有限时间尺度内分子指向相关的不对称自由扩散
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
扩散现象是一种常见的物质输运现象。传统经典理论将扩散行为等效为目标颗粒在均匀连续分布的介质中的动力学行为,通过建立这样一个简单的理论模型,经典扩散理论可以理解并推导得到目标颗粒在均匀连续分布介质中扩散行为的规律。在宏观尺度内的,经典扩散理论较好的符合真实的扩散现象,但在微观尺度内,由于理论模型中均匀连续分布介质的近似条件不再适用,所以使用与真实情况较接近的、基于分子运动论产生的热力学统计方法来研究类似布朗运动的微观尺度扩散行为。热力学统计方法基于大量长时间样本统计,虽然其基本思想是基于离散的分子运动论,但所使用的物理量通常都是大量样本平均得到的与概率相关的平均值,通过计算所能得到的结果也往往只限于跟概率相关的统计平均状态量,得不到较真实的动力学过程细节。而在实际情况中,存在时间很短的扩散行为,例如分子在细胞之间的扩散,往往只有纳米尺度,在纳秒的时间内就已经完成,在这种情况下,无论是将环境近似为均匀连续介质的经典理论,还是基于大量样本长时间平均统计的热力学统计方法,在理解和分析短时间内扩散行为的动力学细节方面,都存在适用性问题。
     本文从经典分子动力学研究方法出发,模拟并分析分子在短时间内扩散行为的动力学细节信息。通过大量的计算模拟,发现在有限时间内,分子的扩散行为具有与其自身指向相关的不对称现象。在基于分子自身结构的某一个方向上,相同时间间隔内其平均扩散距离要比其他方向上的平均扩散距离要远。这样的不对称现象会随着分子自身指向关联的衰减不断的积累,分子自身指向关联衰减到零之后,平均扩散距离的不对称现象不再积累,而是一直保持,但由于分子自身指向关联衰减的很快(10ps量级),在这样短的时间内,分子扩散的距离并不是很远(0.5nm量级),所以平均扩散距离的不对称现象积累的差值并不是很大(0.1nm量级),这样小的不对称扩散行为差值相比随着时间推移不断增大的扩散距离来说,长时间后确实可以被近似忽略,这也就是经典理论中没有考虑分子指向得到的扩散理论仍能较好的符合宏观扩散现象的原因,但在某些短时间扩散行为中,例如上文所提到的分子在细胞之间的扩散,由于扩散距离只有纳米量级,所以与分子指向相关的不对称扩散差值相比而言具有不可忽视的比例(-10%),所以在短时间的分子扩散行为中,分子指向相关的不对称扩散现象不能象宏观理论被近似忽略。
     通过进一步的分析研究发现,这种在有限时间尺度内分子指向相关的不对称扩散现象发生的原因在于分子自身结构的不对称。由于分子自身不对称的结构,所以在不同方向上与周围离散的介质分子发生相互作用的情况不同,从而影响到分子在不同方向上扩散行为的不同。这也说明了近似分子为球形或质点的宏观经典理论没有得到不对称扩散行为的原因,因为在短时间纳米尺度下,分子自身结构不能被近似忽略。
     最后,通过对多种不同分子进行模拟统计,验证了有限时间尺度内分子指向相关的不对称扩散现象的真实性,并通过建立模型分子和理论计算,证明这种不对称扩散现象产生的主要原因就是分子自身结构在短时间纳米尺度下的扩散行为中不能被近似忽略。
Diffusion is a very common matter transport phenomenon. Classic theory of thediffusion treats the target particle as a ball surrounded by continuously distributed solvent.Through the establishment of such a simple theoretical model, the classical diffusiontheory can understand the diffusion of the target particle in uniform continuous solvent.Within the macro-scale, the classical diffusion theory explains the diffusion phenomenonwell. But at the microscopic scale, the approximation of the theoretical model (uniformcontinuous solvent) is no longer applicable. So the thermodynamics statistical methodsbased on molecular kinetic theory are used for researching the diffusion at micro-scale,like Brownian motion. Although whose basic idea is from the discrete molecfular kinetictheory, thermodynamics and statistical methods are based on the statistics from a largenumber of samples for long time, the physical variables in which are usually obtained byaveraging a large number of samples and always associated with the probability. Theresults obtained by calculation are also the statistical average states associated with theprobability instead of realistic dynamics details. There are diffusion phenomena within veryshort period in reality, for example the molecular diffusion between cells, where thedistance of diffusion is only several nanometers and the time of diffusion also lasts severalnanoseconds. In this case, both the classical theory with the approximation of uniformcontinuous solvent and the statistical methods calculated from a large number of samplesfor long time have issues of applicability on understanding and analyzing the details of thediffusion within short time interval.
