Cu/Ni纳米多层膜微观强化机理及微摩擦学特性的分子动力学模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多层膜材料具有整体材料和任何单一组分薄膜难以达到的各种特殊性能,能满足各种特殊应用需求,近年来这方面的研究引起了人们的极大关注,成为薄膜材料的研究热点之一。对于多层膜的研究目前多集中在多层膜性能的实验测试及强化机理的理论分析,从研究方法上看各有其局限性。本文建立了Cu/Ni 多层膜的纳米压痕、微摩擦磨损的分子动力学模型,模拟了多层膜在纳米压入和微摩擦过程中的应力分布、位错的形成及扩展规律,研究了界面结构的形成及对位错运动、界面强度的影响,建立了膜层性能与微观结构之间的关系,从原子尺度揭示了Cu/Ni 多层膜的强化机理和摩擦学特性。本文所做的创新性工作及有关重要结论可总结如下:
    1.采用OpenGL 三维虚拟现实技术,利用VC++.Net 平台自行开发了分子动力学模拟程序,并运用该程序建立了原子尺度的纳米压入的模型。该模型的特点是定义了刚性的压头,并以与压头相接触的截断半径以内的原子所受的力为压头的载荷。模拟结果表明:在原子尺度材料表现出一定程度的滞弹性,会对纳米压入的结果带来影响,本文采用的解决方法是在卸载前让系统充分地松弛;单晶体材料由于其各向异性,纳米压入过程中最大剪切应力的位置并不在压头的正下方,而且与位错产生的位置也不一致;对于面心立方金属,位错首先产生在{111}滑移面上,并在这些面上进行扩展,最终形成位错环;压头尺寸的变化影响到了材料内部的受力状态,从而影响了对材料性能的评价;而材料在原子尺度的滞弹性使得模拟结果(如产生位错时的压入深度、载荷及最大剪切应力值)是与压入速度相关的。
    2.模拟了Cu-Ni 界面失配位错的网状空间分布及对Cu/Ni 多层膜力学性能的影响。Cu/Ni 多层膜界面的失配位错根据薄膜外延生长的晶面不同分别为三角形和方形的网状结构,并且由于相同界面及不同界面位错间的相互作用而形成稳定的空间网络。该网状结构对滑移位错具有一定的阻碍作用,并且,在外加载荷作用下位错网的变形也需要消耗一定的能量,从而使Cu/Ni 多层膜得以强化。但这种强化作用依赖于Cu/Ni 多层膜的调制波长。当调制波长大于临界值λc时,失配位错的应力场随膜层厚度变化不大;当调制波长小于临界值λc时,失配位错对滑移位错的阻碍作用减弱,而且失配位错所形成的应力集中也使多层膜的性能弱化了。
Multilayers are being increasingly studied for the substantial strength and hardness enhancements which are not simply some combination of the properties of the bulk constituents. The current research on multilayers mainly focuses on experimental tests of the properties and theoretical analysis of their micromechanisms using continuum analysis, both of which have limitations. In this paper, the nanoindentation and dry friction models of Cu/Ni multilayers have been established using Molecular Dynamic (MD) simulations to investigate the stress distribution, dislocation nucleation and moving during nanoindentation and friction, analyze the effects of interface structures on multilayer properties, obtain the micromechanisms of strengthening enhancement and establish the relationship between the microstructures and the tribological properties of Cu/Ni multilayers.
    The innovative work and relative results in this paper are concluded as follows:
    1.This paper established the simulation model of nanoindentation by means of Molecular Dynamic Simulations, defined the loading method and the load of the indenter. In this model, the indenter is rigid, and the load is defined as the sum of all the forces interacting with atoms within the cutoff distance from the indenter surface. The simulations show that the material at atomic scale has viscoelasticity, which will affect the measurement of hardness and elastic modulus. The solution is to drift thoroughly before unloading. Due to the elastic anisotropy of crystal, the position of the maximum shear stress is displaced from the dislocation nucleation position, which is also off the loading axis and occurs nearer the surface than predicted by continuum analysis of cylindrical indentation in isotropic media. For FCC metals, during indentation, the dislocation loops first nucleate and then glide along the {111} plane. The variation of indenter-radius size will affect the stress distribution under the indenter, and the viscoelasticity at atomic scale makes the simulation results (for example, the indent depth, the load and the maximum shear stress when dislocation nucleates) dependent on the loading speed.
