfer in adeformable unsaturated soil[J]. Geotechnique,1995,45(4):677-689.
    [2-151]Thomas H R, He Y, Sansom M R, Li C L W. On the development of a model of the thermo-mechanical-hydraulic behaviour of unsaturated soils[J]. Engineering Geology, 1996,41:197-218.
    [2-152]Thomas H R, Ferguson W J. A fully coupled heat and mass transfer model incorporating contaminant gas transfer in an unsaturated porous medium[J]. Computers and Geotech-nics,1999,24:65-87.
    [2-153]Khalili N, Loret B. An elasto-plastic model for non-isothermal analysis of flow and de-formation in unsaturated porous media:formulation[J]. International Journal of Solids and Structures,2001,38:8305-8330.
    [2-154]武文华.非饱和土中热-水力-力学-传质耦合过程模拟及土壤环境工程中的应用[D].大连:大连理工大学.2002.
    [2-155]Kawai K, Kato S, Karube D. The model of water retention curve considering effects of void ratio[C]//Rahardjo H. Unsaturated Soils for Aisa. Rotterdam:Balkema, 2000:329-334.
    [2-156]Sharma R S. Mechanical behavior of unsaturated highly expansive clays[D]. London: University of Oxford,1998.
    [2-157]Vanapalli S K, Fredlund D G, Pufahl D E. Influence of soil structure and stress history on the soil-water characteristics of a compacted,till[J]. Geotechnique.2001,51(6):573-576.
    [2-158]Ng Charles W W, Pang Y W. Influence of stress state on soil-water characteristics and slope stability[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2000,126(2):157-166.
    [2-159]刘艳华,龚壁卫,苏鸿.非饱和土的土水特征曲线研究[J].工程勘察.2002,3:8-11.
    [2-160]Sun D A, Sheng D C, Xu Y F. Collapse behaviour of unsaturated compacted soil with different initial densities[J]. Canadian Geotechnical Journal,2007,44(6):673-686.
    [2-161]孙德安.土水特征影响因素的试验研究[C]//第25届全国土工测试学术研讨会论文 集.杭州:浙江大学出版社,2008:211-215.
    [2-162]孙德安.非饱和土的水力和力学性状耦合的弹塑性模拟[C]//第一届全国岩土本构理论研讨会论文集.北京:北京航空航天大学,2008:230-239.
    [2-163]Romero E, Gens A, Lloret A. Temperature effects on the hydraulic behaviour of an un-saturated clay[J]. Geotech. Geolog. Eng.2001,19:311-322.
    [2-164]Mitchell J K. Fundamentals of soil behavior[M].2nd ed. New York:John Wiley and Sons,1993.
    [2-165]高燕希,符力平.非饱和土吸力的温度性质[J].力学与实践,2003,25:55-57.
    [2-166]Gardner R. Relation of temperature to moisture tension of soil[J]. Soil Science, 1955,79:257-265.
    [2-167]Chahal R S. Effect of temperature and trapped air on the energy status of water in porous media[J]. Soil Science,1964,98:107-112.
    [2-168]Chahal R S. Effect of temperature and trapped air on matric suction[J]. Soil Science, 1965,100(4):262-266.
    [2-169]Hopmans J W, Dane J H. Temperature dependence of soil-water retention curves[J]. Soil Science Society of America Journal,1986,50:562-567.
    [2-170]Nimmo J R, Miller E E. The temperature dependence of isothermal moisture vs potential characteristics of soils[J]. Soil Science Society of America Journal,1986,50:1105-1113.
    [2-171]Constantz J. Comparison of isothermal and isobaric water retention paths in nonswelling porous materials[J]. Water Resources Research,1991,27(12):3165-3170.
    [2-172]She H Y, Sleep B E. The effect of temperature on capillary pressure-saturation relation-ships for air-water and perchloroethylene-water systems[J]. Water Resources Research, 1998,34(10):2587-2597.
    [2-173]Bachmann J, Horton R, Grant S A, Van Der Ploeg R R. Temperature dependence of wa-ter retention curves for wettable and water-repellent soils [J]. Soil Science Society of America Journal,2002,66:44-52.:
    [2-174]Grant S A, Salehzadeh A. Calculation of temperature effects on wetting coefficients of porous solids and their capillary pressure functions[J]. Water Resources Research, 1996,32(2):261-270.
    [2-175]Grant S A. Extension of temperature effects model for capillary pressure saturation rela-tions[J]. Water Resources Research,2003,39(1):1003. doi:10.1029/2000WR000193.
    [2-176]Van Genuchten M T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Soil Science Society of America Journal,1980,44:892-898.
    [2-177]Liu H H, Dane J H. Reconciliation between measured and theoretical temperature effects on soil water retention curves[J]. Soil Science Society of America Journal, 1993,57:1202-1207.
    [2-178]Romero E, Vaunat J. Retention curve of deformable clays[C]//TARANTINO M, Expe-rimental Evidence and Theoretical Approaches in Unsaturated Soils, Rotterdam:Balke-ma,2000:91-106.
    [2-179]Arifin Y F, Agus S S, Schanz T. Temperature effects on suction characteristic curve of bentonite-sand mixtures[C]//Miller Ga Zc, Houston S L, Fredlund D G. Proceedings of 4th International Conference on Unsaturated Soils. Carefree, Arizona, USA, 2006:1314-1325.
    [2-180]Jacinto A C, Villar M V, Roberto G E, Ledesma A. Adaptation of van Genuchten ex-pression to the effects of temperature and density for compacted bentonites[J]. Applied Clay Science,2009,42:575-582.
    [2-181]Romero E, Gens A, Lloret A. Temperature effects on the hydraulic behaviour of an unsaturated clay[J]. Geotechnical and Geological Engineering,2001,19:311-332.
    [2-182]王铁行,卢靖,岳彩坤.考虑温度和密度影响的非饱和黄土土水特征曲线研究[J].岩土力学,2008,29(1):1-5.
    [2-183]Villar M V, Lloret A. Influence of temperature on the hydro-mechanical behaviour of a compacted bentonite[J]. Applied Clay Science,2004,26:337-350.
    [2-184]Villar M V, Martin P L, Lloret A. Determination of water retention curves of two bento-nites at high temperature[C]//Tarantino A, Romero E, Cui Y J. Advanced experimental unsaturated soil mechanics. London:A. A. Balkema Publishers,2005:77-82.
    [2-185]Tang A M, Cui Y J. Controlling suction by the vapour equilibrium technique at different temperatures and its application in determining the water retention properties of MX-80 clay[J]. Canadian Geotechnical Journal,2005,42:287-296.
    [2-186]Villar M V, Gomez-Espina R. Retention curves of two bentonites at high tempera-ture[C]//Experimental Unsaturated Soil Mechanics (Springer Proceedings in Physics), 112,2007:267-274.
    [2-187]Campanella R G, Mitchell J K. Influence of temperature variations on soil behavior[J]. Journal of the Soil Mechanics and Foundations Division, American Society of Civil En-gineers,1968,94(3):709-734.