     In this paper, using classical molecular dynamics methods we simulate and analyzethe details of the molecular diffusion in short time interval. From a large number ofcomputer simulations, asymmetrical diffusion with orientation-dependence of molecules isfound within limited time. At a certain direction based on the structure of molecule itself,the mean diffusion distance is longer than those at the other directions. Such asymmetry accumulates as the correlation of the molecular orientation decays. After the correlation ofthe molecular orientation decays to zero, the asymmetry of the mean diffusion distancedoes not accumulate any longer. The attenuation of the correlation of the molecularorientation is very fast (about10ps). During such short time interval, the moleculardiffusion is not very far away (about0.5nm). The difference between these asymmetricalmean diffusion distances is also very small (about0.1nm). Compared with the diffusiondistance for long time, this difference can be ignored, that is why the classical theoryexplains the diffusion phenomenon well without considering molecular orientation. But insome diffusion within short time interval, for example, as mentioned above, the moleculardiffusion between cells. Since the diffusion distance is only several nanometers, thedifference is notable compared to the short diffusion distance (~10%). So the asymmetricaldiffusion with orientation-dependence of molecules can not be ignored as the macroscopictheory.
     Through further analysis, it is obtained that the reason of the asymmetrical diffusionwith orientation-dependence of molecules in limited time scale is the asymmetricalstructure of the molecule itself. Due to the asymmetrical structure of the molecule itself, theinteractions between the target molecule and the discrete solvent molecules surroundingare different at different direction of the molecular structure, which affects the moleculardiffusion in different directions. This also explains that the classical diffusion theory has noasymmetry since we treat the molecule as a sphere or a point in which. In case of diffusionat nanometer scale in short time, the structure of the molecule itself can not be ignored.
     Finally, simulations with different molecules manifest that the asymmetrical diffusionwith orientation-dependence of molecules is reliable in limited time interval, and accordingto the analyzation and our theoretical model, it is suggested that this asymmetry is mainlydue to the structure of the molecule itself, which is not ignored in the diffusion atnanometer scale for limited time.
引文
1Fick, A. Poggendorff’s Annalen. et (en anglais), Phil. Mag10,30-39(1855).
    2Einstein, A. The motion of elements suspended in static liquids as claimed in themolecular kinetic theory of heat. Ann Phys-Berlin17,549-560(1905).
    3Batchelor, G. K. An introduction to fluid dynamics.(Cambridge university press,2000).
    4contributors, W. Manhattan Project,(
    5contributors, W. Brownian motion,(
    6Einstein, A. Investigations on the Theory of the Brownian Movement.(DoverPublications. com,1956).
    7Alivisatos, A. P. Less is more in medicine-Sophisticated forms of nanotechnologywill find some of their first real-world applications in biomedical research, diseasediagnosis and, possibly, therapy. Sci Am285,66-73(2001).
    8Sinha, P. M., Valco, G., Sharma, S., Liu, X. W.&Ferrari, M. Nanoengineered devicefor drug delivery application. Nanotechnology15, S585-S589(2004).
    9Gordon, A. T., Lutz, G. E., Boninger, M. L.&Cooper, R. A. Introduction tonanotechnology-Potential applications in physical medicine and rehabilitation. AmJ Phys Med Rehab86,225-241(2007).
    10Angeli, E. et al. Nanotechnology applications in medicine. Tumori94,206-215(2008).
    11Surendiran, A., Sandhiya, S., Pradhan, S. C.&Adithan, C. Novel applications ofnanotechnology in medicine. Indian J Med Res130,689-701(2009).