    2.The misfit dislocation network structure at the Cu/Ni interface differs according to the crystallographic orientations of the film relative to the substrate. Misfit dislocation network at (111)Cu||(111)Ni interface is a triangle with dislocation lines parallel to [1 10], [1 01] and [ 011]directions, respectively. While at (001)Cu||(001)Ni interface, a square network of edge-type dislocations accommodates the misfit. These misfit dislocations form a stable spatial network in Cu/Ni multilayer structure, baffle the glide dislocations, deform and consume some energy with external loading, and contribute to the strength enhancement of Cu/Ni multilayers. But the contribution is dependent on the wavelength of Cu/Ni multilayers. When the wavelength is more than the critical value λc, the stress distribution of misfit dislocation network does not change too much according to the layer thickness; When the wavelength is less than λc, the baffling of glide dislocations by misfit dislocation network is weakened rapidly with the decreasing of the wavelength. The results show that, considering the effect of misfit
    dislocation network in Cu/Ni multilayer structures, the critical wavelength λc is 12nm. 3.The alternating stress field, which includes the image force due to a modulus difference across an interface and the stress field of misfit dislocation network due to the lattice mismatch, plays an important role in strength enhancement of Cu/Ni multilayers because of its resistance to glide dislocations. The magnitude is dependent on the wavelength. The results show that the alternating stress field together with the interface roughness and diffusion of atoms across an interface makes the shear stress peak when the wavelength is approximately 9 nm, which is more than the 1.9nm predicted by theoretical analysis. 4.Due to the confinement of interfaces, the glide dislocations are trapped in individual Cu layers, and are in positions of equilibrium. This kind of distribution can enhance the strength and ductility of Cu/Ni multilayers, and enhance its wear resistance ability. 5.The mechanism of stick-slip phenomenon varies at different scale. At the atomic scale, the regular arrangement of atoms on the sliding surfaces makes a large and a small “sawtooth”displayed in the friction force curve. The magnitudes of sawtooth depend on the load, sliding speed, and the lattice difference across the sliding surface. 6.The micromechanisms of friction and wear on a Ni thin film are interpreted, and the effects of misfit dislocations, the load and sliding speed on the friction force are analyzed. During friction on the Ni film, the misfit dislocation network will deform and consume a certain amount of energy, prevent the glide dislocations from moving into the substrate, and finally cause laminar wear debris. For a single asperity sliding contact on Ni films, the friction force increases with the increasing load. But the curve between the friction force and load has a horizontal segment, which can be interpreted as the effect of misfit dislocation network, and hence the coefficient is decreased. Due to viscoelasticity at micro scale, the friction force is dependent on velocity, and the relationship is different with different loads. 7 . Cu/Ni multilayers are prepared on Cu substrate using a single-bath electrodeposition method, their microstructures and mechanical properties are studied using SEM, AFM and nanoindentation equipment. The results show that the hardness of Cu/Ni multilayers peaks when the wavelength is 46 nm, and the plot of hardness vs. wavelength agrees with the theoretical analysis. This thesis has been supported by the National Science Foundation of China (Approval No. 50071014) and the Ministry of Communication of China (Approval No. 200232522504)
引文
1. 严立,黑祖昆,孙俊才.金属表面性质与表面改性.大连:大连海事大学出版社.1998
    2. 徐滨士.纳米表面工程.北京:化学工业出版社.2004
    3. Stephen J.Lloyd, Jon M.Molina-Aldareguia.Multilayered materials: a palette for the materials artist.Phil.Trans.R.Soc.Lond.A, 2003,361:2931-2949
    4. Misra, H.Kung, J.D.Embury. Preface to the viewpoint set on: deformation and stability of nanoscale metallic multilayers. Scripta Materiallia, 2004,50:707-710
    5. S.PalDey, S.C.Deevi. Single layer and multilayer wear resistant coatings of (Ti, Al)N: a review. Materials Science and Engineering A, 2003, 342: 58-79
    6. G.S.Was, T.Foecke.Deformation and fracture in microlaminates.Thin Solid Films, 1996, 286 : 1-31
    7. Philip C.Yashar, William D.Sproul. Nanometer scale multilayered hard coating. Vacuum, 1999, 55: 179-190
    8. Sam Zhang, Deen Sun, Yongqing Fu, et al.Recent advances of superhard nanocomposite coatings: a review.Surface and Coating Technology, 2003, 167:113~119
    9. 唐伟忠著.薄膜材料制备原理、技术及应用.北京:冶金工业出版社,2003
    10. 严新平,孙俊才.载运工具运用工程若干研究的新进展.北京:人民交通出版社,2003
    11. Yang W.M.C, Tsakalakos T., Hilliard J. E., Enhanced elastic modulus in composition-modulated gold-nickel and copper-palladium foils. Journal of Applied Physics, 1977, 48 (2) : 876~879.
    12. Chu X., Barnett S.A., Wong M.S., Sproul W.D., Reactive unbalanced magnetron sputter deposition of polycrystalline TiN/NbN superlattice coatings. Surf Coat Technol 1993;57: 13-18.
    13. Shinn, M., Hultman, L., Barnett, S.A., Growth, structure, and microhardness of epitaxial TiN/NbN superlattices, Journal of Materials Research, 1992, 7(4):901-911
    14. Harish C.Barshilia, K.S.Rajam. Characterization of Cu/Ni multilayer coatings by nanoindentation and atomic force microscopy. Surface and Coatings Technology, 2002, 155 : 195-202.
