COX-2及其抑制剂在幼鼠痫性发作中的作用及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景及目的:
     大量临床回顾性研究资料表明,在伴有海马硬化性颞叶癫痫的成人患者中有相当高比例可追问到儿童早期有长时间痫性发作史,尤其是高热惊厥。幼年早期长时间痫性发作后大脑可塑性发生的改变对个体能产生长远的影响,与海马硬化性颞叶癫痫的形成密切相关。海马环路内的轴突出芽、突触重建是颞叶癫痫的主要的病理生理特征,在颞叶癫痫的形成与维持中发挥重要作用。在癫痫形成过程中,神经元之间形成异常的突触联系,建立了病理性(功能性或形态性)神经环路。海马突触联系的可塑性是癫痫发生后突触重建的基础。癫痫发作可导致神经系统胶质增生,突触后终端与胶质细胞之间形成突触,突触后终端的树突棘的形态学的变化引起突触结构的改变,与胶质细胞之间形成的突触为异位突触;同时痫性发作也导致异常神经发生,引起颗粒细胞层弥散,新生的颗粒神经元有较多的基部树突向齿状回投射,引起海马内环路性质的变化,成为慢性反复性痫性发作的基础。环氧合酶—2(COX-2)及其代谢产物在中枢起多种调节作用,与长时程突触可塑性形成和突触重构密切相关。近年许多研究均发现长时间痫性活动发作后,COX-2在脑内迅速被诱导激活,在大脑皮层、海马、杏仁核等处广泛表达。许多研究表明COX-2抑制剂能明显对抗戊四氮诱导的惊厥发作,且在电休克诱导的惊厥模型中,苯妥因联合COX-2抑制剂能增强其抗惊厥作用。目前有关COX-2在癫痫是否参与了颞叶癫痫海马环路内突触重建,从而促进了颞叶癫痫的形成与发展尚不清楚,且其抑制剂抗惊厥的作用机制国内外均未见有进一步深入的研究。本研究旨在研究COX-2在痫性发作活化后的表达特点,看COX-2抑制剂是否能通过抑制COX-2的活性来纠正痫性活动引起脑内微环境改变所致的海马异常突触重构,从而减少慢性期自发性反复性痫性发作(SRS)的发生,研究其在痫性发作后突触重构密切相关的异常神经发生及胶质细胞活化和增生等事件中的作用及发挥作用的细胞信号转导途径。COX-2抑制剂对痫性发作后海马结构和功能改变这种长时程事件的影响是通过对神经元突触电活动的影响而实现的,可能和影响神经递质释放及改变离子通道通透性等有关。而Na~+离子通道是许多抗癫痫药物的治疗靶点。我们通过建立体外海马脑组织切片痫样放电模型,向脑片灌流液中加入COX-2抑制剂,观察其对海马CA1椎体神经元膜兴奋特性、钠离子通道及突触活动的影响,从多角度、多层次来研究COX-2及其抑制剂在幼鼠痫性发作中的作用及其机制,看能否提供新的控制癫痫发作的治疗策略和预防靶点。
     方法:
     1.体内部分实验:
     模型制作:随机将120只体重为50~60g的3周龄健康Wistar幼鼠分为匹鲁卡品致痫组(EP—Only组)(n=45)和塞莱昔布干预致痫组(EP—Celecoxib)(n=45)和生理盐水正常对照组(NS组)(n=30)3组。匹鲁卡品癫痫模型的建立:腹腔注射10%匹鲁卡品350 mg/kg,若注射匹鲁卡品后30min无惊厥发作,再按每次10mg/kg追加匹鲁卡品,若惊厥发作持续30min(定为癫痫持续状态的标准)仍未停止,则给予10%水合氯醛400mg/kg腹腔注射,及时终止发作。EP—Celecoxib组大鼠在注射东莨宕碱前45min预先通过胃管灌入20mg/kg.d的塞莱昔布,腹腔注射完匹鲁卡品后每天均按此剂量灌胃,直至动物被处死。随机在EP-only及EP-Celecoxib组各取10只匹鲁卡品成功诱导急性发作幼鼠进行腹腔注射BrdU,剂量100mg/kg,从急性发作当天开始,隔天注射一次,直到发作后第14天。
     (1)动物行为学观察:根据Racine分级评价痫性发作行为。观察急性期癫痫幼鼠痫性发作行为在各组的差异,监测慢性期(急性发作后28~42天)自发性反复性发作(SRS)的发生率及发作强度在各组的差异。
     (2)形态学检测:各试验组分别在急性发作后第14天,28天处死大鼠制备组织切片。①Nissl染色:检测海马神经元损伤及丢失情况;②免疫组织化学方法:检测指标有COX-2、C-fos及p-ERK1/2阳性细胞在各组的表达变化趋势,OX-42标记少突胶质细胞的活化,比较小胶质细胞的活化在各组的差异;BrdU标记增殖的新生细胞,NeuN为特异性神经元标志,GFAP为星型胶质细胞特异性标志,BrdU+NeuN荧光免疫双标标记痫性发作后新生神经元,BrdU+GFAP免疫双标标记增生的星型胶质细胞,观察神经前体细胞的增殖及分化在各组的差异;
     (3)western blot方法:检测COX—2、C-fos、ERK1、ERK2及磷酸化ERK1/2(p-ERK1/2)蛋白水平在痫性发作后1h、1d、4d、7d、14d、28d各时点的表达及变化趋势,比较在匹鲁卡品诱导SE后的静止期其表达水平在各组的表达是否有差异,探讨COX-2及其抑制剂发挥作用的细胞信号转导途径。
     2.体外试验部分:
     离体海马脑片痫样放电模型的建立:生后14天龄SD大鼠,快速断头取脑后用振动切片机切成400μm海马组织脑切片,用电刺激诱发CA1区锥体神经元记录场电位,以群峰电位(PS)个数和幅度的变化来评价脑片放电的变化,灌流不同浓度青霉素,观察到药物作用约3min后PS个数增多和幅度增加,有明显的癫痫样放电,建立离体海马脑片痫样放电模型,从以下几方面来观察COX-2抑制剂NS-398对痫性放电后海马锥体神经元电生理特性的影响:
     (1)COX-2抑制剂NS—398对青霉素致痫脑片CA1场电位的影响:脑片灌流液中灌流不同浓度NS-398,观察对PS个数和幅度的影响;
     (2)脑片全细胞记录技术研究NS-398对青霉素致痫幼鼠海马脑片CA1区锥体神经膜兴奋特性的影响,分析对动作电位幅度、频率、潜伏期和时程的影响;
     (3)通过给予不同阶跃模式的电压刺激,观察NS-398对电压依赖性钠离子通的影响,分别研究对其激活曲线和失活曲线的影响;
     (4)全细胞记录Gap—free模式下,观察NS—398对海马CA1锥体神经元递质释放和突触活动的影响,分别记录自发性兴奋性突触后电流(sEPSCs)和自发性抑制性突触后电流(sIPSCs),观察NS—398对其幅度和频率的影响。
     结果:
     1.体内实验部分:
     (1)动物行为学观察:匹鲁卡品腹腔注射后,致痫成功率72.2%,动物总死亡率8.9%,模型成功率63.3%。急性癫痫持续状态(SE)后24—30小时进入静止期,28~42天出现SRS。生理盐水对照组未出现急性期痫性发作及慢性期自发发作。①急性期:EP-only组全身性惊厥发作率(89.9%)明显高于EP-Celecoxib组(55.6%)(P<0.01);EP-only组痫性发作Racine分级强度(3.7±1.3)明显高于EP-Celecoxib组发作强度(2.5±1.1)(P<0.05);②慢性期监测:在EP-Only组SRS发生率(50%)明显高于EP-Ceelecoxib组(30%)(p<0.05;x~2 test);EP-Only组平均每天SRS发生的频率(1.9±0.58)明显高于EP-Celecoxib组(0.6±0.3)(p<0.01,t test);
     (2)形态学检测结果:
     ①Nissl染色结果:匹鲁卡品诱导痫性发作14天后,海马CA1、CA3及门区均有明显受损的异常神经元及神经元的丢失,但EP-Only组各区神经元丢失均较EP-Celecoxib组多(CA1区48%vs25%;CA3区36.3%vs24%;门区46%vs22%);
     ②免疫组化结果:
     Ⅰ.COX-2免疫反应阳性细胞的表达:匹鲁卡品致痫14天后,海马区COX-2阳性细胞表达在EP-Only组明显高于EP-Celecoxib组(158±18 VS 118±20)(p<0.01);
     Ⅱ.小胶质细胞活化标志物OX-42免疫阳性细胞的表达:OX-42阳性细胞的数量在致痫后14天EP-Only组明显高于EP-Celecoxib组(p=0.005),;
     Ⅲ.BrdU+NeuN和Brdu+GFAP免疫双标结果:急性期发作28天后,BrdU+NeuN免疫双标阳性细胞在EP-Only组明显高于EP-Celecoxib组(36±4 Vs 22±3);同时EP-Only组门区有Brdu+GFAP免疫双标阳性的新生的胶质细胞明显比EP-Celecoxib组高(26±3 Vs 14±2),COX-2抑制剂能抑制胶质细胞的生成;
     (3)western blot结果:
     ①COX-2蛋白的表达:正常对照组海马表达极低量COX-2蛋白,SE后1小时表达急剧增高达高峰,后表达水平逐渐下降,但在28天仍高于正常对照组。而在塞莱昔布处理组中,COX-2的表达明显较EP-Only组降低。在急性发作后4天,COX-2在EP-Only组的表达是EP-Celecoxib组的1-3倍,14天时前者是后者的1.5倍;
     ②C—fos蛋白浓度在致痫后静止期各时点,EP-only组表达均较EP-Celecoxib组高,且均在致痫后1d达高峰后逐渐下降,致28天时浓度水平与对照组无明显差异(P>0.05);
     ③MAPK/ERK信号系统的活动和表达:匹鲁卡品致痫后1h磷酸化ERK1/2水平迅速升高,1d达高峰为正常组的近10倍,塞莱昔布干预组各时点磷酸化ERK1/2表达显著低于EP-Only组(p<0.01)但仍高于对照组(p<0.01)。非磷酸化的ERK1和ERK2在海马的表达强度高于磷酸化ERK1/2,但在幼鼠痫性发作后无明显增强(p>0.05)。
     2.体外实验部分:
     (1)COX-2抑制剂NS-398对青霉素诱导的海马痫样放电的影响:NS-398浓度为10μM时,对青霉素诱发的癫痫样放电没有多大的抑制效应。20μM有明显的抑制作用,30μM抑制作用很强,明显降低PS的幅度和减少其频率;
     (2)NS—398对电压依赖性钠电流的影响:NS-398能降低电压依赖性钠通道的电流幅度以及延长钠通道的不应期,加陶冶20μM NS-398不能明显改变钠通道的电压依赖性激活状态(P>0.05),但加入20μM NS-398,电压依赖性钠失活电流的失活曲线明显向负极化方向移动,NS-398能明显延长电压依赖性钠电流的失活时间,COX-2抑制海马神经元放电是通过延长钠通道的失活时相而实现的导致钠通道开放频率下降,神经元发放动作电位频率也相应下降;
     (3)NS—398对动作电位的影响:COX-2抑制剂能抑制动作电位的幅度和传播频率、延长动作电位的潜伏期和时程来延迟锥体神经元动作电位的传导,最终导致兴奋性神经递质的发放的减少;
     (4)对神经元自发性兴奋性突触后电流(sEPSCs)和自发性抑制性突触后电流(sIPSCs)的影响:NS-398能明显抑制致痫大鼠海马锥体神经元sEPSCs的频率,但是对其幅度及衰减没有明显的影响;同时NS-398能明显增强致痫大鼠海马脑片锥体神经元sIPSCs的频率,明显延长sIPSCs的衰减时间,对电流幅度影响不大。
     结论:
     1.COX-2在痫性发作后被迅速诱导表达,COX-2抑制剂能抑制痫性发作及发作后COX-2的活化;
     2.COX-2抑制剂能减少痫性发作后海马神经元的死亡,抑制小胶质细胞的活化,抑制痫性发作激活的异常神经发生和星型胶质细胞增生,纠正痫性发作后海马异常可塑性的发生,从而减少慢性期SRS的发生;
     3.COX-2抑制剂逆转海马异常可塑性的发生是通过抑制痫性发作激活的MAPK/ERK信号转导途径及其下游信号分子C—fos而发挥效应;
     4.COX-2抑制剂能延长海马锥体神经元钠离子通道失活时间,减少动作电位的发放,减少sEPSCs的发放和增强sIPSCs的抑制功能,导致兴奋性神经递质的释放减少,降低神经元的兴奋性,从而抑制神经元异常放电;
     5.COX-2的活化在痫性发作中发挥重要作用,COX-2抑制剂能防止慢性期癫痫的形成,降低神经元的兴奋性,可能为难治性癫痫提供新的预防途径和治疗靶点。
Background and Purpose:
     A large number of recalling clinical research data shows that,a very high proportion of temporal lobe epilepsy adult patients with hippocampal sclerosis can be pursued long history of epileptic seizures,particularly febrile seizures in childhood. The brain plasticity change after long epileptic seizures in early childhood can form long-term effects in the individual.Temporal lobe epilepsy with hippocampal sclerosis is closely related to the abnormal brain plasticity formation.People have concerned about the problems very much.Hippocampal axon sprouting in the loop, synaptic reconstruction is the main pathophysiological features of temporal lobe epilepsy,which may play important roles in the formation and maintenance of the temporal lobe epilepsy.In the development of epilepsy,the synapse is abnormal between cell and cell,which established pathological neural circuit.Synaptic plasticity in the hippocampus is the base of synaptic reorganization inTLE.Gliosis is resulted inTLE.The synapse consists of the presynaptic and postsynaptic terminals,which in many synapses are surrounded by gIial cell.The change of dendritic spine morphology