    [2-188]Schiffman R L. A thermoelastic theory of consolidation[C]//Cremen E T, et al. Envi-ronmental and Geophysical Heat Transfer. New York:American Society of Mechanical Engineers,1972:78-84.
    [2-189]Derski W, Kowalski S T. Equations of linear thermoconsolidation[J]. Archives of Mech., 1979,31(3):303-316.
    [2-190]Bear J, Corapcioglu M Y. Mathematical model for regional land subsidence due to pumping I:integrated aquifer subsidence equations based on vertical displacement on-ly[J]. Water Resources Research,1981,17(4):937-946.
    [2-191]Yong R N, Champ R K, Warkentin B P. Temperature effect on water retention and swel-ling pressure of clay soils[R]. Effect of Temperature and Heat on Engineering Behavior of Soils, Special Report 103, Highway Research. Board, Washington D.C., 1969:132-137.
    [2-192]Plum R L, Esrig M I. Some temperature effects on soil compressibility and pore water pressure[R]. Effect of Temperature and Heat on Engineering Behavior of Soils, Special Report 103, Highway Res. Board, Washington, D.C.,1969:231-242.
    [2-193]Demars K R, Charles R D. Soil volume changes induced by temperature cycling[J]. Ca-nadian Geotechnical Journal,1982,19(2):188-194.
    [2-194]Passwell R E. Temperature effects on clay consolidation[J]. Journal of the Soil Mechan-ics and Foundation Division, American Society of Civil Engineering,1967,93(3):9-21.
    [2-195]Morin R, Silva A J. The effects of high pressure and high temperature or some physical properties of ocean sediments [J]. Journal of Geophysical Research,1984,89(B1): 511-526.
    [2-196]Houston S L, Houston W N, Williams N D. Thermo-mechanical behaviour of seafloor sediments[J]. Journal of Geotechnical and Geoenvironmental Engineering Division, American Society of Civil Engineering,1985,111(11):1249-1263.
    [2-197]Houston S L, Lin H. A thermal consolidation model for peleagic clays[J]. Marine Geo-technology,1987,7(1):79-98.
    [2-198]Agar J G, Morgenstern N R, Scott J D. Thermal expansion an pore pressure generation in soil sands[J]. Canadian Geotechnical Journal,1986,23(3):327-333.
    [2-199]Palciauskas V V, Domenico P A. Characterization of drained and undrained response of thermally loaded repository rocks[J]. Water Resources Research,1982,18(2):281-290.
    [2-200]Booker J R, Savvidou C. Consolidation around a point heat source[J]. International Journal for Numerical and Analytical Methods in Geomechanics,1985,9(2):173-184.
    [2-201]Mctigue D F. Thermoelastic response of fluid-saturated porous rock[J]. Journal of Geo-physical Research,1986,91(139):9533-9542.
    [2-202]Hueckel T, Borsetto M, Peano A. Modelling of coupled thermo-elastoplastic-hydraulic response of clays subjected to nuclear waste heat[M]//Lewis W, Hinton P, Bettess P, Schrefler B A:Numerical Methods in Transient and Coupled Problems, Chichester, United Kingdom:John Wiley and Sons,1987:213-235.
    [2-203]Tidfors M, Sallfors G. Temperature effect on preconsolidation pressure[J]. Geotechnical Testing Journal,1989,12(1):93-97.
    [2-204]Boudali M, Leroueil S, Srinivasa Murthy B R. Viscous behaviour of natural clays [C]// Proceedings of 13th International Conference on Soil Mechanics and Foundation Engi-neering, New Delhi,1994:411-416.
    [2-205]Eriksson L G. Temperature effects on consolidation properties of sulphide clays [C]// Proceedings of the 12th International Conference on Soil Mechanics and Foundation En-gineering, Riode Janeiro,1989,3:2087-2090.
    [2-206]Baldi G., Hueckel T, Pellegrini R. Thermal volume change of themineral-water system in low-porosity clay soils[J]. Canadian Geotechnical Journal,1988,25(4):807-825.
    [2-207]Towhata I, Kuntiwattanakul P, Seko I, Ohishi K. Volume change of clays induced by heating as observed in consolidation tests[J]. Soils and Foundations,1993,33(4):170-183.
    [2-208]Abuel-Naga H M, Bergado D T, Bouazza A, Ramana G. V. Volume change behabiour of saturated clays under drained heating conditions:experimental results and constitutive modeling[J]. Canadian Geotechnical Journal,2007,44(8):942-956.
    [2-209]Sultan N. Etude du comportement thenno-mecanique del'argile de Boom:experiences et modelisation[D]. These de doctorat de l'Ecole Nationale des Ponts et Chaussees, Paris, 1997.
    [2-210]Cekerevac C, Laloui L. Experimental study of thermal effects on the mechanical beha-viour of a clay[J]. International Journal for Numerical and Analytical Methods in Geo-mechanics,2004,28(3):209-228.
    [2-211]Romero E. Characterization and thermo-hydro-mechanical behaviour of unsaturated Boom clay:an experimental study[D]. Doctoral Thesis, Universitat Politecnica de Cata-lunya,1999.
    [2-212]Schofield A N, Wroth C P. Critical state soil mechanics[M]. McGraw-Hill, London, United Kingdom,1968.
    [2-213]Prager W. Non-isothermal plastic defonnation[M]. Bol. Koninkl Nederl. Acad. Wet., 1958,8(61/3):176-182.
    [2-214]Hueckel T, Borsetto M. Thermoplasticity of Saturated Soils and Shales:Constitutive Eq-uations [J]. Journal of Geotechnical and Geoenvironmental Engineering,1990,116(12): 1765-1777.
    [2-215]Hueckel T, Baldi G. Thermoplasticity of Saturated Clays:Experimental Constitutive Study [J]. Journal of Geotechnical and Geoenvironmental Engineering,1990,116(12): 1778-1796.
    [2-216]Cui Y J, Sultan N, Delage P. A thermomechanical model for saturated clays[J]. Canadian Geotechnical Journal,2000,37:607-620.
    [2-217]Abuel-Naga H M, Bergado D T, Bouazza A, Ramana G V. Volume change behaviour of saturated clays under drained heating conditions:experimental results and constitutive modeling[J]. Canadian Geotechnical Journal,2007,44:942-956.
    [2-218]Laloui L. Thermo-mechanical behaviour of soils[J]. Revue Francaise de Genie Civil, 2001,5(6):809-843.
    [2-219]Modaressi H, Laloui L. A thermo-viscoplastic constitutive model for clays[J]. Interna-tional Journal for Numerical and Analytical Methods in Geomechanics, 1997,21:313-335.
    [2-220]Laloui L, Cekerevac C. Thermo-plasticity of clays:An isotropic yield mechanism[J]. Computers and Geotechnics,2003,30:649-660.
    [2-221]Bolzon G, Schrefler B A. Thermal effects in partially saturated soils:a constitutive mod-el[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2005,29:861-877.