    15. S. Tixier, P. B?ni, H. Van Swygenhoven. Hardness enhancement of sputtered Ni3Al/Ni multilayers. Thin Solid Films, 1999, 342: 188-193
    16. J.A.Rudd, T.R.Jervis, F.Spaepen . Nanoindentation of Ag/Ni multilayered thin films.J.Appl.Phys., 1994,75(10) :4969~4974
    17. Wenchao Wang, Raj N. Singh. Influence of the microstructure on the mechanical properties of Ni/Sn multilayered composites. Materials Science and Engineering A. 1999, 271: 306–314
    18. A.C. Lewis, D. Josell, T.P. Weihs. Stability in thin .lm multilayers and microlaminates: the role of free energy, structure, and orientation at interfaces and grain boundaries. Scripta Materialia. 2003, 48: 1079–1085
    19. S.Labat, C.Guichet, O.Thomas, et al., Microstructural analysis of Au/Ni multilayers interfaces by SAXS and STM. Applied Surface Science. 2002, 188: 182-187
    20. J.D.Embury, C.W.Sinclair. The mechanical properties of fine-scale two-phase materials. Materials Science and Engineering A. 2001,319-321: 37-45
    21. S.Labat, F.Bocquet, B.Gills, O.Thomas. Stresses and interfacial structure in Au-Ni and Ag-Cu metallic multilayers. Scripta Materialia. 2004, 50: 717-721
    22. 许俊华,顾明元,李戈扬.纳米多层膜力学性能研究进展.宇航材料工艺.1999,3:7-11
    23. 李振明.纳米铜/镍多层膜的耐磨性研究.材料开发与应用.1999,14(5):17-19
    24. Knotek, O., Loeffler, F., Kraemer, G., Multicomponent and multilayer physically vapour deposited coatings for cutting tools. Surface and Coatings Technology ,1992 ;54/ 55 :241~248
    25. E.Martínez,J.Romero,A.Lousa,J.Esteve. Wear behavior of nanometric CrN/Cr multilayers. Surface and Coatings Technology. 2003,163-164:571-577
    26. 何建立,刘长洪,李文治等.微组装纳米多层材料的力学性能研究.清华大学学报.1998,38(10):16-19
    27. Lawrence H.Friedman. Towards a full analytic treatment of the Hall-Petch Behavior in multilayers: putting the pieces together. Scripta Materialia. 2004, 50: 763-767
    28. F.Spaepen, D.Y.W.Yu, A comparison of the strength of multilayers, thin films and nanocrystalline compacts. Scripta Materialia. 2004, 50 : 729-732
    29. Anderson P.M., Foecke T., Hazzledine P.M., Dislocation-based Deformation Mechanisms in Metallic Nanolaminates, Materials Research Society Bulletin. 1999, 24(2):27-33.
    30. X. Chu and S. A. Barnett, Model of superlattice yield stress and hardness enhancements, J.Appl. Phys., 1995, 77 (9): 4403.
    31. 李戈扬,许俊华,顾明元.纳米多层膜的微结构与超硬效应.上海交通大学学报.2001,35(3):457-461
    32. Peter Anderson.Fracture in Multilayers.Scr.Metall.Mater..1992,27(6):687-692
    33. Cammarata R C, Sieradzki K. Effects of surface stress on the Elastic moduli of thin films and super-lattices. Physics Review Letters, 1989, 62: 2005~2008.
    34. Streitz F H. Elastic properties of metallic films and multilayers. Ph. D. Thesis , Johns Hopkins University , Baltimore , MD ,1992
    35. Baibich M.N. , Broto J. M., Fert A.. Giant Magnetoresistance of (001) Fe/(001) Cr Magnetic Superlattices . Phys Rev Lett , 1988 , 61 (21) :2472 -2475.
    36. 卢正启.自旋阀巨磁电阻效应及其应用.物理,1998,27(6):373-376
    37. OParkin S.S.P., More N., Roche K.P.. Oscillation in exchange coupling and magnetoresistance in metallic superlattice structures:Co/Ru, Co/Cr, and Fe/Cr. Phys Rev Lett , 1990 , (64) :2304.
    38. 高玉周.耐磨梯度表面层的制备及其滑动摩擦学特性的研究.大连:大连海事大学博士论文,2000
    39. L.Maillé, P.Aubert, C.Sant, P.Garnier. A mechanical study of W-N/W multilayers. Surface and Coatings Technology. 2004, 180-181: 483-487
    40. Jing Wang, Wen-Zhi Li, Heng-De Li, et al. Nanoindentation study on the mechanical properties of TiC/Mo multilayers. Thin Solid Films. 2000,366: 117-120
    41. S.Tixier, P.B?ni, H.Van Swygenhoven. Hardness enhancement of sputtered Ni3Al/Ni multilayers. Thin Solid Films. 1999, 342: 188-193
    42. F.L.Shan, Z.M.Gao, Y.M.Wang. Microhardness evaluation of Cu-Ni multilayered films by X-ray diffraction line profile analysis. Thin Solid Films. 1998, 324: 162-164
    43. J.McKeown, A.Misra, H.Kung, et al. Microstructures and strength of nanoscale Cu-Ag multilayers. Scripta Materialia. 2002,46: 593-598
    44. A.Misra, J.P.Hirth, R.G.Hoagland, et al. Dislocation mechanisms and symmetric slip in rolled nano-scale metallic multilayers. Acta Materialia. 2004, 52: 2387-2394
    45. R.Schneider. High-resolution analytical TEM of nanostructured materials. Anal Bioanal Chem. 2002, 374:639-645
    46. M.R.Stoudt, R.E.Ricker, R.C.Cammarata. The influence of a multilayered metallic coating on fatigue crack nucleation. International Journal of Fatigue. 2001,23: S215-S223