in postsynaptic terminals induced synaptic plasticity.The nature of hippocarnpal loop was changed,which may be the foundation of chronic recurrent seizures.Cyclooxygenase2(COX-2)and its metabolites played a wide range regulation in the central nervus system,and were closely related to long-term synaptic plasticity formation and synaptic remodeling.In recent years,many studies have found that COX-2 was rapidly induced activation in the brain after prolonged epileptic seizure activity.COX-2 was widely expressed in the cerebral cortex, hippocampus,amygdala and other places and the expression was significantly increased after seizures.Some studies indicate that COX-2 inhibitors can significantly confront PTZ-induced seizure,and phenytoin joint COX-2 inhibitors can increase its anticonvulsant effect in the electric shock-induced convulsion model.It is not clear whether COX-2 is involved in the temporal lobe epilepsy with hippocampal synaptic loop reconstruction to promote the formation and development of temporal lobe epilepsy.At present,there were no further in-depth study about the anticonvulsant mechanism of COX-2 inhibitor.This study was designed to study the expression of COX-2 after epileptic seizures to see whether COX-2 inhibitors can inhibit COX-2 activity to rectify the abnormal hippocampal Synaptic remodeling in the epileptic brain caused by the change of the microenvironment and thereby attenuated the likehood of developing spontaneous recurrent seizures(SRS)after pilocarpine-induced prolonged seizures.We invisgated the effects of COX-2 inhibitor on abnormal neurogenesis and gliosis,and the cell signal transduction pathway to play the role was also studied.We also observed the effects of COX-2 inhibitor on hippocampal pyramidal neuron in vitro hippocampal tissue epileptiform discharges model through the perfusion COX-2 inhibitor to the brain slices.The alterations of voltage-dependent sodium channel,action potential(AP)and the synaptic activity were recorded by patch clamp.We studied the role and mechanism of COX-2 and its inhibitor in immature epileptic rat from the multi-angle and multi-level to provide a new control strategy for epilepsy treatment and prevention targets.
     Method:
     1.Experiment in vivo:
     3-week-old Wistar rats(n=120)were randomly divided into three groups: pilocarpine-induced epilepsy group(EP-Only group),Celecoxib treatment epilepsy group(EP-Celecoxib),and normal saline control group(NS).Pilocarpine-induced status epilepticus model:Rats were preteated with methylscopolamine-bromide (1mg/kg)and then single dose of pilocarpine(30mg/kg,i.p.)was administration. Seizures were scoreded by Racine's scale.Normal control rats were treated with saline instead of pilocarpine.The rats in Epilepsy-Celecoxib group were administered Celecoxib 45 minutes prior to an epileptic challenge they were fed with celecoxib(20 mg/kg,o.p.)(n=45)daily until the day of sacrifice.Also, 5-bromo-2V-deoxyuridine-5Vmonophosphate(BrdU,100 mg/kg,diluted in saline) was injected i.p.once a day for 14 consecutive days from the day of SE.
     (1)Animal behavior observation:comparing the difference in acute phase of status seizures and monitoring spontaneous recurrent seizure(SRS)in chronic phase from 28 to 42 days after SE;
     (2)Morphological Detection:The rats were sacrificed at 14 and 28 days after SE for histological analysis of COX-2,microglial activation,hippocampal cell proliferation,and migration and differentiation of BrdU-positive cells(n=10 for epilepsy-celecoxib,epilepsy-only,and normal control groups at each timing).①Nissl stain was performed to detect hippocampal neuronal damage and loss in different groups.②The immunoreactive cells in different groups were detected by immunohistochemistry and histology.The detected indexes were as followings: COX-2,OX-42 used as markers for microglia,c-fos used to map neuronal networks, BrdU and NeuN doubled stained to maker newly generated neurons,and BrdU and GFAP doubled stained to marker newly generated astroglis.
     (3)Western blot ddetection:Additional epileptic rats were sacrificed at 1h,1d,4d,7d,14d,and28d after SE(n=3 for each group at each timing)for western blotting.COX-2,C-fos,ERK1,ERK2 and phosphorylation of ERK1 / 2(p-ERK1 / 2) protein levels in epileptic seizures were detected at different timing.
     2.Expremiments in vitro:
     Hippocampal slices were prepared from 2wk-old Sprague-Dawley(SD)rats for whole-cell patch clamp recording.The hippocampal slice epileptic models were induced by dabbling penicillin into the slices.The alterations of the CA1 pyramidal neurons electrophysiological properties in epileptic rats after dabbling different concentrations of COX-2 inhibitor(NS-398)into the slices were analyzed by whole cell recording technology.
     (1)The regulations of NS-398 on pyramidal neurons membrane excitability were recorded after inducing epileptic discharge;
     (2)The effects of NS-398 on voltage-dependent sodium ion channels of pyramidal neurons were recorded after inducing epileptic discharge;
     (3)The alteration of synaptic transmission and synaptic activity caused by NS-398 were recorded after inducing epileptic discharge.
     Results:
     1.The results of experiments in vivo:
     (1)Observation of animal behavior:①the acute phase:seizure rate in EP-only group(89.9%)was significantly higher than in EP-Celecoxib group(55.6%)(P<0.01); the Racine's scale in EP-only group(3.7±1.3)was significantly higher than EP-Celecoxib group(2.5±1.1)(P<0.05);②chronic phase monitoring:Incidence of SRS in EP-Only group(50%)was significantly higher than in EP-Ceelecoxib group (30%)(p<0.05;χ2 test);the frequency of average daily SRS in EP-group(1.9±0.58) was significantly higher than that of the EP-Celecoxib group(0.6±0.3)(p<0.01,t test);
     (2)The results of morphological detection:
     ①Nissl staining results:There were obvious damaged neurons and abnormal neuronal loss in hippocampal CA1 and CA3 and Hilus areas at 14days after pilocarpine-induced status seizures.But the EP-Ceelecoxib loss of neurons throughout the territory compared with the EP-Only group reduced(CA1 region of 48 percent vs25 percent CA3 region of 36.3 percent vs24 percent Mun Area 46 percent vs22%),;
     ②immunohistochemical results:
     Ⅰ.The expression of COX-2 immune response positive cells:after pilocarpine -inducing status seizure 14 days,COX-2-positive cells in the hippocampus in the EP-only group was significantly higher than that of EP-Celecoxib group(158±18 VS 118±20)(p<0.01).
     Ⅱ.microglial cell activation markers of OX-42 immunopositive cells expression: OX-42 positive cells in EP-Only group was significantly higher than that of the EP-Celecoxib group(p=0.005);
     Ⅲ.The results of double immunofluorescence:acute attack 28 days later,BrdU + NeuN immune double positive cells in the EP-Only group was significantly higher than that of the EP-Celecoxib group(36±4 Vs 22±3);at the same time BrdU+ GFAP double stained positive cells in the EP-Only group was significantly higher than that of the EP-Celecoxib group(26±3 Vs 14±2)EP-Only group in Hilus. COX-2 inhibitors can inhibit the production of glial cells;
     (3)Western blotting results:
     ①The expression of COX-2 protein was low leveling normal control group,and the COX-2 protein was expressed in a time-dependent manner after SE.It peaked at 1day after SE and declined thereafter,but it was still higher than the normal control group at 28 days after SE.Celecoxib significantly attenuated the COX-2 expression in the rat brain over the latent period after SE.At 4 days after SE,the COX-2 expression was 1.3 times in the EP-Only group compared with the EP-Celecoxib group,and the former is 1.5 times than the latter at 14 days after SE;
     ②C-fos protein concentrations in the 1h,1d,4d,7d and 14d in the EP-only group were significant higher that of EP-Celecoxib group.The c-fos protein expression peaked 1d and then gradually declined.The concentration of c-fos protein declined to the normal control level at 28d after SE,and there was no significant difference comparing with the control group(P>0.05);
     ③MAPK / ERK signaling system and the activities of the expression:the phosphorylation of ERK1 / 2 levels increased rapidly at 1hour after pilocarpine induced seizure,it peaked at 1d(10-times compared to the normal group),the phosphorylation of ERK1 / 2 expression was significantly lower in EP-Celecoxib group than the EP-Only group(p<0.01)but still higher compared with the control group(p<0.01).The expressions of Non-phosphorylation of ERK1 and ERK2 in hippocampal were intensive than phosphorylation of ERK1 / 2,but there were on significant increase after seizures(p>0.05).
     2.The results of the experiments in vitro:
     The effects of NS-398 CA1 pyramidal neurons electrophysiological characteristics in penicillin induced epileptic hippocampal slices:
     (1)The impact of NS-398 on the voltage-dependent sodium current:NS-398 can reduce the current rate and extent the no-answer period of the voltage-dependent sodium channel to decreasing the open frequency of sodium channel by extending inactivation recovery phase from deactivation,and neuronal action potential frequency of issuance corresponding declined;
     (2)The impact of NS-398 on the action potential:COX-2 inhibitor NS-398 inhibited the magnitude and frequency of action potential,extended the action potential latency,which eventually led to pyramidal neurons to delay the discharge of action potentials and decrease the release of neurotransmitters;
     (3)The effect of NS-398 on synaptic activity and transmitter release:NS-398 significantly inhibited the frequency of sEPSCs ofthe CA1 pyramidal neurons in epileptic rat hippocampal slices,but there was no obvious impact on the rate of decay time of sEPSCs.Meanwhile NS-398 significantly enhanced the frequency and significantly prolonged the decay time of sIPSCs,but little impact on the current rate.
     Conclusion:
     1.The activation of COX-2 can be induced rapidly after seizures,and COX-2 inhibitor attenuated the likelihood of developing spontaneous recurrent seizures after pilocarpine-induced prolonged seizure.
     2.During the latend period,COX-2 inhibitor prevented neuronal death and microglia activation in the hilus and CA1 and inhibited the generation of ectopic granule cells in the hilus and new glia in CA1.
     3.COX-2 inhibitors can inhibit the activation of MAPK / ERK signaling pathway and its downstream signaling molecule C-fos activation to inhibit the abnormal cell proliferation and differention after prolonged seizures.
     4.COX-2 inhibitors can reduce the membrane excitability of pyramidal neurons in hippocampus,extend the inactivation time of voltage dependent sodium ion channel,reduce the discharge of action potential and reduce the release of sEPSCs and reinforce the release of sIPSCs to reduce the release of excited neurotransmitters.
     5.These findings raise the evidence of COX-2 induction to act importantly on epileptogenesis and suggest a potential therapeutic role for COX-2 inhibitors in chronic epilepsy.
引文
1.Chen C,Bazan NG.Endogenous PGE2 regulates membrane excitability and synaptic transmission in hippocampal CA1 pyramidal neurons[J].J Neurophysiol.2005;93(2):929-41.
    2.Breder CD,Dewitt D,Kraig RP.Characterization of in-ducible cyclooxygenase in rat brain[J].J Comp Neurol,1995;355(4):296-31.
    3.Hirst WD,Young KA,Newton R,et al.Expression of COX-2 by normal and reactive astrocytes in the adult rat central nervous system[J].Mol Cell Neurosci.1999;13(1):57-68.
    4.Yamagata K,Andreasson KI,Kaufmann WE,et al.Expression of a mitogen-inducible cyclooxygenase in brain neurons:regulation by synaptic activity and glucocorticoids[J].Neuron.1993;11(2):371-86.
    5.Subbaramaiah K,Zakim D,Weksler SS,et.al.Inhibition of cyclooxygenase:a novel approach to cancer prevention[J].Proc Soc Exp Biol Med.1997;216(2):201-10.
    6.HO L,Osaka H,Aisen PS,et al.Induction of cyclooxygenase(COX)-2 but not COX-1 gene expression in apoptotic cell death[J].J Neuroimmunol.1998;89(1-2):142-9.
    7.Willingale HL,Gardiner NJ,MeLymont N,et al.Prostanoids synthesized by cyclo-oxygenase isoforms in rat spinal cord and their contribution to the development of neuronal hyperexcitability[J].Br J Pharmacol.1997;122(8):1593-604.
    8.Nogawa S,Zhang FV,Ross ME,et al.Cyclo-oxygenase-2 gene expression in neurons contributes to ischemic brain damage[J].J Neurosci.1997;17(8):2746-55.
    9. Tu B, Bazan NG. Hippocampal kindling epileptogenesis upregulates neuronal cyclooxygenase-2 expression in neocortex [J]. Exp Neurol. 2003; 179(2): 167-75.
    