    [2-222]Bolzon G, Schrefler B A, Zienkiewicz O C. Elastoplastic soil constitutive law generalized to partially saturated states[J]. Geotechnique,1996,46:279-289.
    [2-223]Laloui L, Cekerevac C. Non-isothermal plasticity model for cyclic behaviour of soils[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2008,32:437-460.
    [2-224]Aubry D, Hujeux J C, Lassoudiere F, Meimon Y. A double memory model with multiple mechanisms for cyclic soil behaviour[C]. Proceedings of the International Symposium on Numerical Models in Geomechanics, Zurich,1982.
    [2-225]陈善雄,陈守义.饱和土热湿耦合传输问题的数值解——理论及一维问题的解[J].岩十力学,1992,13(1):39-50
    [2-226]陈善雄,陈守义.非饱和土热湿耦合传输问题的数值解——二维问题的解[J].岩土力学,1992,13(4):25-34
    [2-227]王金香,李素芬,尚妍,东明,王止.地下含湿岩土热渗流耦合模型及换热埋管周围土壤温度场数值模拟[J].太阳能学报,2008,29(7):837-842.
    [2-228]马贵阳,刘晓国,郑平.埋地管道周围土壤水热耦合温度场的数值模拟[J].辽宁石油化工大学学报,2007,27(1):40-43,46.
    [2-229]杨代泉,沈珠江,HARIANTO RAHARDJO, LEONG ENG CHOON非饱和土孔隙气、水、汽、热耦合运动之模拟[J].岩土工程学报,2000,22(3):357-361.
    [2-230]刘振华,赵英时.土壤水热耦合模型的研究[J].水土保持通报,2007,27(5):83-88.
    [2-231]Biot M A. General theory of three-dimensional consolidation[J]. Journal of Applied Physics,1941,12:155-164.
    [2-232]Zienkiewitz O Z, Shiomi T. Dynamic behavior of saturated porous media:the genera-lized biot formulation and its numerical solution[J]. International Journal for Numerical and Analytical Methods in Geomechanics,1984,8:71-96.
    [2-233]Savage W Z, Braddock W A. A model for hydrostatic consolidation of pierre shale[J]. International Journal of Rock Mechanics and Mining Sciences,1991,28(5):345-354.
    [2-234]沈珠江.理论土力学[M].北京:中国水利水电出版社,2000.
    [2-235]殷宗泽,徐鸿江,朱泽民.饱和土平面固结问题有限单元法[J].河海大学学报(自然科学版),1978,1.
    [2-236]李锡夔,朴光虎,邓子辰.考虑固结效应的结构-土壤相互作用分析及其有限元解[J].计算结构力学及其应用,1990,7(3):1-11.
    [2-237]Fredlund D G, Hasan J U. One dimensional consolidation theory of unsaturated soils[J]. Canadian Geotechnical Journal,1979,16(3):521-531.
    [2-238]Schreer B A, Zhan X. A folly coupled model for water flow and airflow in deformable porous media[J]. Water Resources Research,1993,29:155-167.
    [2-239]李锡夔,范益群.非饱和土变形及渗流过程的有限元分析[J].岩土工程学报.1998,20(4):20-24.
    [2-240]陈正汉,谢定义,刘祖典.非饱和土固结的混合物理论(Ⅰ)[J].应用数学和力学,1993,14(2):127-137.
    [2-241]陈正汉.非饱和土固结的混合物理论(Ⅱ)[J].应用数学和力学,1993,14(8):687-698.
    [2-242]杨代泉,沈珠江.非饱和土一维固结简化计算[J].岩土工程学报,1991,13(5):70-78.
    [2-243]杨代泉,沈珠江.非饱和土一维广义固结的数值计算[J].水利水运科学研究,1991,4:375-385.
    [2-244]杨代泉.非饱和土二维广义固结非线性数值模型.岩土工程学报[J].1992,14(增刊):2-12.
    [2-245]刘洋,周健,付建新.饱和砂土流固耦合细观数值模拟及其在液化分析中的应用[J].水利学报,2009,40(2):250-256.
    [2-246]房营光.饱和土介质的固-流耦合动力方程的势函数分解[J].岩石力学与工程学报,2004,23(6):936-940.
    [2-247]徐炎兵,韦吕富,李幻,陈辉.非饱和土渗流与变形耦合问题的有限元分析[J].岩土力学,2009,30(5):1490-1496.
    [2-248]张延军,王恩志,王思敬.非饱和土中的流-固耦合研究[J].岩土力学2004,25(6):999-1004.
    [2-249]廖红建,姬建.深基坑开挖中饱和-非饱和土体渗流-沉降的耦合分析[J].应用力学学报,2008,25(4):637-640.
    [2-250]田东方,刘德富,王世梅,陈勇,肖诗荣.土质边坡非饱和渗流场与应力场耦合数值分析[J].岩土力学,2009,30(3):810-814.
    [2-251]何平,程国栋,俞郁浩,朱元林,徐学祖.饱和正冻土中的水、热、力场耦合模型[J].冰川冻土,2000,22(2):135-138.
    [2-252]李洪升,刘增利,梁承姬.冻土水热力耦合作用的数学模型及数值模拟[J].力学学报,2001,33(5):621-629.
    [2-253]许强,彭功生,李南生,刘卓.土冻结过程中的水热力三场耦合数值分析[J].同济大学学报(自然科学版),2005,33(10):1281-1285.
    [2-254]朱志武,宁建国,马巍.土体冻融过程中水、热、力三场耦合本构问题及数值分析[J].工程力学,2007,24(5):138-144.
    [2-255]李宁,徐彬,陈飞熊.冻土路基温度场、变形场和应力场的耦合分析[J].中国公路学报,2006,19(3):1-7.
    [2-256]毛雪松,李宁,王秉纲,胡长顺.多年冻土路基水一热一力耦合理论模型及数值模拟[J].长安大学学报(自然科学版),2006,25(4):16-19,62.
    [2-257]卢应发,吴延春,罗先启,崔玉军.高放废物处置中的THM耦合理论及分析[J].岩石力学与工程学报,2007,26(2):3939-3945.
    [2-258]蒋中明,Hoxha D, Homand F.核废料地质贮存介质黏土岩的三维各向异性热-水-力耦合数值模拟[J].岩石力学与工程学报,2007,26(3):493-500.
    [2-259]陈波,李宁.禚瑞花多孔介质的变形场-渗流场-温度场耦合有限元分析[J].2001,20(4):467-472.
    [2-260]盛金昌.多孔介质流-固-热三场全耦合数学模型及数值模拟[J].岩石力学与工程学报,2006,25(1):3028-3033.
    [2-261]陈云敏,叶肖伟,张民强,柯瀚,张泉芳.多场耦合作用下重金属离子在粘十中的迁移形状试验研究[J].岩土工程学报,2005,27(12):1371-1375.
    [2-262]武文华,李锡夔.热-水力-力学-传质耦合过程模型及工程土障数值模拟[J].岩土工程学报,2003,25(2):188-192.