    47. Sung Hoon Kim, Houng Joon Baik, Dongil Kwon. Analysis of interfacial strengthening from composite hardness of TiN/VN and TiN/NbN multilayer hard coatings. Surface & Coatings Technology. 2004,187: 47-53
    48. K.Komvopoulos, Finite Element Analysis of a Layered Elastic Solid in Normal Contact With a Ragid Surface, Journal of Tribology, 1988,110:477
    49. E.R.Kral, Komvopoulos,D.B.Bogy,Finite Element Analysis of Repeated Indentation of an Elasti-Plastic Layered Medium by a Rigid Sphere, Part I: Surface Results, Journal of Applied Mechanics, 1995,62:20
    50. 潘新祥.耐磨梯度表面层滑动接触的有限元分析及其摩擦学特性的研究.大连:大连海事大学博士论文,1999
    51. 杨小震著.分子模拟与高分子材料.北京:科学出版社,2002
    52. Adrienne V.Lam, P.M.Anderson. Yield maps for nanoscale metallic multilayers. Scripta Materialia. 2004, 50: 757-761
    53. M.Verdier, M.Fivel, I.Groma. Mesoscopic scale simulation dynamics in fcc metals: principles and applications. Modelling Simul. Mater. Sci. Eng. 1998, 6: 755-770
    54. M.Rhee, J.S.Stolken, V.V.Bulatov, et al. Dislocation dynamics using anisotropic elasticity: methodology and analysis. Materials Science and Engineering A. 2001, 309-310:288-293
    55. 张田忠,郭万林.纳米力学的数值模拟方法.力学进展.2002,32(2):174-188
    56. S.J.Zhou, D.L.Preston, P.S.Lomdahl, et al. Large-scale molecular dynamics simulations of dislocation intersection in Copper. Science, 1998, 279:1525
    57. John A.Moriarty, Vaclav Vitek, Vasily V.Bulatov, Sidney Yip. Atomistic simulations of dislocations and defects. Journal of Computer-Aided Materials Design. 2002,9:99-132
    58. J.E.Sinclair. The influence of the interatomic force law and of kinks on the propagation of brittle cracks. Phil.Mag., 1975, 31:647-671
    59. P.C. Gehlen. Crack extension in a model of α-iron. Scr. Mter., 1973,7:1115-1118
    60. V.B.Shenoy, R. Miller, E.B.Tadmor, et al., An adaptive finite element approach to atomic-scale mechanics, Journal of the Mechanics and Physics of Solid, 1999,47:611-642
    61. J. Knap, M. Ortiz.. An analysis of the quasicontinuum method. Journal of the Mechanics and Physics of Solids. 2001,49: 1899–1923
    62. R. Miller, M. Ortiz, R. Phillips, V.B.Shenoy, Tadmor. Quasicontinuum models of fracture and plasticity. Engineering Fracture Mechanics. 1998, 61:427-444
    63. L.E. Shilkrot, W.A. Curtin, R.E. Miller. A coupled atomistic-continuum model of defects in solids. Journal of the Mechanics and Physics of Solids. 2002, 50: 2085–2106
    64. E.B.Tadmor, M. Ortiz and R. Phillips, Quasicontinuum analysis on defects in solids, Phil. Mag. A, 1996, 73: 1529.
    65. V.B.Shenoy, R.Miller, E.B.Tadmor, R.Phillips, and M.Ortiz, Quasicontinuum Models of Interfacial Structure and Deformation, Phys. Rev. Lett. 1998,80 (4): 742
    66. E.B.Tadmor, R.Miller, R.Phillips, M.Ortiz.Nanoindentation and incipient plasticity.J. Mater. Res., 1999,14(6): 2233-2250
    67. J. Knap and M.Ortiz.Effect of indenter-radius on Au (001) nanoindentation.Physical Review Letters, 2003, 90 (22): 226102-226106
    68. H.Rafii-Tabar, L Hua and M.Cross, A multi-scale atomistic-continuum modeling of crack propagation in a two-dimensional macroscopic plate, J.Phys.:Condens. Matter. 1998,10: 2375-2387
    69. F.F.Abraham, J.Q.Broughton, N.Bernstein et al., Spanning the continuum to quantum length scales in a dynamic simulation of brittle fracture, Europhys.Lett., 1998,44 (6): 783-787
    70. R.E.Rudd and J.Q.Broughton, Atomistic simulation of MEMS resonators through the coupling of length scales, Journal of Modeling and Simulation of Microsystems, 1999, 1 (1):29-38
    71. Aiichiro Nakano, Martina E.Bachlechner, Rajiv K.Kalia, et al., Multiscale simulation of nanosystems, Computing in Science & Engineering 2001, 56-66
    72. F. F.Abraham, N. Bernstein, J.Q. Broughton, et al., Dynamic fracture of Silicon: Concurrent simulation of quantum electrons, classical atoms, and the continuum solid, MSR BULLETIN/MAY 2000, 27-32
    73. J.Q. Broughton, N. Bernstein, E. Kaxiras et al., Concurrent coupling of length scales: Methodology and application, Phys. Rev. B, 1999,60: 2391.
    74. F. F. Abraham, J.Q. Broughton, N. Bernstein et al., Spanning of the length scales in dynamic simulation. Computers in Physics. 1998, 12: 538-546.
    75. F.F. Abraham, J.Q. Broughton, N. Bernstein and E. Kaxiras, Spanning the continuum to quantum length scales in dynamic simulation of brittle fracture, Europhys. Lett. 1998,44(6): 783-787.