    10. Okada K, Yuhi T, Tsuji S, et al. Cyclooxygenase-2 expression in the hippocampus of genetically epilepsy susceptible El mice was increased after seizure [J]. Brain Res. 2001; 894 (2):332-5.
    
    11. Takemiya T, Suzuki K, Sugiura H, et al. Inducible brain COX-2 facilitates the recurrence of hippocampal seizures in mouse rapid kindling[J]. Prostaglandins Other Lipid Mediat.2003; 71(3-4):205-16.
    
    12. Sekiyama N, Mizuta S, Hori A, et al. Prostaglandin E2 facilitates excitatory synaptic transmission in the nucleus tractus solitarii of rats [J]. Neurosci Lett. 1995; 188(2): 101-4.
    
    13. Desjardins P, Sauvageau A, Bouthillier A, et al. Induction of astrocytic cyclooxygenase-2 in epileptic patients with hippocampal sclerosis. Neurochem Int. 2003; 42(4):299-303.
    
    14. Kawaguchi K, Hickey RW, Rose ME, et al. Cyclooxygenase-2 expression is induced in rat brain after kainate-induced seizures and promotes neuronal death in CA3 hippocampus [J]. Brain Res. 2005; 50 (1-2):130-7.
    
    15. Chen J, Marsh T, Zhang JS,et al. Expression of cyclooxygenase 2 in rat brain following kainate treatment[J]. Neuroreport. 1995; 6(2):245-8.
    
    16. Gegelashvili G, Schousboe A. High affinity glutamate transporters: regulation of expression and activity [J]. Mol Pharmacol. 1997; 52(1):6-15.
    
    17. Bezzi P, Carmignoto G, Pasti L, et al. Prostaglandins stimulate calcium-dependent glutamate release in astrocytes [J]. Nature. 1998; 391(4):281-5.
    
    18. Xu XP, Sun RP, Jin RF. Effect of ketogenic diet on hippocampus mossy fiber sprouting and GluR5 expression in kainic acid induced rat model [J]. Chin Med J (Engl). 2006; 119(22): 1925-9.
    
    19. Cha BH, Akman C, Silveira DC, et al. Spontaneous recurrent seizure following status epilepticus enhances dentate gyrus neurogenesis [J]. Brain Dev. 2004; 26(6):394-7.
    20. Bragin A, Wilson CL, Engel J. Chronic epileptogenesis requires development of a network of pathologically interconnected neuron cluster: a hypothsis [J]. Epilepsia 2000,41(Suppl):S144.
    
    21. Sloviter RS. Status epilepticus-induced neuronal injury and nework reorganization [J]. Epilepsia, 1999,40(Suppl 1): S34.
    
    22. Santos NF, Marques RH, Correia L, et al. Multiple pilcarpine-induced status epilepticus in developing rats: a long-term behavioral and electrophysiological study [J]. Epilepsia, 2000,41(Suppl 6): S57.
    
    23. Jiang W, Wang Q, Zhang ZJ, et al. Dentate granule cell neurogenesis after seizures induced pentylenetrazol in rats [J]. Brain Res, 2003, 977:144-148.
    
    24. Nakagawa E, Aimi Y, Yasuhara O, et al. Enhancement of progenitor cell division in the dentate gyrus triggered by initial limbic seizures in rat models of epilepsy[J]. Epilspsia, 2000,41:10-18.
    
    25. Parent JM, Yu TW, Leibowitz RT, et al. Dentate granule cell neurogenesis is increased by seizures and contributes to aberrant network reorganization in the adult rat hippocampus[J]. J Neurosci, 1997,17:3727-3738.
    
    26. Gould E, Tanapat P. Leision-induced proliferation of neuronal progenitors in the dentate gyrus of the adult rat. Neuroscience [J], 1997, 80(2):427-436.
    
    27. Longo B, Covolan L, Chadi G, et al. Sprouting of mossy fibers and the vacating of postsynaptic targets in the inner molecular layer of the dentate gyrus [J]. Exp Neurol, 2003,181:57-67.
    
    28. Wang MJ, Jeng KC. c-Jun N-terminal kinase and,to a lesser extent, p38mitogen-activated protein kinase regulate inducible nitric oxide synthase expression in hyaluronan fragments-stimulated BV-2microglia[J]. Journal of Neurommunology, 2004, 146(1-2):50-62.
    
    29. Shao Y, McCarthy KD. Plasticity of astrocytes [J]. Glia, 1994, 11 (2):147-155.
    
    30. MarchilN.Significance of MDRland multiple drup resistance in refractory human epileptic brain [J]. BMC Medicine, 2004, 9(2):37.
    