    [2-263]叶乐安,刘春平,邵明安.土壤水、热和溶质耦合运移研究进展[J].湖南师范大学自然科学学报,2002,25(2):88-92.
    [2-264]范爱武,刘伟,李光正.土壤中热、湿、气及溶质耦合迁移的数学模型[J].华中科技大学学报(自然科学版),2005,33(9):59-61.
    [2-265]刘炳成,李庆领.土壤中水、热、盐耦合运移的数值模拟[J].华中科技大学学报(自然科学版),2006,34(1):14-16.
    [2-266]张玉军.饱和-非饱和介质水-应力耦合弹塑性二维有限元分析[J].岩石力学与l工程学报,2005,24(17):3045-3051.
    [2-267]张玉军.不连续面对饱和一非饱和介质热-水-应力耦合影响的二维有限元分析[J].岩石力学与工程学报,2006,25(12):2579-2583.
    [2-268]张玉军.核废料处置概念库近场热-水-应力耦合模型及数值分析[J].岩十力学,2007,28(1):17-22,44.
    [2-269]张玉军.核废料地质处置概念库HM耦合和THM耦合过程的二维离散元分析与比较[J].工程力学,2008,25(4):218-223.
    [2-270]张玉军.核废料地质处置近场热-水-应力迁移耦合二维有限元分析[J].岩土工程学报,2007,29(10):1553-1557.
    [2-271]张玉军.考虑膨胀力的非饱和介质热-水-应力耦合二维有限元分析[J].固体力学学报,2006,27(1):31-37.
    [2-272]张玉军.模拟冻一融过程的热-水-应力耦合模型及数值分析[J].固体力学学报,2009,30(4):409-415.
    [2-273]张玉军.气液二相非饱和岩体热-水-应力耦合模型及二维有限元分析[J].岩土工程学报,2007,29(6):902-906.
    [2-274]薛强,梁冰,王起新.多场耦合理论在污染物运移过程中的应用[J].岩石力学与工程学报,2002,21(2):2318-2321.
    [2-275]刘磊,梁冰,刘勇,薛强.垃圾渗滤液污染的耦合动力学行为及数值模拟[J].岩石力学与工程学报,2005,24(1):4951-4955.
    [2-276]薛强,刘磊,梁冰,赵颖,王永波.垃圾填埋场沉降变形条件下气-水-固耦合动力学模型研究[J].岩石力学与工程学报,2007,26(1):3473-3478.
    [2-277]薛强,冯夏庭,梁冰.垃圾填埋气体渗流过程中压力分布的滑脱解[J].应用数学和力学,2005,26(12):1470-1478.
    [2-278]薛强,梁冰,刘晓丽.填埋场中气体运移的非稳定耦合渗流数学模型[J].岩土力学,2002,23(2):191-195.
    [2-279]薛强,梁冰,孙可明,刘晓丽.填埋气体迁移气-热-力耦合动力学模型的研究[J].应用力学学报,2003,20(2):54-59.
    [2-280]薛强,梁冰,刘晓丽,陈贺.土壤水环境中有机污染物运移环境预测模型的研究[J].水利学报,2003,6:48-55.
    [2-281]薛强,梁冰,刘晓丽,李宏艳.污染物在非饱和带内运移的流固耦合数学模型及其渐近解[J].应用数学和力学,2003,24(12):1309-1318
    [2-282]武文华,李锡夔.饱和多孔介质中水力-力学-传质耦合过程的混合有限元法[J].岩土力学,2009,30(5):1477-1482.
    [2-283]刘泽佳,李锡夔.非饱和多孔介质中混合元法的化学-热-渗流-力学耦合的本构模拟[J].计算力学学报,2007,24(4):397-402.
    [2-284]刘泽佳,李锡夔.非饱和土化学-水力-力学耦合行为数值模拟[J].岩土力学,2008,29(11):2977-2982.
    [2-285]李荣涛,李锡夔.高温下混凝土的本构模拟及破坏分析[J].计算力学学报,2007,24(5):550-554.
    [2-286]李锡夔,李荣涛,张雪珊,武文华.高温混凝土中热-湿-气-力学耦合过程数值模拟[J].工程力学,2005,22(4):171-178,240.
    [2-287]王铁行,胡长顺.多年冻土地区路基温度场和水分迁移场耦合问题研究[J].土木工程学报,2003,36(12):93-97.
    [2-288]王铁行.非饱和黄十路基水分场的数值分析[J].岩土工程学报,2008,30(1):4145.
    [2-289]王铁行.土体水热力耦合问题研究意义、现状及建议[J].岩土力学,2005,26(3):488-493.
    [3-1]Truesdell C. Rational Thermodynamics[M].2nd ed. New York:Springer-Verlag,1984.
    [3-2]Bowen R M. Incompressible porous media models by use of the theory of mixtures[J]. In- ternational Journal of Engineering Science,1980,18(9):1129-1148.
    [3-3]Bowen R M. Compressible porous media models by use of the theory of mixtures[J]. Inter-national Journal of Engineering Science,1982,20(6):697-735.
    [3-4]de Boer R. Highlights in the histirical development of the porous media:Toward a consis-tent macroscopic theory[J]. Applied Mechanics Reviews,1996,49(4):201-262.
    [3-5]Hassanizadeh S M, Gray W G. General conservation equations for multiphase sys-tems:1.Averaging procedure[J], Advances in Water Resources,1979,2:131-144.
    [3-6]Hassanizadeh S M, Gray W G. General conservation equations for multiphase sys-tems:2.Mass, momenta, energy, and entropy equations[J], Advances in Water Resources, 1979,2:191-208.
    [3-7]Hassanizadeh S M, Gray W G. General conservation equations for multiphase sys-tems:3. Constitutive theory for porous media[J], Advances in Water Resources, 1980,3:25-40.
    [3-8]Achanta S, Cushman J H. On multicomponent, multiphase thermomechanics with interfac-es[J]. International Journal of Engineering Science,1994,32(11):1717-1738.
    [3-9]Morland L W. A simple constitutive theory for a fluid-saturated porous solids[J]. Journal of Geophysical Research,1972,77(5):890-900.
    [3-10]Goodman M A, Cowin S C. A continuum theory for granular materials[J]. Archive for Ra-tional Mechanics and Analysis,1972,44(4):249-266.
    [3-11]Passman S L, Nunziato J W, Walsh E K. A theory of multiphase mixtures[M]//Truesdell C. Rational Thermodynamics. New York:Springer-Verlag,1984:286-325.
    [3-12]Svendsen B, Hutter K. On the thermodynamics of a mixture of isotropic materials with con-straints[J]. International Journal of Engineering Science,1995,33(14):2021-2054.
    [3-13]Hutter K, Laloui L, Vulliet L. Thermodynamically based mixture models of saturated and unsaturated soils[J]. Mechanics of Cohesive-Frictional Materials,1999,4(4):295-338.