    76. R.E. Rudd and J.Q. Broughton, Atomistic Simulation of MEMS Resonators through the Coupling of Length Scales, J. Modeling and Simulation of Microsystems. 1999,1: 29-38.
    77. R.E. Rudd and J.Q. Broughton, Coupling of Length Scales and Atomistic Simulation of MEMS Resonators, Proc. SPIE, Vol. 3680 (DTM '99), B. Courtois, et al., eds. (SPIE, Bellingham, Washington, 1999) pp. 104-111.
    78. R.E. Rudd and J.Q. Broughton, Coupling of Length Scales and Atomistic Simulation of a MEMS device. Proc. MSM '98 (Computational Publications, Boston, 1998): 287-290.
    79. R.E. Rudd and J. Q. Broughton, Concurrent Coupling of Length Scales in Solid State Systems. Phys. Stat. Solid. 2000,217:251-291.
    80. M.S.Daw and M.I.Baskes,Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals,Phys. Rev. B ,1984,29 (12): 6443
    81. G.J.Ackland G.Tichy V.Vitek and M.W.Finnis,Simple N-body potential for the noble metals and nickel,Philosophical Magazine A, 1987, 56 ( 6): 735-756
    82. G.J.Ackland, V.Vitek. Many-body potentials and atomic-scale relaxations in noble-metal alloys. Physical Review B. 1990-II, 41(15):10324
    83. F.Gao and D.J.Bacon. Point-defect and threshold displacement energies in Ni3Al —I. Point-defect properties. Philosophical Magazine A. 1993,67(2): 275-288
    84. G.J.Ackland. Computer simulation of point defect properties in dilute Fe-Cu alloy using a many-body interatomic potential. Philosophical Magazine A. 1997, 75(3): 713-732
    85. S. M. Foiles, M. I. Baskes, and M. S. Daw,Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys,Phys. Rev. B, 1986,33 (12): 7983
    86. S.M.Foiles,Calculation of the surface segregation of Ni-Cu alloys with the use of the embedded-atom method,Phys. Rev. B, 1985,32 (12): 7685
    87. S.M.Foiles and J.B.Adams. Thermodynamic properties of fcc transition metals as calculated with the embedded-atom method. Phys. Rev. B, 1989, 40(9): 5909
    88. R.A.Johnson,Analytic nearest-neighbor model for fcc metals,Phys. Rev. B, 1988,37(8): 3924
    89. R.A.Johnson,Alloy models with the embedded-atom method,Phys. Rev. B, 1989,39(17): 12554
    90. R.A.Johnson,Phase stability of fcc alloys with the embedded-atom method,Phys. Rev. B, 1990,41(14):9717
    91. H.N.G.Wadley, X.W.Zhou, R.A.Johnson and M.Neurock.Mechanism, Models and Methods of Vapor Deposition.Prog.Mater.Sci., 2001,46:329
    92. X. W. Zhou, H. N. G. Wadley1, R. A. Johnson.Atomic Scale Structure Of Sputtered Metal Multilayers.Acta Mater. 2001,49: 4005–4015
    93. X.W.Zhou, H.N.G.Wadley, Atomistic simulations of low energy ion assisted vapor deposition of metal multilayers. Journal of Applied Physis. 2000, 87(5):2273-2281
    94. X.W.Zhou, H.N.G.Wadley, Atomistic simulations of vapor deposition of Ni/Cu/Ni multilayers: incident adatom angle effects. Journal of Applied Physis. 2000, 87(1):553-563
    95. X.W.Zhou, H.N.G.Wadley, The low energy ion assisted control of interfacial structure: ion incident energy effects. Journal of Applied Physis. 2000, 87(12):8487-8496
    96. X.W.Zhou, H.N.G.Wadley,Low energy ion assisted control of interfacial structure: ion fluence effects. Journal of Applied Physis. 2000, 88(10):5737-5743
    97. H.Rafii-Tabar. Modelling the nano-scale phenomena in condensed matter physics via computer-based numerical simulations. Phys. Rep. 2000, 325: 239-310
    98. M.Wen A.H.W.Ngan. Atomistic simulation of kink-pairs of screw dislocations in body-centred cubic iron. Acta Mater. 2000, 48: 4255-4265
    99. S.J.Zhou, D.M.Beazley, P.S.Lomdahl, and B.L.Holian. Large-scale Molecular Dynamics of Three-Dimensional Ductile Failure. Phys. Rev. Lett. 1997, 78(3): 479
    100. M.I.Baskes, J.S.Nelson and A.F.Wright. Semiempirical modified embedded-atom potentials for silicon and germanium. Phys. Rev. B. 1989, 40(9): 6085
    101. M.I.Baskes. Modified embedded-atom potentials for cubic materials and impurities. Physical Review B. 1992-I, 46(5):2727
    102. Somchart Chantasiriwan and Frederick Milstein. Embedded-atom models of 12 cubic metal incorporating second-and third-order elastic-moduli data. Phys. Rev. B. 1998, 58(10): 5996
    103. X.W.Zhou, H.N.G.Wadley, Misfit dislocations in Gold/Permalloy multilayers. Philosophical Magazine. 2004, 84(2):193-212
    104. Daan Frenke and Berend Smit.Understanding Molecular Simulation.San Diego: Academic Press 1996
    105. 温诗铸著.纳米摩擦学.北京:清华大学出版社,1998