    31. Thomas KL, Humt SP. The regional dist ribution of extracelluarly regulated kinase21and 2 messenger RNA in theadult rat cent ral neurous system [J]. Neuroscience, 1993, 56 (6):741.
    32. Jiang W, Van Cleeput J, Sheerin AH, et al. Involvement of extracellular regulated kinase and p38 kinase in hippocampal seizure tolerance [J]. J Neurosci Res, 2005, 81(4):581.
    33. Liminmao L , Tanq Q , Samdani S , et al. Regulation of MAPk/ ERK phosphorylation Via ionot ropic glutamate receptors in cultured rat st riatal neurons [J]. Eur Neurosci, 2004,19(12): 1207.
    34. Cullen PJ, Lockyer PJ. Intergration of calcium and Ras signaling [J]. Nat Rev Moll Cell Biol, 2002, 35 (3):339.
    35. Jessen U, Novitskaya V, Pedersen N, et al. The transcription factors CREB and c-Fos play key roles in NCAM-mediated neuritogenesis in PC12-E2 cells [J]. J Neurochem. 2001 Dec; 79(6): 1149-60.
    36. Kaufmann WE, Worley PF, Pegg J, et al. COX-2, a synaptically induced enzyme, is expressed by excitatory neurons at postsynaptic sites in rat cerebral cortes[J]. Proc Natl Acad Sci U.S.A. 1996; 93(6):2317-2
    37. TeacherLA, PackardMG, Bazan NG. Post-training cyclooxygenase- 2 (COX - 2) inhibition impairs memory consolidation.[J] LearnMem, 2002; 9(1): 41-47.
    38. Rall JM, Mach SA, Dash PK. Intrahippocampal infusion of a cyclooxygenase-2 inhibitor attenuatesmemory acquisition in rats [J]. Brain Res, 2003(9); 968: 273-276.
    39. Shaw KN, Commins S, O'Mara SM. Deficits inspatial learning and synaptic plasticity induced by the rapid and competitive broad-spectrum cyclooxygenase inhibitor ibuprofen are reversed by increasing endogenous brain-derived neurottophic factor [J]. Eur J Neurosic, 2003; 17(8):2438-2446.
    40. Bazan NG. Synaptic lipid signaling: Significance of polyunsaturated fatty acids and platelet- activating factor [J]. Lipid Res, 2003; 44(6): 2221-2233.
    41. Liu Z, Mikaiti M, Holmes GL. Mesial temporal sclerosis: pathogenesis and significance [J]. Pediatr Neurol, 1995,12(3):5-10.
    1. Cavalheiro EA, Santos NF, Priel MR. The pilocarpine model of epilepsy in mice [J]. Epilepsia. 1996; 37(10):1015-9.
    2. Motte J, Fernandes MJ, Baram TZ, Nehlig A. Spatial and temporal evolution of neuronal activation, stress and injury in lithium-pilocarpine seizures in adult rats [J]. Brain Res. 1998; 793(1-2):61-72.
    3. Morimoto K, Fahnestock M, Racine RJ. Kindling and status epilepticus models of epilepsy: rewiring the brain [J]. Prog Neurobiol. 2004; 73(1): 1-60. Review.
    4. Esclapez M, Hirsch JC, Ben-Ari Y, Bernard C. Newly formed excitatory pathways provide a substrate for hyperexcitability in experimental temporal lobe epilepsy [J]. J Comp Neurol. 1999; 408(4):449-60.
    5. Jin X, Prince DA, Huguenard JR.. Enhanced excitatory synaptic connectivity in layer v pyramidal neurons of chronically injured epileptogenic neocortex in rats [J]. J Neurosci. 2006; 26(18):4891-900.
    6. Sankar R, Shin D, Liu H, Katsumori H, Wasterlain CG. Granule cell neurogenesis after status epilepticus in the immature rat brain.Epilepsia [J]. 2000; 41(Suppl 6):S53-6.
    7. Mikkonen M, Soininen H, Kalvianen R, et al. Remodeling of neuronal circuitries in human temporal lobe epilepsy: increased expression of highly polysialylated neural cell adhesion molecule in the hippocampus and the entorhinal cortex. Ann Neurol [J]. 1998; 44(6):923-34.
    8. Rakhade SN, Yao B, Ahmed S, et al. A common pattern of persistent gene activation in human neocortical epileptic foci [J]. Ann Neurol. 2005; 58(5): 736-47.
    9. Scharfman HE, Goodman JH, Sollas AL. Granule-like neurons at the hilar/CA3 border after status epilepticus and their synchrony with area CA3 pyramidal cells: functional implications of seizure-induced neurogenesis [J]. J Neurosci. 2000; 20(16):6144-58.
    10. Brock SC, Bonsall J, Luskin MB. The neuronal progenitor cells of the forebrain subventricular zone: intrinsic properties in vitro and following transplantation.Methods [J]. 1998; 16(3):268-81.
    11. Ekdahl CT, Zhu C, Bonde S, et al. Death mechanisms in status epilepticus-generated neurons and effects of additional seizures on their survival .Neurobiol Dis[J]. 2003; 14(3):513-23.
    12. Ravizza T, Rizzi M, Perego C, et al. Inflammatory response and glia activation in developing rat hippocampus after status epilepticus [J]. Epilepsia. 2005; 46(Suppl5): 113-7.
    13. Bonde S, Ekdahl CT, Lindvall 0. Long-term neuronal replacement in adult rat hippocampus after status epilepticus despite chronic inflammation [J]. Eur J Neurosci. 2006; 23(4):965-74.
    14. Santambrogio L, Belyanskaya SL, Fischer FR, et al. Developmental plasticity of CNS microglia [J]. Proc Natl Acad Sci U S A. 2001 May 22,98(11):6295-300.
    15. Tomimoto H, Akiguchi I, Wakita H, et al. Cyclooxygenase-2 is induced in microglia during chronic cerebral ischemia in humans [J]. Acta Neuropathol. 2000; 99(1):26-30.
    16. Wu Chen R, Zhang Y, Rose ME, et al. Cyclooxygenase-2 activity contributes to neuronal expression of cyclin D1 after anoxia/ischemia in vitro and in vivo.Brain Res Mol Brain Res [J]. 2004; 132(1):31-7.
    17. Kawaguchi K, Hickey RW, Rose ME, et al Cyclooxygenase-2 expression is induced in rat brain after kainate-induced seizures and promotes neuronal death in CA3 hippocampus [J]. Brain Res. 2005; 1050(1-2):130-7.
    18. Yamagata K, Andreasson KI, Kaufmann WE, et al. Expression of a mitogen-inducible cyclooxygenase in brain neurons: regulation by synaptic activity and glucocorticoids [J]. Neuron. 1993; ll(2):371-86.
    19. Wang H, Hitron IM, Iadecola C, Pickel VM. Synaptic and vascular associations of neurons containing cyclooxygenase-2 and nitric oxide synthase in rat somatosensory cortex [J]. Cereb Cortex. 2005; 15(8): 1250-60.
    20. Acarin L, Peluffo H, Gonzalez B, Castellano B. Expression of inducible nitric oxide synthase and cyclooxygenase-2 after excitotoxic damage to the immature rat brain[J].J Neurosci Res.2002;68(6):745-54.
    21.Willingale HL,Gardiner NJ,McLymont N,et al.Prostanoids synthesized by cyclo-oxygenase isoforms in rat spinal cord and their contribution to the development of neuronal hyperexcitability[J].Br J Pharmacol.1997;122(8):1593-604.
    22.Brambilla R,Abbracchio ME Modulation of cyclooxygenase-2 and brain reactive astrogliosis by purinergic P2 receptors[J].Ann N Y Acad Sci.2001;939(6):54-62.
    23.邢丽华,张珍祥,徐永健,张惠兰,刘剑波.环氧化酶-2 在肺癌血管生成中的作用及机制[J].华中科技大学学报(医学版),2005,(2):18-22.
    24.张林西,齐凤英,左连富,等.环氧化酶-2在食管上皮癌变过程中的表达[J].中华肿瘤杂志,2003,26(4):56-69.
    25.任亮,侯树坤,王晓峰,等.不同类型膀胱癌组织中环氧化酶-2的表达及意义[J].中华泌尿外科杂志,2006,35(12):78-81
    26.Tomozawa S,Tsuno NH,Sunaml E,et al.Cyclooxygenase-2 overexpression correlates with rumor recurrence especially hematogenous metastasis of colorectal cancer[J].British Journal of Cancer.2000,61(3):324-328.
    27.Kumihashi K,Uchida K,Miyazaki H,et al.Acetylsalicylic acid reduces ischemia-induced proliferation of dentate cells in gerbils[J].Neuroreport.2001;12(5):915-7.
    28.Otani N,Nawashiro H,Yano A,et al.Characteristic phosphorylation of the extracellular signal-regulated kinase pathway after kainate-induced seizures in the rat hippocampus[J].Acta Neurochir Suppl.2003;86(6):571-3.
    29.Fukunaga K,Miyamoto E.Role of MAP kinase in neurons.Mol Neurobiol.1998;16(1):79-95.Review.
    30.Berkeley JL,Decker MJ,Levey AI.The role of muscarinic acetylcholine receptor-mediated activation of extracellular signal-regulated kinasel/2 in pilocarpine-induced seizures[J].J Neurochem.2002;82(1):192-201.
    31.刘智良,徐如祥,姚志彬,等.红藻氨酸致痫后大鼠海马ERK、p38 MAPK和JNK 的活性变化[J]。中华神经医学杂志。2006,5(2):137-140.
    32.Simonato M,Hosford DA,Labiner DM,et al.Differential expression of immediate early genes in the hippocampus in the kindling model of epilepsy[J].Brain Res Mol Brain Res.1991;11(2):115-24.
    33.Gass P,Bruehl C,Herdegen T,et al.Induction of FOS and JUN proteins during focal epilepsy:congruences with and differences to[14C]deoxyglucose metabolism[J].Brain Res Mol Brain Res.1997;46(1-2):177-84.
    34.Ishida Y,Nakahara D,Hashiguchi H,et al.Fos expression in GABAergic cells and cells immunopositive for NMDA receptors in the inferior and superior colliculi following audiogenic seizures in rats[J].Synapse.2002;46(2):100-7.
    35.Turski WA.Pilocarpine-induced seizures in rodents-17 years on.Pol[J].J Pharmacol.2000;52(1):63-5.
    36.McIntyre DC,Poulter MO,et al.Kindling:some old and some new[J].Epilepsy Res.2002;50(1-2):79-92.Review
    37.Tu B,Bazan NG.Hippocampal kindling epileptogenesis upregulates neuronal cyclooxygenase-2 expression in neocortex[J].Exp Neurol.2003;179(2):167-75.