    [3-14]Hassanizadeh S M. Derivation of basic equations of mass transport in porous media, Part 1. Macroscopic balance laws[J]. Advances in Water Resources,1986,9:196-206.
    [3-15]Hassanizadeh S M. Derivation of basic equations of mass transport in porous media, Part 2. Generalized Darcy's and Fick's law[J]. Advances in Water Resources,1986,207-222.
    [3-16]Bennethum L S, Cushman J H. Multiscale, hybrid mixture theory for swelling systems-Ⅰ: balance laws[J]. International Journal of Engineering Science,1996,34(2):125-145.
    [3-17]Bennethum L S, Cushman J H. Multiscale, hybrid mixture theory for swelling systems-Ⅱ: constitutive theory[J]. International Journal of Engineering Science,1996,34(2):147-169.
    [3-18]Bennethum L S, Murad M A, Cushman J H. Macroscale thermodynamics and the chemical potential for swelling porous media[J]. Transport in Porous Media,2000,39(2):187-225.
    [3-19]黄璐,赵成刚.微极性多组分多孔介质材料的混合物理论[J].应用数学与力学,2009,30(5):575-586.
    [3-20]Coleman B D, Noll W. The thermodynamics of elastic materials with heat conduction and viscosity[J]. Archive for Rational Mechanics and Analysis,1963,13:167-178.
    [3-21]Olivella S, Carrera J, Gens A, Alonso E E. Nonisothermal multiphase flow of brine and gas through saline media[J]. Transport in Porous Media,1994,15:271-293.
    [3-22]Olivella S, Carrera J, Gens A, Alonso E E. Porosity variations in saline media caused by temperature gradients coupled to multiphase flow and dissolution/precipitation[J]. Transport in Porous Media,1996,25:1-25.
    [3-23]赵成刚,张雪东.非饱和土中功的表述以及有效应力与相分离原理的讨论[J].中国科学(E辑),2008,38(9):1453-463.
    [3-24]Li X S. Thermodynamics-based constitutive framework for unsaturated soils.1:Theory [J]. Geotechnique,2007,57(5):411-422.
    [3-25]Li X S. Thermodynamics-based constitutive framework for unsaturated soils.2:A basic triaxial model[J]. Geotechnique,2007,57(5):423-435.
    [3-26]Singh P P, Cushman J H, Maier D E. Three scale thermomechanical theory for swelling biopolymeric systems[J]. Chemical Engineering Science,2003,58(17):4017-4035.
    [3-27]Collins I F, Kelly P A. A thermomechanical analysis of a family of soil models[J]. Geotech-nique,2002,52(7):507-518.
    [3-28]Jussila P. Thermomechanics of porous media-Ⅰ:thermohydraulic model for compacteded bentonite[J]. Transport in Porous Media,2006,62:81-107.
    [3-29]Jussila P, Ruokolainen J. Thermomechanics of porous media-Ⅱ:thermo-hydro-mechanical model for compacteded bentonite[J]. Transport in Porous Media,2007,67:275-296.
    [4-1]Muraleetharan K K, Wei C F. Dynamic behaviour of unsaturated porous media:govering equations using the theory of mixtures with interfaces(TMI)[J]. International Journal for Numerical and Analytical Methods in Geomechanisc,1999,23:1579-1608.
    [4-2]Bennethum L S, Murad M A, Cushman J H. Macroscale thermodynamics and the chemical potential for swelling porous media[J]. Transport in Porous Media,2000,39:187-225.
    [4-3]Gray W, Hassanizadeh S. Paradoxes and realities in unsaturated flow theory[J]. Water Re-source Research,1991,27:1847-1854.
    [4-4]Gray W, Hassanizadeh S. Unsaturated flow theory including interfacial phenomena[J]. Wa-ter Resource Research,1991,27:1855-1863.
    [4-5]Schrefler B A. Mechanics and thermodynamics of saturated/unsaturated porous materials and quantitative solutions[J]. Applied Mechanics Reviews,2002,55:351-388.
    [4-6]Schrefler B A. Multiphase flow in deforming porous material [J]. International Journal for Numerical Methods in Engineering,2004,60:27-50.
    [4-7]Murad M, Cushman J. A multiscale theory of swelling porous media:Ⅱ dual porosity mod-els for consolidation of clays incorporation [J]. Transport in Porous Media,1997,28:69-108.
    [4-8]Murad M, Cushman J. Thermomechanical theories for swelling porous media with micro-structure[J]. International Journal of Engineering Science,2000,38:517-564.
    [4-9]Bennethum L, Weinstein T. Three pressures in porous media[J].Transport in Porous Me-dia,2004,54:1-34.
    [4-10]de Boer R, Didwania A K. Two-phase flow and the capillarity phenomenon in porous sol-ids-a continuum thermomechanical approach[J]. Transport in Porous Media,2004,56: 137-170.
    [4-11]Wei C F. Static and dynamic behavior of multiphase porous media:governing equations and finite element implementation[D]. Norman:University of Oklahoma,2001.
    [5-1]Alonso E E, Gens A, Josa A. The constitutive model for partially saturated soils[J]. Geo-technique,1990,40(3):405-430.
    [5-2]Cunningham M R, Ridley A M, Dineen K, Burland J B. The mechanical behaviour of a re-constituted unsaturated silty clay[J]. Geotechnique,2003,53(2):183-194.
    [5-3]Wheeler S J, Sivakumar V. An elasto-plastic critical state framework for unsaturated soil[J]. Geotechnique,1995,45(1):35-53.
    [5-4]Yudhbir. Collapsing behaviour of residual soils [C]//Proceeding of the 7th Southeast Aisa Geotechnical Conference, Hongkong:Institute of Engineers,1982:915-930.
    [5-5]Kane H. Confined compression of loess[C]//Proceeding of the 8th International Conference on Soil Mechanics and Foundation Engineering, Moscow, Russia,1973,2(4/19):115-122.
    [5-6]Geiser F, Laloui L, Vulliet L. Unsaturated soil modelling with special emphasis on un-drained condition [C]//Proceeding of 7th International Symposium on Numerical Models in Geomechanics, Graz, Austria,1999:9-14.
    [5-7]姚仰平,牛雷,韩黎明等.超固结非饱和土的试验研究[J].岩土力学,2011,32(6):1601-1606.
    [5-8]Matyas E L, Radhakrishna H S. Volume change characteristics of partially saturated soils[J]. Geotechnique,1968,18(4):432-448.
    [5-9]Sivakumar V, Tan W C, Murray E J, McKinley J D. Wetting, drying and compression cha-racteristics of compacted clay. Geotechnique,2006,56(1):57-62.
    [5-10]Alonso E E, Lloret A, Gens A, Yang D Q. Experimental behavior of highly expansive double-structure clay[C]//Proceeding of 1st International Conference on Unsaturated Soils, Paris,1995,1:11-18.
    [5-11]Buisson M S R, Wheeler S J. Inclusion of hydraulic hysteresis in a new elasto-plastic framework for unsaturated soils[C]//Proceeding of Experimental evidence and theoretical approaches in unsaturated soils, Trento, Balkema,2000:109-119.