    12Elloumi-Hannachi, I., Yamato, M.&Okano, T. Cell sheet engineering: a uniquenanotechnology for scaffold-free tissue reconstruction with clinical applications inregenerative medicine. J Intern Med267,54-70(2010).
    13Tans, S. J. et al. Individual single-wall carbon nanotubes as quantum wires. Nature386,474-477(1997).
    14Tans, S. J., Verschueren, A. R. M.&Dekker, C. Room-temperature transistor basedon a single carbon nanotube. Nature393,49-52(1998).
    15White, C. T.&Todorov, T. N. Carbon nanotubes as long ballistic conductors. Nature393,240-242(1998).
    16Postma, H. W. C., Teepen, T., Yao, Z., Grifoni, M.&Dekker, C. Carbon nanotubesingle-electron transistors at room temperature. Science293,76-79(2001).
    17Wu, Z. C. et al. Transparent, conductive carbon nanotube films. Science305,1273-1276(2004).
    18Kong, J. et al. Nanotube molecular wires as chemical sensors. Science287,622-625(2000).
    19Ghosh, S., Sood, A. K.&Kumar, N. Carbon nanotube flow sensors. Science299,1042-1044, doi:10.1126/science.1079080(2003).
    20Sendner, C. et al. Dynamics of end grafted DNA molecules and possible biosensorapplications. Physica Status Solidi a-Applications and Materials Science203,3476-3491(2006).
    21Jensen, K., Kim, K.&Zettl, A. An atomic-resolution nanomechanical mass sensor.Nat Nanotechnol3,533-537(2008).
    22Song, B. et al. Graphene on Au(111): A Highly Conductive Material with ExcellentAdsorption Properties for High-Resolution Bio/Nanodetection and Identification.Chemphyschem11,585-589(2010).
    23Duan, M. Y. et al. A Theoretical Study of a Single-Walled ZnO Nanotube as aSensor for H2O Molecules. Commun Theor Phys58,275-279(2012).
    24Beckstein, O., Biggin, P. C.&Sansom, M. S. P. A hydrophobic gating mechanismfor nanopores. Journal of Physical Chemistry B105,12902-12905(2001).
    25Kral, P.&Shapiro, M. Nanotube electron drag in flowing liquids. Physical reviewletters86,131-134(2001).
    26Kalra, A., Garde, S.&Hummer, G. Osmotic water transport through carbonnanotube membranes. P Natl Acad Sci USA100,10175-10180(2003).
    27Vaitheeswaran, S., Rasaiah, J. C.&Hummer, G. Electric field and temperatureeffects on water in the narrow nonpolar pores of carbon nanotubes. Journal ofChemical Physics121,7955-7965(2004).
    28Yeh, I. C.&Hummer, G. Nucleic acid transport through carbon nanotubemembranes. P Natl Acad Sci USA101,12177-12182(2004).
    29Andreev, S., Reichman, D. R.&Hummer, G. Effect of flexibility on hydrophobicbehavior of nanotube water channels. Journal of Chemical Physics123(2005).
    30Karnik, R. et al. Electrostatic control of ions and molecules in nanofluidic transistors.Nano Lett5,943-948(2005).
    31Wan, R. Z., Li, J. Y., Lu, H. J.&Fang, H. P. Controllable water channel gating ofnanometer dimensions. J Am Chem Soc127,7166-7170(2005).
    32Hassan, S. A., Hummer, G.&Lee, Y. S. Effects of electric fields on proton transportthrough water chains. Journal of Chemical Physics124(2006).
    33Wang, B. Y.&Kral, P. Coulombic dragging of molecules on surfaces induced byseparately flowing liquids. J Am Chem Soc128,15984-15985(2006).
    34Zhang, L. J. et al. Electrochemically controlled formation and growth of hydrogennanobubbles. Langmuir22,8109-8113(2006).
    35Gong, X. J. et al. A charge-driven molecular water pump. Nat Nanotechnol2,709-712(2007).
    36Li, J. Y. et al. Electrostatic gating of a nanometer water channel. P Natl Acad SciUSA104,3687-3692(2007).