    38.Dhir A,Naidu PS,Kulkarni SK.Effect of cyclooxygenase-2(COX-2)inhibitors in various animal models(bicuculline,picrotoxin,maximal electroshock-induced convulsions)of epilepsy with possible mechanism of action[J].Indian J Exp Biol.2006;44(4):286-91.
    39.Okada K,Yuhi T,Tsuji S,Yamashita U.Cyclooxygenase-2 expression in the hippocampus of genetically epilepsy susceptible El mice was increased after seizure[J].Brain Res.2001;894(2):332-5.
    40.Desjardins P,Sauvageau A,Bouthillier A,et al.Induction of astrocytic cyclooxygenase-2 in epileptic patients with hippocampal sclerosis[J].Neurochem Int.2003;42(4):299-303.
    41.Takemiya T,Suzuki K,Sugiura H,et al.Inducible brain COX-2 facilitates the recurrence of hippocampal seizures in mouse rapid kindling[J].Prostaglandins Other Lipid Mediat.2003;71(3-4):205-16.
    42.Loscher W,Siemes H.Increased concentration of prostaglandin E-2 in cerebrospinal fluid of children with febrile convulsions [J]. Epilepsia. 1988; 29(3):307-10.
    43. Chen C, Bazan NG. Endogenous PGE2 regulates membrane excitability and synaptic transmission in hippocampal CA1 pyramidal neurons [J]. J Neurophysiol.2005; 93(2):929-41.
    44. Chen C, Magee JC, Bazan NG. Cyclooxygenase-2 regulates prostaglandin E2 signaling in hippocampal long-term synaptic plasticity [J]. J Neurophysiol. 2002; 87(6):2851-7.
    45. Akaneya Y, Tsumoto T. Bidirectional trafficking of prostaglandin E2 receptors involved in long-term potentiation in visual cortex [J]. J Neurosci. 2006; 26(40): 10209-21.
    46. Paoletti AM, Piccirilli S, Costa N, Rotiroti D, Bagetta G, Nistico G. Systemic administration of N omega-nitro-L-arginine methyl ester and indomethacin reduces the elevation of brain PGE2 content and prevents seizures and hippocampal damage evoked by LiCl and tacrine in rat [J]. Exp Neurol. 1998; 149(2):349-55.
    47. Seregi A, Forstermann U, Hertting G. Decreased levels of brain cyclo-oxygenase products as a possible cause of increased seizure susceptibility in convulsion-prone gerbils [J]. Brain Res. 1984; 305(2):393-5.
    48. Kawaguchi K, Hickey RW, Rose ME, et al. Cyclooxygenase-2 expression is induced in rat brain after kainate-induced seizures and promotes neuronal death in CA3 hippocampus [J]. Brain Res. 2005; 1050(1-2):130-7.
    49. Kunz T, Oliw EH. The selective cyclooxygenase-2 inhibitor rofecoxib reduces kainate-induced cell death in the rat hippocampus [J]. Eur J Neurosci. 2001; 13(3):569-75.
    50. Gobbo OL, O'Mara SM. Post-treatment, but not pre-treatment, with the selective cyclooxygenase-2 inhibitor celecoxib markedly enhances functional recovery from kainic acid-induced neurodegeneration [J]. Neuroscience. 2004; 125(2):317-27.
    51.Baik EJ, Kim EJ, Lee SH, Moon C. Cyclooxygenase-2 selective inhibitors aggravate kainic acid induced seizure and neuronal cell death in the hippocampus [J]. Brain Res. 1999; 843(1-2):118-29.
    52. Kienzler F, Jedlicka P, Vuksic M, et al. Excitotoxic hippocampal neuron loss following sustained electrical stimulation of the perforant pathway in the mouse [J]. Brain Res. 2006; 1085(1):195-8.
    53. Chen C, Bazan NG. Acetaminophen modifies hippocampal synaptic plasticity via a presynaptic 5-HT_2 receptor [J]. Neuroreport. 2003; 14(5):743-7.
    54. Lukiw WJ, Cui JG, Musto AE, et al. Epileptogenesis in diacylglycerol kinase epsilon deficiency up-regulates COX-2 and tyrosine hydroxylase in hippocampus [J]. Biochem Biophys Res Commun. 2005; 338(1):77-81.
    55. Seibert K, Zhang Y, Leahy K, et al. Pharmacological and biochemical demonstration of the role of cyclooxygenase-2 in inflammation and pain [J]. Proc Natl Acad Sci U S A. 1994; 91(25): 12013-7.
    56. Subbaramaiah K, Zakim D, Weksler BB, et al. Inhibition of cyclooxygenase: a novel approach to cancer prevention [J]. Proc Soc Exp Biol Med. 1997; 216(2):201-10. Review.
    57. Willingale HL, Gardiner NJ, McLymont N, et al. Prostanoids synthesized by cyclooxygenase isoforms in rat spinal cord and their contribution to the development of neuronal hyperexcitability [J]. Br J Pharmacol. 1997; 122(8): 1593-604.
    58. Acarin L, Gonzalez B, Castellano B. Decrease of proinflammatory molecules correlates with neuroprotective effect of the fluorinated salicylate triflusal after postnatal excitotoxic damage [J]. Stroke. 2002; 33(10):2499-505.
    59. Bradford HF. Glutamate, GABA and epilepsy [J]. Prog Neurobiol. 1995; 47(6):477-511.
    60. Kang TC, Kim DS, Kwak SE, et al. Epileptogenic roles of astroglial death and regeneration in the dentate gyrus of experimental temporal lobe epilepsy [J]. Glia. 2006;54(4):258-71.
    61. Ravizza T, Rizzi M, Perego C, et al Inflammatory response and glia activation in developing rat hippocampus after status epilepticus [J]. Epilepsia. 2005; 46(Suppl5):113-7.
    62. Rizzi M, Perego C, Aliprandi M, et al. Glia activation and cytokine increase in rat hippocampus by kainic acid-induced status epilepticus during postnatal development [J]. Neurobiol Dis. 2003; 14(3):494-503.
    63. Lee B, Dziema H, Lee KH, et al. CRE-mediated transcription and COX-2 expression in the pilocarpine model of status epilepticus [J]. Neurobiol Dis. 2007; 25(1):80-91.
    64. Rose JW, Hill KE, Watt HE, et al.Inflammatory cell expression of cyclooxygenase-2 in the multiple sclerosis lesion [J]. J Neuroimmunol. 2004; 149(1-2):40-9.
    65. Vijitruth R, Liu M, Choi DY,et al. Cyclooxygenase-2 mediates microglial activation and secondary dopaminergic cell death in the mouse MPTP model of Parkinson's disease [J]. J Neuroinflammation. 2006, 27(3):6.
    66. Jung KH, Chu K, Kim M, et al. Continuous cytosine-b-D-arabinofuranoside infusion reduces ectopic granule cells in adult rat hippocampus with attenuation of spontaneous recurrent seizures following pilocarpine-induced status epilepticus [J]. Eur J Neurosci. 2004; 19(12):3219-26.
    67. Kang TC, Kim DS, Kwak SE, et al. Epileptogenic roles of astroglial death and regeneration in the dentate gyrus of experimental temporal lobe epilepsy [J].Glia. 2006;54(4):258-71.
    68. Scharfman HE, Goodman JH, Sollas AL. Granule-like neurons at the hilar/CA3 border after status epilepticus and their synchrony with area CA3 pyramidal cells: functional implications of seizure-induced neurogenesis [J]. J Neurosci. 2000; 20(16):6144-58.
    69. Okazaki MM, Molnar P, Nadler JV. Recurrent mossy fiber pathway in rat dentate gyrus: synaptic currents evoked in presence and absence of seizure-induced growth [J]. J Neurophysiol. 1999; 81(4): 1645-60.
    70. Lynch M, Sutula T. Recurrent excitatory connectivity in the dentate gyrus of kindled and kainic acid-treated rats [J]. J Neurophysiol. 2000; 83(2):693-704.
    71. Parent JM, Yu TW, Leibowitz RT, et al. Dentate granule cell neurogenesis is increased by seizures and contributes to aberrant network reorganization in the adult rat hippocampus[J].J Neurosci,1997,17:3727-3738.
    72.Dashtipour K,Tran PH,Okazaki MM,Nadler Jr,Ribak CE.Ultrastructural features and synaptic connections of hilar ectopic granule cells in the rat dentate gyrus are different from those of granule cells in the granule cell layer[J].Brain Res.2001;890(2):261-71.
    73.Scharfman HE.Conditions required for polysynaptic excitation of dentate granule cells by area CA3 pyramidal cells in rat hippocampal slices[J].Neuroscience.1996;72(3):655-8.
    74.Torre ER,Lothman E,Steward O.Glial response to neuronal activity:GFAP-mRNA and protein levels are transiently increased in the hippocampus after seizures[J].Brain Res.1993;631(2):256-64.
    75.Niquet J,Jorquera I,Ben-Ari Y.Proliferative astrocytes may express fibronection-like protein in hippocampus of epileptic rats[J].Neurosci Lett,1994,180(1):13-16.
    76.Tashiro A,Goldberg J,Yuste R.Calcium oscillations in neocortical astrocytes under epileptiform conditions[J].J Neurobiol.2002;50(1):45-55.
    77.赵珠峰,刘庆莹,朱长庚.TNF-α激活的星形胶质细胞在慢性癫痫复发中的作用[J].解剖学报,2003,34(1):21-26.
    78.Rothstein JD,Dykes-Hoberg M,Pardo CA,et al.Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate[J].Neuron.1996;16(3):675-86.
    79.Boulton TG,Cobb MH.Identification of multiple extracellular signal-regulated kinases(ERKs)with antipeptide antibodies[J].Cell Regul.1991;2(5):357-71.
    80.Yuan LL,Adams JP,Swank M,Sweatt JD,Johnston D.Protein kinase modulation of dendritic K+ channels in hippocampus involves a mitogen-activated protein kinase pathway[J].J Neurosci.2002;22(12):4860-8.
    81.Schrader LA,Birnbaum SG,Nadin et al.ERK/MAPK regulates the Kv4.2potassium channel by direct phosphorylation of the pore-forming subunit[J].Am J Physiol Cell Physiol.2006;290(3):C852-61.