    [5-12]Campanella R G, Mitchell J K. Influence of temperature variations on soil behavior[J]. Journal of the Soil Mechanics and Foundations Division, American Society of Civil Engi-neers,1968,94(3):709-734.
    [5-13]Cekerevac C, Laloui L. Experimental study of thermal effects on the mechanical behaviour of a clay[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2004,28(3):209-228.
    [5-14]Abuel-Naga H M, Bergado D T, Bouazza A, Ramana G V. Volume change behaviour of saturated clays under drained heating conditions:experimental results and constitutive modeling[J]. Canadian Geotechnical Journal,2007,44:942-956.
    [5-15]Tidfors M, Sallfors G. Temperature effect on preconsolidation pressure[J]. Geotechnical Testing Journal,1989,12(1):93-97.
    [5-16]Boudali M, Leroueil S, Srinivasa Murthy B R. Viscous behaviour of natural clays[C]//Pro-ceedings of 13th International Conference on Soil Mechanics and Foundation Engineering, New Delhi,1994:411-416.
    [5-17]Eriksson L G. Temperature effects on consolidation properties of sulphide clays[C]//Pro-ceedings of the 12th International Conference on Soil Mechanics and Foundation Engi-neering, Riode Janeiro,1989,3:2087-2090.
    [5-18]Hueckel T, Borsetto M. Thermoplasticity of Saturated Soils and Shales:Constitutive Equa-tions[J]. Journal of Geotechnical and Geoenvironmental Engineering,1990,116(12): 1765-1777.
    [5-19]Plum R L, Esrig M I. Some temperature effects on soil compressibility and pore water pressure[R]. Effect of Temperature and Heat on Engineering Behavior of Soils, Special Re-port 103, Highway Res. Board, Washington, D.C.,1969:231-242.
    [5-20]Sultan N. Etude du comportement thermo-mecanique del'argile de Boom:experiences et modelisation[D]. These de doctorat de l'Ecole Nationale des Ponts et Chaussees, Paris, 1997.
    [5-21]Passwell R E. Temperature effects on clay consolidation[J]. Journal of the Soil Mechanics and Foundation Division, American Society of Civil Engineering,1967,93(3):9-21.
    [5-22]Baldi G, Hueckel T, Peano A, Pellegrini R. Developments in modeling of ther-mo-hydro-geomechanical behaviour of boom clay and clay-based buffer materials[R]. Commission of the European Communities, Nuclear Science and Technology,1991, EUR 13365/1 and EUR 13365/2.
    [5-23]Cekerevac C, Laloui L. Experimental study of thermal effects on the mechanical behaviour of a clay[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2004,28(3):209-228.
    [5-24]Cui Y J, Sultan N, Delage P A thermomechanical model for saturated clays[J]. Canadian Geotechnical Journal,2000,37:607-620.
    [5-25]Demars K R, Charles R D. Soil volume changes induced by temperature cycling[J]. Cana-dian Geotechnical Journal,1982,19(2):188-194.
    [5-26]Towhata I, Kuntiwattanakul P, Seko I, Ohishi K. Volume change of clays induced by heat-ing as observed in consolidation tests[J]. Soils and Foundations,1993,33(4):170-183.
    [5-27]Cekerevac C. Thermal effects on the mechanical behavior of saturated clay[D]. Swiss Fed-eral Institute of Technology, Lausanne, Switzerland,2003.
    [5-28]Sultan N, Delage P, Cui Y J. Temperature effects on the volume change behavior of Boom clay[J]. Engineering Geology,1997,47:339-350.
    [5-29]Graham J, Tanaka N, Crilly T, Alfaro M. Modified Cam-Clay modeling of temperature ef-fects in clays[J]. Canadian Geotechnical Journal,2001,38:608-621.
    [5-30]赵成刚,张雪东.非饱和土中功的表述以及有效应力与相分离原理的讨论[J].中国科学(E辑),2008,38(9):1453-1463.
    [5-31]Dean E T, Houlsby G T. Editorial. Geotechnique,1990,40(3):405-430.
    [5-32]Cui Y J, Delage P, Sultan N. An elasoplastic model for compacted soil[C]//Proceedings of the 1st International Conference on Unsaturated Soils. Paris,1995:703-709.
    [5-33]Bolzon G, Schrefler B A, Zienkiwicz O C. Elastoplastic soil constitutive laws generalized to partially saturated states[J]. Geotechnique,1996,46(2):279-289.
    [5-34]Jommi C, Di Prisco C. Un semplice approcio teorico per la modellazione del comportamento meccanico di terreni granulari parcialmeute saturi[C]//Conference llruolo dei Fluldi nei Problemi di Ingegnefia Geotecnica.[S.1.]:Mondovi,1994:167-188.
    [5-35]Kohgo Y, Nakano M, Miyazaki T. Theoretical aspects of constitutive modeling for unsatu-rated soils[J]. Soils and Foundations,1993,33(4):49-63.
    [5-36]Modaressi A, Aboubekr N. A unified approach to model the behavior of saturated and unsa-turated soils[C]//Proceedings of the 8th International Conference on Computer Methods and Advances in Geomechanics. Rotterdam:A. A. Balkema,1994:1507-1513.
    [5-37]Pakzad M. Modalisation du comportement hydro-mecanique des argiles gonflantes a faible porosite [D]. Orleans:Unversite d'Orleans,1995.
    [5-38]Gallipoli D, Gens A, Sharma R, et al. An elastoplastic model for unsaturated soil incorpo-rating the effects of suction and degree of saturation on mechanical behavior[J]. Geotech-nique,2003,53(1):123-135.
    [5-39]Wheeler S J, Sharma R S, Buisson M S R. Coupling of hydraulic hysteresis and stress-strain behaviour in unsaturated soils[J]. Geotechnique,2003,45(1):35-53.
    [5-40]Sun D, Sheng D, Sloan S. Elastoplastic modeling of hydraulic and stress-strain behavior of unsaturated soils[J]. Mechanics of Materials,2006,39(3):212-221.
    [5-41]Laloui L. Modelisation du comportement thermo-hydro-mecanique des milieux anelastique[D]. Ecole Centrale de Paris,1993.
    [5-42]Sheng D, Sloan S W, Gens A. A constitutive model for unsaturated soils:thermomechanical and computational aspects[J]. Computational Mechanics,2004,33(6):453-465.
    [5-43]Wei C F, Dewoolkar M M. Formulation of capillary hysteresis with internal state va-riables[J]. Water Resources Research,2006,42(7):w07405.
    [5-44]Sun D, Sheng D, Xiang L, et al. Elastoplastic prediction of hydro-mechanical behaviour of unsaturated soils under undrained conditions[J]. Computers and Geotechnics.2008,35: 845-852.
    [5-45]赵成刚,刘艳.连续孔隙介质土力学及其在非饱和土本构关系中的应用[J],岩土工程学报,2009,31:1324-1335.