    37Joseph, S.&Aluru, N. R. Pumping of confined water in carbon nanotubes byrotation-translation coupling. Physical review letters101(2008).
    38Wang, S., Lu, H. J., Tu, Y. S., Wang, C. L.&Fang, H. P. Gating of Water FlowInduced by Bending of a Carbon Nanotube. Chinese Phys Lett26(2009).
    39Xiu, P. et al. Manipulating Biomolecules with Aqueous Liquids Confined withinSingle-Walled Nanotubes. J Am Chem Soc131,2840-2845(2009).
    40Bonthuis, D. J., Horinek, D., Bocquet, L.&Netz, R. R. Electrokinetics at AqueousInterfaces without Mobile Charges. Langmuir26,12614-12625(2010).
    41Wan, R. Z.&Fang, H. P. Biased transportations in a spatially asymmetric system atthe nano-scale under thermal noise. Sci China Phys Mech53,1565-1567(2010).
    42Su, J. Y.&Guo, H. X. Control of Unidirectional Transport of Single-File WaterMolecules through Carbon Nanotubes in an Electric Field. Acs Nano5,351-359(2011).
    43Wang, Y., Zhao, Y. J.&Huang, J. P. Giant Pumping of Single-File Water Moleculesin a Carbon Nanotube. Journal of Physical Chemistry B115,13275-13279(2011).
    44Rinne, K. F., Gekle, S., Bonthuis, D. J.&Netz, R. R. Nanoscale Pumping of Waterby AC Electric Fields. Nano Lett, doi:10.1021/nl203614t (2012).
    45Wan, R. Z., Hu, J.&Fang, H. P. Asymmetric transportation induced by thermalnoise at the nanoscale. Sci China Phys Mech55,751-756(2012).
    46Zhang, Q. L., Jiang, W. Z., Liu, J., Miao, R. D.&Sheng, N. Water Transport throughCarbon Nanotubes with the Radial Breathing Mode. Physical review letters110,254501(2013).
    47Zahab, A., Spina, L., Poncharal, P.&Marliere, C. Water-vapor effect on theelectrical conductivity of a single-walled carbon nanotube mat. Phys Rev B62,10000-10003(2000).
    48Hummer, G., Rasaiah, J. C.&Noworyta, J. P. Water conduction through thehydrophobic channel of a carbon nanotube. Nature414,188-190(2001).
    49Berezhkovskii, A.&Hummer, G. Single-file transport of water molecules through acarbon nanotube. Physical review letters89,064503(2002).
    50Waghe, A., Rasaiah, J. C.&Hummer, G. Filling and emptying kinetics of carbonnanotubes in water. Journal of Chemical Physics117,10789-10795(2002).
    51Tas, N. R., Mela, P., Kramer, T., Berenschot, J. W.&van den Berg, A. Capillarityinduced negative pressure of water plugs in nanochannels. Nano Lett3,1537-1540(2003).
    52Zhu, F. Q.&Schulten, K. Water and proton conduction through carbon nanotubesas models for biological channels. Biophys J85,236-244(2003).
    53Durkop, T., Getty, S. A., Cobas, E.&Fuhrer, M. S. Extraordinary mobility insemiconducting carbon nanotubes. Nano Lett4,35-39(2004).
    54Mamatkulov, S. I., Khabibullaev, P. K.&Netz, R. R. Water at hydrophobicsubstrates: Curvature, pressure, and temperature effects. Langmuir20,4756-4763(2004).
    55Vaitheeswaran, S., Yin, H., Rasaiah, J. C.&Hummer, G. Water clusters in nonpolarcavities. P Natl Acad Sci USA101,17002-17005(2004).
    56Zhu, F. Q., Tajkhorshid, E.&Schulten, K. Theory and simulation of waterpermeation in aquaporin-1. Biophys J86,50-57(2004).
    57Guo, H. K.&Fang, H. P. Drop size dependence of the contact angle ofnanodroplets. Chinese Phys Lett22,787-790(2005).
    58Li, J. Y. et al. Hydration and dewetting near graphite-CH3and graphite-COOHplates. Journal of Physical Chemistry B109,13639-13648(2005).