    82.Ivanov A,Pellegrino C,Rama S,et al.Opposing role of synaptic and extrasynaptic NMDA receptors in regulation of the extracellular signal-regulated kinases(ERK)activity in cultured rat hippocampal neurons.J Physiol.2006;572(Pt 3):789-98.
    83.Sweatt JD.Mitogen-activated protein kinases in synaptic plasticity and memory [J].Curr Opin Neurobiol.2004;14(3):311-7.Review.v4.包颖颖,丁美萍.戊四氮致痫大鼠海马c-FOS蛋白表达及钙拮抗剂的影响[J].浙江大学学报(医学版),2002,31(2):111-114.v5.DubeC,AndreV,Covolanl.et al.C-Fos,JunD and HSP72 immunoreaetivity,and neuronal injury following lithium-Piloearpine induced stares epileptieus in immature and adultrats[J].Brain Res Mol Brain Res,1998,63(1):139-154。
    86.Herrea DC,Robertson HA.Activation of c-fos in the brain[J].Prog Neurobio,1996,50(2-3):83-107.
    87.刘庆莹,魏英,朱长庚,等.马桑内酯致痫大鼠海马C-fos原癌基因表达及谷氨酸免疫反应的变化[J].解剖学报1996;27(1):1.
    1. Chen C, MAGEE J C, BAZAN N G. Cyclooxygenase-2 regulates prostaglandin E2 signaling in hippocampal long-term synaptic plasticity [J]. Journal of neurophysiology: 2002, 87(6): 2851-2857.
    2. Ferri C C, FERGUSON A V. Prostaglandin E2 mediates cellular effects of interleukin-1beta on parvocellular neurones in the paraventricular nucleus of the hypothalamus [J]. Journal of neuroendocrinology: 2005,17(8): 498-508.
    3. Ferri C C, YUILL E A, FERGUSON A V. Interleukin-1 beta depolarizes magnocellular neurons in the paraventricular nucleus of the hypothalamus through prostaglandin-mediated activation of a non selective cationic conductance [J]. Regulatory peptides: 2005,129(1-3): 63-71.
    4. Kim J, ALGER B E. Inhibition of cyclooxygenase-2 potentiates retrograde endocannabinoid effects in hippocampus [J]. Nature neuroscience: 2004, 7(7): 697-698.
    5. Park S Y, KIM T H, KIM H I, et al. Celecoxib inhibits Na+ currents in rat dorsal root ganglion neurons [J]. Brain research: 2007, 114853-61.
    6. Sang N, ZHANG J, CHEN C. COX-2 oxidative metabolite of endocannabinoid 2-AG enhances excitatory glutamatergic synaptic transmission and induces neurotoxicity [J]. Journal of neurochemistry: 2007, 102(6): 1966-1977.
    7. Sang N, ZHANG J, MARCHESELLI V, et al. Postsynaptically synthesized prostaglandin E2 (PGE2) modulates hippocampal synaptic transmission via a presynaptic PGE2 EP2 receptor [J]. The Journal of neuroscience: the official journal of the Society for Neuroscience: 2005, 25(43): 9858-9870.
    8. Shin M C, JANG M H, CHANG H K, et al. Modulation of cyclooxygenase-2 on glycine- and glutamate-induced ion currents in rat periaqueductal gray neurons [J]. Brain research bulletin: 2003, 59(4): 251-256.
    9. Slanina K A, ROBERTO M, SCHWEITZER P. Endocannabinoids restrict hippocampal long-term potentiation via CB1 [J]. Neuropharmacology: 2005, 49(5): 660-668.
    10.Slanina K A,SCHWEITZER E Inhibition of cyclooxygenase-2 elicits a CB1-mediated decrease of excitatory transmission in rat CA1 hippocampus[J].Neuropharmacology:2005,49(5):653-659.
    11.Vaughan C W.Enhancement of opioid inhibition of GABAergic synaptic transmission by cyclooxygenase inhibitors in rat periaqueductal grey neurons[J].British journal of pharmacology:1998,123(8):1479-1481.
    12.Zhang Y,TAO J,HUANG H,et al.Effects of celecoxib on voltage-gated calcium channel currents in rat pheochromocytoma(PC12)cells[J].Pharmacological research:the official journal of the Italian Pharmacological Society:2007,56(3):267-274.
    13.赵明亮,刘国龙,隋建峰,阮怀珍,熊鹰.一种可用于500μm脑片的高分辨率细胞内标记技术[J].2007;23(2):254-257.
    14.冯武威,周小琛,白海波,郑筱祥.海马脑片抗癫痫药物研究的离体模型[J].2001;17(3):302-304.
    15.王晓鹏;王维平.化学药物点燃动物癫痫模型的研究进展[J].脑与神经疾病杂志,2006,14(6):275-278.
    16.伍国锋,单士海,董佑忠,潘贵书.氟桂利嗪对青霉素致痫大鼠皮层及海马癫痫样放电的影响[J].中国应用生理学杂志2004;20(2):179-202.
    17.邹晓毅,赵晓梅,章为,方一心.致痫剂青霉素对新生大鼠锥体神经元细胞内游离钙离子浓度的影响[J].中国神经免疫学和神经病学杂志,2001,8(4):252.
    18.朱俊玲,蒋大宗.癫痫发作的神经电生理特征[J].中国病理生理杂志,2005,21(7):1440-1444.
    19.朱遂强,笱玉兰,李卫华;等。妥泰对急性分离的大鼠海马神经元钠电流的影响[J].华中科技大学学报(医学版),2004,33(2):146-149.
    20.张勤,赖晓晖,廖大清,刘洁,周东.马桑内酯对大鼠海马神经元钠电流的影响[J]四川大学学报(医学版),2007,38(1):119-122.
    21.王文挺,覃星奎,尹世金,等.大鼠海马癫痈电网络重建中爆发式放电神经元的活动[J].生理学报,2003,55(5):663-671.
    22.李国强.慢性颞叶癫痫模型鼠海马结构形态学和电生理的变化[D]第三军医 大学,2005.
    23.宋承辉,胡志安,阮怀珍,蔡文琴,吴喜贵,张金海.谷氨酸和GABA对额叶皮质锥体细胞自发性电活动的影响[J]。第三军医大学学报,2003,(10):858-861.
    24.肖波;江利敏;癫痫的发病机制[J].临床内科杂志,2004,21(9):577-580.
    25.姚君茹,潘三强,吕来清,高秀来.慢性癫痫模型大鼠脑谷氨酸神经元的变化[J].解剖科学进展,2004,10(1):26-29.
    26.Hashitani H,YANAI Y,SHIRASAWA N,et al.Interaction between spontaneous and neurally mediated regulation of smooth muscle tone in the rabbit corpus cavemosum[J].The Journal of physiology:2005,569(Pt 3):723-735.
    27.Kitamura A,Marszalec W,Yeh JZ,et al.Effects of halothane and propofol on excitatory and inhibitory synaptic transmission in rat cortical neurons[J].J Pharmacol Exp Ther.2003 Jan;304(1):162-71.
    1. Motte J, Fernandes MJ, Baram TZ, et al. Spatial and temporal evolution of neuronal activation, stress and injury in lithium-pilocarpine seizures in adult rats. Brain Res. 1998; 2:61-72.
    2. Jin X, Prince DA, Huguenard JR.. Enhanced excitatory synaptic connectivity in layer v pyramidal neurons of chronically injured epileptogenic neocortex in rats. J Neurosci. 2006; 18:4891-900.
    3. Sankar R, Shin D, Liu H, et al. Granule cell neurogenesis after status epilepticus in the immature rat brain.Epilepsia. 2000; (Suppl)6:S53-6.
    4. Mikkonen M, Soininen H, Kalvianen R, et al. Remodeling of neuronal circuitries in human temporal lobe epilepsy: increased expression of highly polysialylated neural cell adhesion molecule in the hippocampus and the entorhinal cortex. Ann Neurol. 1998; 6:923-34.
    5. Rakhade SN, Yao B, Ahmed S, et al. A common pattern of persistent gene activation in human neocortical epileptic foci. Ann Neurol. 2005; 5:736-47.
    6. Gass P, Bruehl C, Herdegen T, et al. Induction of FOS and JUN proteins during focal epilepsy: congruences with and differences to [14C]deoxyglucose metabolism. Brain Res Mol Brain Res. 1997; 1-2:177-84.
    7. Brock SC, Bonsall J, Luskin MB. The neuronal progenitor cells of the forebrain subventricular zone: intrinsic properties in vitro and following transplantation. Methods. 1998; 3:268-81.
    8. Lukiw WJ, Cui JG, Musto AE, et al. Epileptogenesis in diacylglycerol kinase epsilon deficiency up-regulates COX-2 and tyrosine hydroxylase in hippocampus. Biochem Biophys Res Commun. 2005; 1:77-81.
    9. Seibert K, Zhang Y, Leahy K, et al. Pharmacological and biochemical demonstration of the role of cyclooxygenase 2 in inflammation and pain. Proc Natl Acad Sci US A. 1994; 25:12013-7.
    10. Subbaramaiah K, Zakim D, Weksler BB, et al. Inhibition of cyclooxygenase: a novel approach to cancer prevention. Proc Soc Exp Biol Med. 1997; 2:201-10. Review.
    11. Willingale HL, Gardiner NJ, McLymont N, et al. Prostanoids synthesized by cyclo-oxygenase isoforms in rat spinal cord and their contribution to the development of neuronal hyperexcitability. Br J Pharmacol. 1997; 8:1593-604.
    12. Chen C, Magee JC, Bazan NG. Cyclooxygenase-2 regulates prostaglandin E2 signaling in hippocampal long-term synaptic plasticity. J Neurophysiol. 2002; 6:2851-7.
    13. Dhir A, Naidu PS, Kulkarni SK. Effect of rofecoxib, a cyclo-oxygenase-2 inhibitor, on various biochemical parameters of brain associated with pentylenetetrazol-induced chemical kindling in mice. Fundam Clin Pharmacol. 2006;3:255-61.
    14. Shafiq N, Malhotra S, Pandhi P. Anticonvulsant action of celecoxib (alone and in combination with sub-threshold dose of phenytoin) in electroshock induced convulsion. Methods Find Exp Clin Pharmacol. 2003; 2:87-90.
    15. Lopez-Toledano MA, Shelanski ML. Neurogenic effect of beta-amyloid peptide in the development of neural stem cells. J Neurosci. 2004; 23:5439-44.
    16. Altar CA, Laeng P, Jurata LW, et al. Electroconvulsive seizures regulate gene expression of distinct neurotrophic signaling pathways.J Neurosci. 2004; 11:2667-77.
    17. McIntyre DC, Poulter MO, Gilby K. Kindling: some old and some new. Epilepsy Res. 2002; 2:79-92. Review.
    18. Kang TC, Kim DS, Kwak SE, et al. Epileptogenic roles of astroglial death and regeneration in the dentate gyrus of experimental temporal lobe epilepsy. Glia. 2006; 4:258-71.
    19. Tu B, Bazan NG. Hippocampal kindling epileptogenesis upregulates neuronal cyclooxygenase-2 expression in neocortex. Exp Neurol. 2003; 2:167-75.
    20. Kyrkanides S, Moore AH, Olschowka JA, et al. Cyclooxygenase-2 modulates brain inflammation-related gene expression in central nervous system radiation injury. Brain Res Mol Brain Res. 2002; 2:159-69.