    106. 文玉华,朱如增,周富信等.分子动力学模拟的主要技术.力学进展.2003,33(1):65-73
    107. Landman U., Luedtke W.D., Nancy A.B., Atomistic mechanisms and dynamics of adhesion, nanoindentation, and fracture, Science, 1990,248:454-461
    108. Landman U., Luedtke W.D., Nanomechanics and dynamics of tip-substrate interactions, J.Vac.Sci.Tech.B, 1991,91:414-423
    109. Krystn J.Van Vliet, Ju Li, Ting Zhu, et al.Quantifying the early stages of plasticity through nanoscale experiments and simulations.Physical Review B. 2003, 67:104105
    110. Ju Li, Alfonso H.W.Ngan, Peter Gumbsch, Atomistic modeling of mechanical behavior, Acta Materialia, 2003,51: 5711-5742
    111. Ju Li, Krystn J.Van Vliet, Ting Zhu, et al.Atomistic mechanisms governing elastic limit and incipient plasticity in crystals.NATURE. 2002,418: 307-310
    112. Ju Li, Sidney Yip.Atomistic measures of materials strength.CMES, 2002,3(2):219-227
    113. A.Gouldstone, K.J.Van Vliet, S.Suresh, Nanoindentation: Simulation of defect nucleation in a crystal, Nature (London), 2001,14:656
    114. M.R.S?rensen, K.W.Jacobsen, P.Stoltze, Simulations of atomic-scale sliding friction, Physical Review B, 1996,53:2101-2113
    115. K.W.Jacobsen, J.K.Norskov, M.J.Puska. Interatomic interaction in the effective-medium theory. Phys. Rev. B 35, 14 (1987), 7423
    116. A.Buldum, S.Ciraci, Atomic-scale study of dry sliding friction, Physical Review B, 1997-Ⅱ,55(4):2606-2611
    117. A.Buldum, S.Ciraci, Inder P.Batra.Contact, nanoindentation, and sliding friction.Physical Review B, 1998-Ⅱ,57(4):2468-2476
    118. Liangchi Zhang,Hiroaki Tanaka,Towards a deeper understanding of wear and friction on the atomic scale-a molecular dynamics analysis,Wear. 1997,211:44-53
    119. Jeong-Du Kim, Chan-Hong Moon, A study on microcutting for the configuration of tools using molecular dynamics, Journal of Materials Processing Technology, 1996,59:309-314
    120. K.Maekawa, A.Itoh, Friction and tool wear in nano-scale machining—a molecular dynamics approach, Wear. 1995,188:115-122
    121. R.Komanduri, N.Chandrasekaran, L.M.Raff, MD simulation of indentation and scratching of single crystal aluminum, Wear. 2000,240: 113-143
    122. R.Komanduri, N.Chandrasekaran, L.M.Raff, MD simulation of nanometric cutting of single crystal aluminum-effect of crystal orientation and direction of cutting, Wear. 2000,242: 60-88
    123. J.Belak, D.B.Boercker, I.F.Stowers, A review of recent progress in the field of nanotribology. MRS Bulletin, 1993,18(5):55-60
    124. 黎明,温诗铸.纳米压痕技术及其应用.中国机械工程.2002,13(16):1437~1439
    125. W.C.Oliver, G.M.Pharr.An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments.Journal of Materials Research, 1992, 7, 1564~1583.
    126. Johnson KL.Contact mechanics.Cambridge: Cambridge University Press, 1985.
    127. Jeremy Thurn and Robert F.Cook. Simplified area function for sharp indenter tips in depth-sensing indentation. J.Mater.Res.,2002,17(5):365
    128. Mark R. Vanlandingham, Review of instrumented indentation, Journal of Research of the National Institute of Standards and Technology, 2003,108:249-265
    129. E.Martinez,J.Romero,A.Lousa,J.Esteve, Nanoindentation stress-strain curves as a method for thin-film complete mechanical characterization: application to nanometric CrN/Cr multiplayer coatings.Appl.Phys.A. 2003,77:419-426
    130. Cynthia L.Kelchner, S.J.Plimpton, J.C.Hamilton.Dislocation nucleation and defect structure during surface indentation.Physical Review B. 1998,58(17): 11085-11088
    131. J.Chen, W.Wang, L.H.Qian, K.Lu. Critical shear stress for onset of plasticity in a nanocrystalline Cu determined by using nanoindentation. Scripta Materialia. 2003,49:645-650
    132. B.Wolf.Inference of mechanical properties from instrumented depth sensing indentation at tiny loads and indentation depths.Cryst.Res.Technol.,2000,35(4):377~399
    133. R.A.Andrievskiǐ, G.V.Kalinnikov, N.Hellgren et al. Nannoindentation and strain characteristics of nanostructured Boride/Nitride films. Physics of the Solid State. 2000,42 (9):1671-1674
    134. W.Wang, C.B.Jiang, K.Lu. Deformation behavior of Ni3Al single crystals during nanoindentation. Acta Materialia. 2003,51: 6169-6180
    135. W.Wang, K.Lu. Nanoindentation measurement of hardness and modulus anisotropy in Ni3Al single crystals. J.Mater.Res., 2002,17(9):2314-2320