    59Majumder, M., Chopra, N., Andrews, R.&Hinds, B. J. Nanoscale hydrodynamics-Enhanced flow in carbon nanotubes. Nature438,44-44(2005).
    60Squires, T. M.&Quake, S. R. Microfluidics: Fluid physics at the nanoliter scale. RevMod Phys77,977-1026(2005).
    61Holt, J. K. et al. Fast mass transport through sub-2-nanometer carbon nanotubes.Science312,1034-1037(2006).
    62Schlagberger, X., Bayer, J., Radler, J. O.&Netz, R. R. Diffusion of a singlesemiflexible charged polymer. Europhys Lett76,346-352(2006).
    63Hummer, G. Water, proton, and ion transport: from nanotubes to proteins. Mol Phys105,201-207(2007).
    64Li, D., Di, Q. F., Li, J. Y., Qian, Y. H.&Fang, H. P. Large slip length over ananopatterned surface. Chinese Phys Lett24,1021-1024(2007).
    65Fang, H. P., Wan, R. Z., Gong, X. J., Lu, H. J.&Li, S. Y. Dynamics of single-filewater chains inside nanoscale channels: physics, biological significance andapplications. J Phys D Appl Phys41(2008).
    66Kofinger, J., Hummer, G.&Dellago, C. Macroscopically ordered water innanopores. P Natl Acad Sci USA105,13218-13222(2008).
    67Lu, H. J. et al. Water permeation and wavelike density distributions inside narrownanochannels. Phys Rev B77(2008).
    68Wang, C. L. et al. High density gas state at water/graphite interface studied bymolecular dynamics simulation. Chinese Phys B17,2646-2654(2008).
    69Wang, L., Zhao, J. J.&Fang, H. P. Water clusters confined in nonpolar cavities byab initio calculations. J Phys Chem C112,11779-11785(2008).
    70Zhang, L. J., Chen, H., Li, Z. X., Fang, H. P.&Hu, J. Long lifetime of nanobubblesdue to high inner density. Sci China Ser G51,219-224(2008).
    71Zhao, Y. C. et al. Individual water-filled single-walled carbon nanotubes ashydroelectric power converters. Adv Mater20,1772-+(2008).
    72Li, H. et al. Peptide Diffusion and Self-Assembly in Ambient Water Nanofilm on MicaSurface. Journal of Physical Chemistry B113,8795-8799(2009).
    73Tu, Y. S. et al. Water-mediated signal multiplication with Y-shaped carbonnanotubes. P Natl Acad Sci USA106,18120-18124(2009).
    74Wan, R. Z. et al. Concerted orientation induced unidirectional water transportthrough nanochannels. Phys Chem Chem Phys11,9898-9902(2009).
    75Mittal, J.&Hummer, G. Interfacial thermodynamics of confined water nearmolecularly rough surfaces. Faraday Discuss146,341-352(2010).
    76Wang, Z. G. et al. Size Dependence of Nanoscale Confinement on ChiralTransformation. Chem-Eur J16,6482-6487(2010).
    77Zhang, L. J., Zhang, X. H., Zhang, Y., Hu, J.&Fang, H. P. The length scales forstable gas nanobubbles at liquid/solid surfaces. Soft Matter6,4515-4519(2010).
    78Zuo, G. H., Huang, Q., Wei, G. H., Zhou, R. H.&Fang, H. P. Plugging into Proteins:Poisoning Protein Function by a Hydrophobic Nanoparticle. Acs Nano4,7508-7514(2010).
    79Pascal, T. A., Goddard, W. A.&Jung, Y. Entropy and the driving force for the fillingof carbon nanotubes with water. P Natl Acad Sci USA108,11794-11798(2011).
    80Qi, W. P., Tu, Y. S., Wan, R. Z.&Fang, H. P. Orientations of special water dipolesthat accelerate water molecules exiting from carbon nanotube. Appl Math Mech-Engl32,1101-1108(2011).
    81Song, B., Yang, J. W., Zhao, J. J.&Fang, H. P. Intercalation and diffusion of lithiumions in a carbon nanotube bundle by ab initio molecular dynamics simulations.Energ Environ Sci4,1379-1384(2011).