    [5-46]Collins I F, Hilder T. A theoretical framework for constructing elastic/plastic constitutive models of triaxial tests[J]. International Journal for Numerical Analytical Methods in Geo-mechanics,2002,26:1313-1347.
    [5-47]Collins I F. A systematic procedure for constructing critical srate models in three dimen-sions[J]. International Journal of Solids and Structures,2003,40(8):4379-4397.
    [5-48]Collins I F, Muhunthan B. On the relationship between stress-dilatancy, anisotropy andplas-tic dissipation for granular materials[J]. Geotechnique,2003,53(7):611-618.
    [5-49]Loret B, Khalili N. A three-phase model for unsaturated soils[J]. International Jouranal for Numerical and Analytical Methods in Geomechanics,2000,24:893-927.
    [5-50]Tamagnini R. An extended Cam-Clay model for unsaturated soils with hydraulic hystere-sis[J]. Geotechnique,2005,54(3):223-228.
    [5-51]Nuth M. Constitutive modeling of unsaturated soils with hydro-geomechanical coupl-ings[D]. Ecole Polytechnique Federale de Lausanne,2009.
    [5-52]Loret B, Khalili N. A three-phase model for unsaturated soils[J]. International Journal for Numerical and Analytical Methods in Geomechanics,2000,24:893-927.
    [5-53]Robinet J C, Rahbaou A, Plas F, Lebon P. A constitutive thermomechanical model for satu-rated clays[J]. Engineering Geology,1996,41:145-169.
    [5-54]孙德安.非饱和土的水力和力学特性及其弹塑性描述[J].岩土力学,2009,30(11):3217-3231.
    [5-55]Laloui L, Nuth M. On the use of the generalized effective stress in the constitutive modeling of unsaturated soils[J]. Computers and Geotechnics,2009,36(1-2):20-23.
    [5-56]Jommi C. Remarks on the constitutive modeling of unsaturated soils[C]//Proceedings of an international workshop on unsaturated soils. Trento, Italy:Balkema,2000:139-154.
    [5-57]Tamagnini R. An extended Cam-Clay model for unsaturated soils with hydraulic hystere-sis[J]. Geotechnique,2004,54(3):223-228.
    [5-58]Giuseppe B, Roberto N. An elastoplastic strain hardening model for soil allowing for hy-draulic bonding debounding effects[J]. International Journal for Numerical and Analytical Methods in Geomechanisc,2009,33:1055-1086.
    [5-59]刘艳,赵成刚,蔡国庆,黄璐.考虑气相硬化影响的非饱和土本构模型[J].科学通报,2010,55(26):2635-2642.
    [5-60]Tang A M, Cui Y J. Modelling of thermomechanical volume change behaviour of com-pacted expansive clays[J], Geotechnique,2009,59(3):185-185.
    [6-1]Barbour L. Nineteenth Canadian Geotechnical Colloquium:The soil-water characteristic curve:a historic perspective[J]. Canadian Geotechnical Journal,1998,35(5):873-894.
    [6-2]Leong E C, Rahardjo H. Review of soil-water characteristic curve equations[J]. Journal of Geotechnical and Geoenvironmental Engineering,1997,12:1106-1117.
    [6-3]Gardner W R. Some steady-state solutions of the unsaturated moisture flow equation with application to evaporation from a water-table[J]. Soil Science,1958,85(4):228-232.
    [6-4]Brooks R H, Corey A T. Hydraulic properties of porous medium-Hydrology Paper [R]. Fort Collins:Colorado State University,1964.
    [6-5]Mckee C R, Bumb A C. The importance of unsaturated flow parameters in designing a monitoring system for a hazardous wastes and environmental emergencies[C]//Proceeding of Hazardous Materials Control Research Institute National Conference, Houston City,1984: 50-58.
    [6-6]Mckee C R, Bumb A C. Flow-testing coalbed methane production wells in the presence of water and gas[J]. SPE Formation Evaluation,1987,2(4):599-608.
    [6-7]Bumb A C. Unsteady-state flow of methane and water in coalbeds[D]. Laramie:University of Wyoming,1987.
    [6-8]Williams J, Prebble R E, Williams W T, et al. The influence of texture, structure and clay mineralogy on the soil moisture characteristic[J]. Australian Journal of Soil Research,1983, 21(1):15-32.
    [6-9]Van Genuchten M T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Soil Science Society of America Journal,1980,44(5):892-898.
    [6-10]Fredlund D G, Xing A. Equations for the soil-water characteristic curve[J]. Canadian Geo- technical Journal,1994,31(4):521-532.
    [6-11]Philip J R, De Vries D A. Moisture movement in porous materials under temperature gra-dients[J]. Transactions, American Geophysical Union,1957,38(2):222-232.
    [6-12]Romero E, Vaunat J. Retention curve of deformable clays[C]//Tarantino A, Mancuso C: Proceedings International Workshop on Unsaturated Soils. Rotterdam City:A. A. Balkema, 2000:91-106.
    [6-13]Romero E, Gens A, Lloret A. Temperature effects on the hydraulic behaviour of an unsatu-rated clay[J]. Geotechnical and Geological Engineering,2001,19(3-4):311-332.
    [6-14]Arifin Y F, Agus S S, Schanz T. Temperature effects on suction characteristic curve of ben-tonite-sand mixtures[C]//Miller G A, Zapata C E, Houston S L, Fredlund D G:Proceedings 4th International Conference on Unsaturated Soils. Carefree Arizona:2006,1314-1325.
    [6-15]Gardner R. Relation of temperature to moisture tension of soil[J]. Soil Science,1955,79: 257-265.
    [6-16]Chahal R S. Effect of temperature and trapped air on the energy status of water in porous media[J]. Soil Science,1964,98:107-112.
    [6-17]Chahal R S. Effect of temperature and trapped air on matric suction[J]. Soil Science,1965, 100(4):262-266.
    [6-18]Haridasan M, Jensen R D. Effect of temperature on pressure head-water content relationship and conductivity of two soils[J]. Soil Science Society of America Journal,1972,36: 703-708.
    [6-19]Hopmans J W, Dane J H. Temperature dependence of soil water retention curves[J]. Soil Science Society of America Journal,1986,50:562-567.
    [6-20]Nimmo J R, Miller E E. The temperature dependence of isothermal moisture vs potential characteristics of soils[J]. Soil Science Society of America Journal,1986,50:1105-1113.
    [6-21]Constantz J. Comparison of isothermal and isobaric water retention paths in nonswelling porous materials[J]. Water Resources Research,1991,27(12):3165-3170.
    [6-22]She H Y, Sleep B E. The effect of temperature on capillary pressure-saturation relationships for air-water and perchloroethylene-water systems[J]. Water Resources Research,1998, 34(10):2587-2597.
    [6-23]Bachmann J, Horton R, Grant S A, Van Der Ploeg R R. Temperature dependence of water retention curves for wettable and water-repellent soils[J]. Soil Science Society of America Journal,2002,66:44-52.