    136. J.A.Rudd, T.R.Jevis, F.Spaepen. Nanoindentation of Ag/Ni multilayered thin films. J.Appl.Phys. 1994,75(10): 4969-4974
    137. Alex A.Volinsky, William W.Gerberich.Nanoindentation techniques for assessing mechanical reliability at the nanoscale.Microelectronic Engineering.2003, 69: 519-527
    138. O.Nakonechna, T.Cselle, M.Morstein, A.Karimi. On the behaviour of indentation fracture in TiAlSiN hard thin films. Thin Solid Films. 2004,447-448:406-412
    139. 余永宁.金属学原理.北京:冶金工业出版社.2003:298-299
    140. 周惠久,黄明志.金属材料强度学.北京:科学出版社.1989:66-74
    141. Lawrence H.Friedman. Towards a full analytic treatment of the Hall-Petch Behavior in multilayers: putting the pieces together. Scripta Materialia. 2004,50: 763-767
    142. F.Spaepen, D.Y.W.Yu, A comparison of the strength of multilayers, thin films and nanocrystalline compacts. Scripta Materialia. 2004,50: 729-732
    143. M.Tamura. Two groups of misfit dislocations in GaAs on Si. Appl.Phys.A. 1996,63:359-370
    144. A.Levay, G.M?bus, V.Vitek, et al., Structure of misfit dislocations in Niobium-sapphire interfaces and strength of interfacial bonding: an atomistic study, Acta mater. 1999,47(15): 4143-4152
    145. F.Ernst, A.Recnik, P.A.Langjahr, et al. Atomistic structure of misfit dislocations in SrZrO3/SrTiO3 interfaces. Acta mater. 1999, 47(1): 183-198
    146. Y.Yao and T.C.Wang, The modified Peierls-Nabarro model of interfacial misfit dislocation, Acta Mater. 1999,47(10):3063-3068
    147. D.Yu.Baskov, M.Yu.Gutin, I.A.Ovid’ko and A.G.Sheinerman, Misfit dislocation walls in multilayered films, Mater.Phys.Mech..2000,2:10-14
    148. Z.Jin, S.Yang, H.An, et al. Effects of misfit dislocation interaction and 90°-type misfit dislocations on strain relaxation behavior in strained epilayer. Solid-State Electronics, 1999,43:355-358
    149. Wilfried Wunderlich, Masayuki Fujimoto, Hitoshi Ohsato. Molecular dynamics calculations about misfit dislocations at the BaTiO3/SrTiO3 interface. Thin Solid Films. 2000,375:9-14
    150. X.W.Zhou and H.N.G.Wadley, Misfit dislocations in gold/Permalloy multilayers, Philosophical Magazine, 2004,84(2):193-212.
    151. S.L.Lehoczky.Strength Enhancement in Thin-Layered Al-Cu Laminates.J. Appl. Phys., 1978,49: 5479
    152. R.G.Hoagland, R.J.Kurtz, C.H.Henager Jr. Slip resistance of interfaces and the strength of metallic multilayer composites. Scripta Materialia. 2004,50: 775-779
    153. Y.Q.Sun. Strengthening of fully-lamellar TiAl: a dislocation pileup analysis. Materials Science and Engineering A.1997,239-240:131-136
    154. B.T.Chen, C.T.Hu, Sanboh Lee. Dislocations near a sliding interface. International Journal of Engineering Science. 1998,36 : 1011-1034
    155. J.D.Embury, C.W.Sinclair. The mechanical properties of fine-scale two-phase materials. Materials Science and Engineering A, 2001,319-321: 37-45
    156. J.S. Koehler, Attempt to Design a Strong Solid, Phys. Rev. B. 1970, 2 (2): 547.
    157. J.D.Embury , J.P.Hirth.On Dislocation Storage and the Mechanical response of fine scale microstructures.Acta metall. mater. ,1994,42(6): 2051~2056
    158. Hanchen Huang, G.H.Gilmer, Multi-lattice Monte Carlo model of thin films. Journal of Computer-Aided Materials Design, 1999,6:117-127
    159. Liang Dong, Richard W.Smith, David J.Srolovitz, A two-dimensional molecular dynamics simulation of thin film growth by oblique deposition. J.Appl.Phys.1996,80(10):5682
    160. Liang Dong, David J.Srolovitz, Texture development mechanisms in ion beam assisted deposition. J.Appl.Phys.1998,84(9):5261
    161. Liang Dong, Jurgen Schnitker, Richard W.Smith, David J.Srolovitz. Stress relaxation and misfit dislocation nucleation in the growth of misfitting films: a molecular dynamics simulation study. J.Appl.Phys.1998,83(1):217-227
    162. Liang Dong, David J.Srolovitz, Mechanism of texture in ion-beam-assisted deposition. Appl. Phys. Lett. 1999,75(4):584-586
    163. Richard W.Smith, David J.Srolovitz, Void formation during film growth: a molecular dynamics simulation study. J.Appl.Phys.1996,79(3):1448
    164. Q.Hou, M.Hou, L.Bardotti, et al. Deposition of AuN clusters on Au(111) surface. I. Atomic-scale modeling. Physical Review B. 2000,62(4):2825
    165. G.H.Gilmer, Hanchen Huang, Christopher Roland. Thin film deposition: fundamentals and modeling. Computational Materials Science, 1998, 12:354-380