    82Wang, C. L., Zhou, B., Xiu, P.&Fang, H. P. Effect of Surface Morphology on theOrdered Water Layer at Room Temperature. J Phys Chem C115,3018-3024(2011).
    83Xiu, P. et al. Urea-Induced Drying of Hydrophobic Nanotubes: Comparison ofDifferent Urea Models. Journal of Physical Chemistry B115,2988-2994(2011).
    84Zuo, G. H., Gu, W., Fang, H. P.&Zhou, R. H. Carbon Nanotube Wins theCompetitive Binding over Proline-Rich Motif Ligand on SH3Domain. J Phys ChemC115,12322-12328(2011).
    85Duan, M. Y. et al. Cation circle times3pi: Cooperative Interaction of a Cation andThree Benzenes with an Anomalous Order in Binding Energy. J Am Chem Soc134,12104-12109(2012).
    86Falk, K., Sedlmeier, F., Joly, L., Netz, R. R.&Bocquet, L. Ultralow Liquid/SolidFriction in Carbon Nanotubes: Comprehensive Theory for Alcohols, Alkanes,OMCTS, and Water. Langmuir28,14261-14272(2012).
    87Waghe, A., Rasaiah, J. C.&Hummer, G. Entropy of single-file water in (6,6) carbonnanotubes. Journal of Chemical Physics137(2012).
    88Wang, C. L. et al. Critical Dipole Length for the Wetting Transition Due to CollectiveWater-dipoles Interactions. Sci Rep-Uk2(2012).
    89Yang, L., Sheng, N., Tu, Y. S., Wang, C. L.&Fang, H. P. Friction force effects onvertical manipulation of nanoparticles. Nucl Sci Tech23,176-180(2012).
    90Zhou, B., Wang, C. L., Xiu, P.&Fang, H. P. Structure and Dynamics of EthanolAdsorbed on a Mica Surface. Commun Theor Phys57,308-314(2012).
    91Zhou, B., Xiu, P., Wang, C. L.&Fang, H. P. Peptide friction in water nanofilm onmica surface. Chinese Phys B21(2012).
    92Qi, W. P. et al. Anisotropic Dielectric Relaxation of the Water Confined in Nanotubesfor Terahertz Spectroscopy Studied by Molecular Dynamics Simulations. Journal ofPhysical Chemistry B117,7967-7971(2013).
    93Ren, X. P. et al. Ethanol promotes dewetting transition at low concentrations. SoftMatter9,4655-4660(2013).
    94Sheng, N., Tu, Y. S., Guo, P., Wan, R. Z.&Fang, H. P. Asymmetrical free diffusionwith orientation-dependence of molecules in finite timescales. Sci China Phys Mech56,1047-1052(2013).
    95Zhang, M., Zuo, G. H., Chen, J. X., Gao, Y.&Fang, H. P. Aggregated GasMolecules: Toxic to Protein? Sci Rep-Uk3(2013).
    96von Hansen, Y., Gekle, S.&Netz, R. R. Anomalous Anisotropic Diffusion Dynamicsof Hydration Water at Lipid Membranes. Physical review letters111(2013).
    97Langevin, P. The theory of brownian movement. Cr Hebd Acad Sci146,530-533(1908).
    98contributors, W. Euler method,(
    99Hairer, E., S. P, N.&Wanner, G. Solving ordinary differential equations I (2ndrevised. ed.): nonstiff problems.(Springer-Verlag New York, Inc.,1993).
    100Verlet, L. Computer Experiments on Classical Fluids.I. ThermodynamicalProperties of Lennard-Jones Molecules. Phys Rev159,98-&(1967).
    101Hockney, R. W., Goel, S. P.&Eastwood, J. W. Quiet High-Resolution ComputerModels of a Plasma. J Comput Phys14,148-158(1974).
    102Pronk, S. et al. GROMACS4.5: a high-throughput and highly parallel open sourcemolecular simulation toolkit. Bioinformatics29,845-854(2013).