    21. Takemiya T, Suzuki K, Sugiura H, et al. Inducible brain COX-2 facilitates the recurrence of hippocampal seizures in mouse rapid kindling. Prostaglandins Other Lipid Mediat. 2003; 3:205-16.
    22. Kawaguchi K, Hickey RW, Rose ME, et al. Cyclooxygenase-2 expression is induced in rat brain after kainate-induced seizures and promotes neuronal death in CA3 hippocampus. Brain Res. 2005; 2:130-7.
    23. Tu B, Bazan NG Hippocampal kindling epileptogenesis upregulates neuronal cyclooxygenase-2 expression in neocortex. Exp Neurol. 2003; 2:167-75.
    24. Dhir A, Naidu PS, Kulkarni SK. Effect of cyclooxygenase-2 (COX-2) inhibitors in various animal models (bicuculline, picrotoxin, maximal electroshock-induced convulsions) of epilepsy with possible mechanism of action. Indian J Exp Biol. 2006; 4:286-91.
    25. Okada K, Yuhi T, Tsuji S, et al. Cyclooxygenase-2 expression in the hippocampus of genetically epilepsy susceptible El mice was increased after seizure. Brain Res. 2001; 2:332-5.
    26. Kunz T, Oliw EH. The selective cyclooxygenase-2 inhibitor rofecoxib reduces kainate-induced cell death in the rat hippocampus. Eur J Neurosci. 2001; 3:569-75.
    27. Shafiq N, Malhotra S, Pandhi P. Anticonvulsant action of celecoxib (alone and in combination with sub-threshold dose of phenytoin) in electroshock induced convulsion. Methods Find Exp Clin Pharmacol. 2003; 2:87-90.
    28. Jung KH, Chu K, Lee ST, et al. Cyclooxygenase-2 inhibitor, celecoxib, inhibits the altered hippocampal neurogenesis with attenuation of spontaneous recurrent seizures following pilocarpine-induced status epilepticus. Neurobiol Dis. 2006; 2:237-46.
    29. Desjardins P, Sauvageau A, Bouthillier A, et al. Induction of astrocytic cyclooxygenase-2 in epileptic patients with hippocampal sclerosis. Neurochem Int. 2003; 4:299-303.
    30. Knapp DJ, Crews FT. Induction of cyclooxygenase-2 in brain during acute and chronic ethanol treatment and ethanol withdrawal. Alcohol Clin Exp Res. 1999; 4:633-43.
    31. Scharfman HE, Goodman JH, Sollas AL. Granule-like neurons at the hilar/CA3 border after status epilepticus and their synchrony with area CA3 pyramidal cells: functional implications of seizure-induced neurogenesis. J Neurosci. 2000; 16:6144-58.
    32. Dashtipour K, Tran PH, Okazaki MM, et al. Ultrastructural features and synaptic connections of hilar ectopic granule cells in the rat dentate gyrus are different from those of granule cells in the granule cell layer. Brain Res. 2001; 2:261-71.
    33. Hattiangady B, Rao MS, Shetty AK. Chronic temporal lobe epilepsy is associated with severely declined dentate neurogenesis in the adult hippocampus. Neurobiol Dis. 2004; 3:473-90.
    34. Rothstein JD, Dykes-Hoberg M, Pardo CA, et al. Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate. Neuron. 1996; 3:675-86.
    35. Tashiro A, Goldberg J, Yuste R. Calcium oscillations in neocortical astrocytes under epileptiform conditions. J Neurobiol. 2002; 1:45-55.
    36. Torre ER, Lothman E, Steward O. Glial response to neuronal activity: GFAP-mRNA and protein levels are transiently increased in the hippocampus after seizures. Brain Res. 1993; 2:256-64.
    37. Vessal M, Dugani CB, Solomon DA, et al. Might astrocytes play a role in maintaining the seizure-prone state? Brain Res. 2005; 2:190-6.
    38. Jung KH, Chu K, Kim M, et al. Continuous cytosine-b-D-arabinofuranoside infusion reduces ectopic granule cells in adult rat hippocampus with attenuation of spontaneous recurrent seizures following pilocarpine-induced status epilepticus. Eur J Neurosci. 2004; 12:3219-26.
    1. Motte J, Fernandes MJ, Baram TZ, et al. Spatial and temporal evolution of neuronal activation, stress and injury in lithium-pilocarpine seizures in adult rats. Brain Res. 1998; 793:61-72.
    2. Morimoto K, Fahnestock M, Racine RJ. Kindling and status epilepticus models of epilepsy: rewiring the brain. Prog Neurobiol. 2004;73:l-60. Review.
    3. Esclapez M, Hirsch JC, Ben-Ari Y, et al. Newly formed excitatory pathways provide a substrate for hyperexcitability in experimental temporal lobe epilepsy. J Comp Neurol. 1999; 408:449-60.
    4. Jin X, Prince DA, Huguenard JR. Enhanced excitatory synaptic connectivity in layer v pyramidal neurons of chronically injured epileptogenic neocortex in rats. J Neurosci. 2006; 26:4891-900.
    5. Sankar R, Shin D, Liu H, et al. Granule cell neurogenesis after status epilepticus in the immature rat brain.Epilepsia. 2000; 41:53-6.
    6. Mikkonen M, Soininen H, Kalvianen R, et al. Remodeling of neuronal circuitries in human temporal lobe epilepsy: increased expression of highly polysialylated neural cell adhesion molecule in the hippocampus and the entorhinal cortex. Ann Neurol. 1998; 44:923-34.
    7. Lukiw WJ, Cui JG, Musto AE, et al. Epileptogenesis in diacylglycerol kinase epsilon deficiency up-regulates COX-2 and tyrosine hydroxylase in hippocampus. Biochem Biophys Res Commun. 2005; 338:77-81.
    8. Seibert K, Zhang Y, Leahy K, et al. Pharmacological and biochemical demonstration of the role of cyclooxygenase 2 in inflammation and pain. Proc Natl Acad Sci US A. 1994; 91:12013-7.
    9. Subbaramaiah K, Zakim D, Weksler BB et al. Inhibition of cyclooxygenase: a novel approach to cancer prevention. Proc Soc Exp Biol Med. 1997; 216:201-10.
    10. Kawaguchi K, Hickey RW, Rose ME, et al. Cyclooxygenase-2 expression is induced in rat brain after kainate-induced seizures and promotes neuronal death in CA3 hippocampus. Brain Res. 2005; 1050:130-7.
    11. Willingale HL, Gardiner NJ, McLymont N, et al. Prostanoids synthesized by cyclo-oxygenase isoforms in rat spinal cord and their contribution to the development of neuronal hyperexcitability. Br J Pharmacol. 1997 Dec; 122(8): 1593-604.
    12. Chen C, Magee JC, Bazan NG. Cyclooxygenase-2 regulates prostaglandin E2 signaling in hippocampal long-term synaptic plasticity. J Neurophysiol. 2002; 87:2851-7.
    13. Dhir A, Naidu PS, Kulkarni SK. Effect of rofecoxib, a cyclo-oxygenase-2 inhibitor, on various biochemical parameters of brain associated with pentylenetetrazol-induced chemical kindling in mice. Fundam Clin Pharmacol. 2006; 20:255-61.
    14. Shafiq N, Malhotra S, Pandhi P. Anticonvulsant action of celecoxib (alone and in combination with sub-threshold dose of phenytoin) in electroshock induced convulsion. Methods Find Exp Clin Pharmacol. 2003; 25:87-90.
    15. McIntyre DC, Poulter MO, Gilby K. Kindling: some old and some new. Epilepsy Res. 2002; 50:79-92.
    16. Kang TC, Kim DS, Kwak SE, et al. Epileptogenic roles of astroglial death and regeneration in the dentate gyrus of experimental temporal lobe epilepsy. Glia. 2006; 54:258-71.
    17. Dhir A, Naidu PS, Kulkarni SK. Effect of cyclooxygenase-2 (COX-2) inhibitors in various animal models (bicuculline, picrotoxin, maximal electroshock-induced convulsions) of epilepsy with possible mechanism of action. Indian J Exp Biol. 2006; 44:286-91.
    18. Tu B, Bazan NG. Hippocampal kindling epileptogenesis upregulates neuronal cyclooxygenase-2 expression in neocortex. Exp Neurol. 2003; 179:167-75.
    19. Kyrkanides S, Moore AH, Olschowka JA, et al. Cyclooxygenase-2 modulates brain inflammation-related gene expression in central nervous system radiation injury. Brain Res Mol Brain Res. 2002; 104:159-69.
    20. Takemiya T, Suzuki K, Sugiura H, et al. Inducible brain COX-2 facilitates the recurrence of hippocampal seizures in mouse rapid kindling. Prostaglandins Other Lipid Mediat. 2003; 71:205-16.
    21. Okada K, Yuhi T, Tsuji S, et al. Cyclooxygenase-2 expression in the hippocampus of genetically epilepsy susceptible El mice was increased after seizure. Brain Res. 2001; 894:332-5.
    22. Kunz T, Oliw EH. The selective cyclooxygenase-2 inhibitor rofecoxib reduces kainate-induced cell death in the rat hippocampus. Eur J Neurosci. 2001; 13:569-75.
    23. Jung KH, Chu K, Lee ST, et al. Cyclooxygenase-2 inhibitor, celecoxib, inhibits the altered hippocampal neurogenesis with attenuation of spontaneous recurrent seizures following pilocarpine-induced status epilepticus. Neurobiol Dis. 2006; 23:237-46.
    24. Desjardins P, Sauvageau A, Bouthillier A, et al. Induction of astrocytic cyclooxygenase-2 in epileptic patients with hippocampal sclerosis. Neurochem Int. 2003; 42:299-303.
    25. Mazarati AM, Liu H, Soomets U, et al. Galanin modulation of seizures and seizure modulation of hippocampal galanin in animal models of status epilepticus. J Neurosci. 1998; 18:10070-7.
    26. Knapp DJ, Crews FT. Induction of cyclooxygenase-2 in brain during acute and chronic ethanol treatment and ethanol withdrawal. Alcohol Clin Exp Res. 1999; 23:633-43.