    166. X.W.Zhou, R.A.Johnson and H.N.G.Wadley.A Molecular Dynamics Study of Nickel Vapor Deposition: Temperature, Incident Angle, and Adatom Energy Effects.Acta mater. 1997, 45(4): 1513-1524
    167. Feng Ying, Richard W.Smith, David J.Srolovitz. The mechanism of texture formation during film growth: the roles of preferential sputtering and shadowing. Appl. Phys. Lett. 1996,69 (20): 3007-3009
    168. T.Smy, D.Vick, M.J.Brett, et al. Three-dimensional simulation of film microstructure produced by glancing angle deposition. J.Vac.Sci.Technol.A 2000,185): 2507-2512
    169. Ki-Seok Moon, Sung-Chul Shin. Dependence of structural and magnetic properties on deposition angle in electron-beam evaporated Co/Pt multilayer thin films. J.Appl.Phys. 1996,79(8): 4991-4996
    170. Kevin M.Crosby, R.Mark Bradley. Pattern formation during delamination and buckling of thin films. Physical Review E, 1999,59(3): R2542-R2545
    171. L.Krim. Resource Letter: FMMLS-1: Friction at macroscopic and microscopic length scales. Am.J.Phys. 2002,70 (9): 890-897
    172. James Ringlein, Mark O.Robbins, Understanding and illustrating the atomic origins of friction, Am. J. Phys., 2004, 72(7): 884-891
    173. L.C.Zhang, K.L.Johnson, W.C.D.Cheong.A molecular dynamics study of scale effects on the friction of single-asperity contacts. Tribology Letters, 2001,10(1-2): 23-28
    174. M.G.Rozman, M.Urbakh, J.Klafter. Atomic scale friction: from basic characteristics to control. Physica A. 1999, 266: 272-279
    175. Yi Sang, Martin Dubé, Martin Grant. Thermal effects on atomic friction. Physical Review Letters. 2001,87(17): 174301
    176. Satoru Fujisawa, Eigo Kishi, Yasuhiro Sugawara, Seizo Morita. Atomic-scale friction observed with a two-dimensional frictional-force microscope. Physical Review B, 1995-II, 51(12): 7849-7857
    177. Enrico Gnecco, Roland Bennewitz, Anisoara Socoliuc, Ernst Meyer, Friction and wear on the atomic scale, Wear. 2003,254: 859-862
    178. R. Bennewitz, T. Gyalog, M. Guggisberg, et al. Atomic-scale stick-slip processes on Cu(111). Phys. Rev. B. 1999, 60: R11301
    179. Mate C.M., Mcclelland G.M., Erlandsson R., Chiang S. Atomic-scale friction of a tungsten tip on a graphite surface. Phys.Rev.Lett. 1987,59:1942-1945
    180. Morita S., Fujisawa S., Sugawara Y., Spatially quantized friction with a lattice periodicity. Surface Science Reports. 1996, 23:1-41
    181. Sasaki N., Tsukada M., Fujisawa et al., Analysis of frictional-force image patterns of a graphite surface. J.Vac.Sci.Technol B 1997,15:1479-1482
    182. H.A.Sherif, T.M.Abu Omar, Mechanism of energy dissipation in mechanical system with dry friction. Tribology International. 2004,37: 235-244
    183. J.R?der, A.R.Bishop, B.L.Holian, et al., Dry friction: modeling and energy flow. Physica D. 2000,142: 306-316
    184. F.Lebon. Contact problems with friction: models and simulations. Simulation Modelling Practice and Theory. 2003,11: 449-463
    185. Jun Cai, Jian-Sheng Wang. Friction between Si tip and (001)-2×1 surface: a molecular dynamics simulation. Cumputer Physics Communications. 2002,147: 145-148
    186. Mueser Martin H., Wenning Ludgar, Robbins Mark O., Simple microscopic theory of Amonton's laws for static friction. Physical Review Letters. 2001, 86(7): 1295-1298
    187. Uzi Landman, W.D.Luedtke, JianPing Gao. Atomic-scale issues in tribology: interfacial junctions and nano-elastohydrodynamics. Langmuir 1996,12, 4514-4528
    188. G.A.Tomlinson, A molecular theory of friction. Phil.Mag.S., 1929,77 (46):905-937
    189. Keiji Hayashi, Akifumi Maeda, Tomohisa Terayama, Noriyuki Sakudo. Molecular dynamics study of wearless friction in sub-micrometer size mechanisms and actuators based on an atomistic simplified model. Computational Materials Science. 2000,17: 356-360
    190. Robert W.Stark, Georg Schitter, Andreas Stemmer. Velocity Dependent friction laws in contact mode Atmoic-Force Microscopy. Ultramicroscopy, 2004, 100:309-317
    191. E.Gnecco, R.Bennewitz, T.Gyalog, et al. Velocity dependence of atomic friction. Phys.Rev.Lett, 2000,84 (6): 1172-1175
    192. 徐滨士.表面工程与维修.北京:机械工业出版社,1996:32
    193. Alber, J.L.Bassani, M.Khantha, V.Vitek and G.J.Wang, Grain boundaries as heterogeneous systems: atomic and continuum elastic properties., Phil.Trans.R.Soc.Lond.A 1992, 339: 555-586
    194. T.Cagin,Thermal and mechanical properties of some fcc transition metals, Physical Review B, 1999, 59(3): 3468-3473