    103Swope, W. C., Andersen, H. C., Berens, P. H.&Wilson, K. R. A Computer-Simulation Method for the Calculation of Equilibrium-Constants for the Formation ofPhysical Clusters of Molecules-Application to Small Water Clusters. Journal ofChemical Physics76,637-649(1982).
    104Morse, P. M. Diatomic molecules according to the wave mechanics. II. Vibrationallevels. Phys Rev34,57-64(1929).
    105Jorgensen, W. L.&Tirado-Rives, J. Potential energy functions for atomic-levelsimulations of water and organic and biomolecular systems. P Natl Acad Sci USA102,6665-6670(2005).
    106Allen, M. P.&Tildesley, D. J. Computer simulation of liquid.(Oxford UniversityPress,1987).
    107Hermans, J., Berendsen, H. J. C., Vangunsteren, W. F.&Postma, J. P. M. AConsistent Empirical Potential for Water-Protein Interactions. Biopolymers23,1513-1518(1984).
    108Jorgensen, W. L., Maxwell, D. S.&TiradoRives, J. Development and testing of theOPLS all-atom force field on conformational energetics and properties of organicliquids. J Am Chem Soc118,11225-11236(1996).
    109MacKerell, A. D. et al. All-atom empirical potential for molecular modeling anddynamics studies of proteins. Journal of Physical Chemistry B102,3586-3616(1998).
    110Cornell, W. D. et al. A2nd Generation Force-Field for the Simulation of Proteins,Nucleic-Acids, and Organic-Molecules. J Am Chem Soc117,5179-5197(1995).
    111Lifson, S.&Warshel, A. Consistent Force Field for Calculations of ConformationsVibrational Spectra and Enthalpies of Cycloalkane and N-Alkane Molecules. Journalof Chemical Physics49,5116-&(1968).
    112Rappe, A. K., Casewit, C. J., Colwell, K. S., Goddard, W. A.&Skiff, W. M. Uff, a FullPeriodic-Table Force-Field for Molecular Mechanics and Molecular-DynamicsSimulations. J Am Chem Soc114,10024-10035(1992).
    113Sun, H. COMPASS: An ab initio force-field optimized for condensed-phaseapplications-Overview with details on alkane and benzene compounds. Journal ofPhysical Chemistry B102,7338-7364(1998).
    114Allinger, N. L., Chen, K. S.&Lii, J. H. An improved force field (MM4) for saturatedhydrocarbons. J Comput Chem17,642-668(1996).
    115Mayo, S. L., Olafson, B. D.&Goddard, W. A. Dreiding-a Generic Force-Field forMolecular Simulations. J Phys Chem-Us94,8897-8909(1990).
    116Kaminski, G. A. et al. Development of a polarizable force field for proteins via abinitio quantum chemistry: First generation model and gas phase tests. J ComputChem23,1515-1531(2002).
    117Ren, P. Y.&Ponder, J. W. Consistent treatment of inter-and intramolecularpolarization in molecular mechanics calculations. J Comput Chem23,1497-1506(2002).
    118Ewald, P. P. The calculation of optical and electrostatic grid potential. Ann Phys-Berlin64,253-287(1921).
    119Berendsen, H. J. C., Postma, J. P. M., Vangunsteren, W. F., Dinola, A.&Haak, J. R.Molecular-Dynamics with Coupling to an External Bath. Journal of ChemicalPhysics81,3684-3690(1984).
    120Bussi, G., Donadio, D.&Parrinello, M. Canonical sampling through velocityrescaling. Journal of Chemical Physics126(2007).
    121Nose, S. A Molecular-Dynamics Method for Simulations in the Canonical Ensemble.Mol Phys52,255-268(1984).
    122Hoover, W. G. Canonical Dynamics-Equilibrium Phase-Space Distributions. PhysRev A31,1695-1697(1985).
    123Nose, S.&Klein, M. L. Constant Pressure Molecular-Dynamics for Molecular-Systems. Mol Phys50,1055-1076(1983).
    124Parrinello, M.&Rahman, A. Polymorphic Transitions in Single-Crystals-a NewMolecular-Dynamics Method. J Appl Phys52,7182-7190(1981).
    125.,(