    [6-24]王铁行,卢靖,岳彩坤.考虑温度和密度影响的非饱和黄十十水特征曲线研究[J].岩土力学,2008,29(1):1-5.
    [6-25]Grant S A, Salehzadeh A. Calculation of temperature effects on wetting coefficients of por-ous solids and their capillary pressure functions[J]. Water Resources Research,1996,32(2): 261-270.
    [6-26]弗雷德隆德D G,拉哈尔佐H.非饱和土土力学[M].陈仲颐,张在明,陈愈炯,等译.北京:中国建筑工业出版社,1997.
    [6-27]徐永福,叶翠明,赵书权等.压应力对非饱和土渗透系数的影响[J].上海交通大学学ffi,2004,38(6):982-986.
    [6-28]徐永福,兰守奇,孙德安等.一种能测量应力状态对非饱和土渗透系数影响的新型试 验装置[J].岩石力学与工程学报,2005,24(1):160-164.
    [6-29]刘奉银,张昭.增湿路径对非饱和土水气渗透系数的影响研究[J].水利学报,2008,39(8):934-939.
    [6-30]Jarvis N J, Messing I. Near-saturated hydraulic conductivity in soils of contrasting texture as measured by tension infiltrometers[J]. Soil Science Society of America Journal,1995, 59(1):27-34.
    [6-31]Childs E C, Collis-George G N. The permeability of porous materials[C]//Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences,1950, 201(1066):392-405.
    [6-32]Burdine N T. Relative permeability calculation from pore-size distribution data[J]. Petro-leum Transactions, AIME,1953,198:71-78.
    [6-33]Mualem Y. A new model for predicting the hydraulic conductivity of unsaturated porous media[J]. Water Resources Research,1976,12(3):513-522.
    [6-34]Agus S S, Leong E C, Schanz T. Assessment of statistical models for indirect determination of permeability functions from soil-water characteristic curves[J]. Geotechnique,2003, 53(2):279-282.
    [6-35]张引科,昝会萍,黄义.非饱和土的渗透函数方程[J].西安理工大学学报,2001,17(2):174-177.
    [6-36]刘海宁,姜彤,刘汉东.非饱和土渗透函数方程的间接确定[J].岩土力学,2004,25(11):1795-1799.
    [6-37]Grant S A. Extension of a temperature effects model for capillary pressure saturation rela-tions[J]. Water Resources Research,2003,39(1):1003. doi:10.1029/2000 WR 000193.
    [6-38]高执棣.化学热力学基础[M].北京:北京大学出版社,2006.
    [6-39]Jacinto A C, Villar M V, Roberto G E, Ledesma A. Adaptation of van Genuchten expression to the effects of temperature and density for compacted bentonites[J]. Applied Clay Science, 2009,42:575-582.
    [6-40]Al-Mukhtar M, Qi Y, Alcover J F, et al. Oedometric and water-retention behavior of highly compacted unsaturated smectites[J]. Canadian Geotechnical Journal,1999,36(4):675-684.
    [6-41]Vanapalli S K, Fredlund D G, Pufahl D E. The influence of soil structure and stress history on the soil-water characteristics of a compacted till[J]. Geotechnique,1999,49(2):143-159.
    [6-42]Romero E, Vaunat J. Retention curves of deformable clays[C]//Proceedings International Workshop on Experimental Evidence and Theoretical Approaches in Unsaturated Soils. Trento City:A. A. Balkema,2000:91-106.
    [6-43]Ng C W W, Pang Y W. Influence of stress state on soil-water characteristics and slope sta-bility[J]. Journal of Geotechnical and Geoenvironmental Engineering,2000,126(2): 157-166.
    [6-44]Ma C, Hueckel T. Stress and pore pressure in saturated clay subjected to heat from radioac-tive waste:a numerical simulation[J]. Canadian Geotechnical Journal,1992,29 (6): 1087-1094.
    [6-45]Ma C, Hueckel T. Thermomechanical effects on adsorbed water in clays around a heat source[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1993,17(3):175-196.
    [6-46]Villar M V, Lloret A. Influence of temperature on the hydro-mechanical behaviour of a compacted bentonite[J]. Applied Clay Science,2004,26 (1-4):337-350.
    [6-47]Villar M V. MX-80 bentonite, Thermo-hydro- mechanical characterisation performed at CIEMAT in the context of the prototype project[R]. Madrid:Informes Tecnicos CIEMAT, 2005.
    [6-48]Kunze R J, Uehara G, Graham K. Factors important in the calculation of hydraulic conduc-tivity[J]. Soil Science Society of America Journal,1968,32:760-765.
    [7-1]Mitchell J K, Campanella R G. Creep Studies on Saturated Clays [C]//Laboratory Shear Testing of Soils:a Symposium, ASTM-NRC, Ottawa, Canada,1963:90-110.
    [7-2]Towhata I, Kunttiwattanakul P, Seko I, and Ohishi K. Volume change of clays induced by heating as observed in consolidation tests[J], Soils and Foundations,1993,33(4):170-183.
    [7-3]Bergenstahl L, Gabrielsson A, Mulabdic M. Changes in soft clay caused by increases in temperature[C]//Proceedings of 13th International Conference on Soil Mechanics and Foundation Engineering, New Delhi,1994:1637-1640.
    [7-4]Lingnau B E. Consolidated undrained-triaxial behavior of a sand-bentonite mixture at ele-vated temperature[D], PhD Thesis, The University of Manitoba, Manitoba, Canada,1993.
    [7-5]Kuntiwattanakul P, Towhata I, Ohishi K, Seko I. Temperature effects on undrained shear characteristics on clay[J]. Soils and Foundations,1995,35(1):427-441.
    [7-6]De-Bruyn D, Thimus J F. The influence of temperature on mechanical characteristics of boom clay:the results of an initial laboratory programme[J]. Engineering Geology, 1996,41:117-126.
    [7-7]Delage P, Sultan N, Cui Y J. On the Thermal Consolidation of Boom Clay[J]. Canadian Geotechnical Journal,2000,37:343-354.
    [7-8]陈正汉,谢云,孙树国,方祥位,李刚.温控土工二轴仪的研制及其应用[J].岩土工程学报,2005,27(8):928-933.
    [7-9]Paaswell R E. Temperature effects on clay soil consolidation[J], Journal of The Soil Me-chanics and Foundations Division, ASCE,1967,93(SM3):9-22.
    [7-10]Romero E, Lloret A, Gens A. Development of a new suction and temperature controlled oedometer cell[C]//Proceeding of 1st International Conference on Unsaturated Soils. Paris: Balkema,1995:553-559.
    [7-11]Salager S, Youssoufi M S EL, Saix C. Effect of temperature on water retention phenomena in defonnable soils:theoretical and experimental aspects[J], European Journal of Soil Science,2010,61(2):97-107.
    [7-12]Demars K P, Charles R D. Soil volume changes induced by temperature cycling[J], Cana-dian Geotechnical Journal,1982,19:188-194.