复杂参数曲线曲面加工控制与状态监测技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在现代装备制造业中,关键的核心技术是数控技术,它决定着一个国家装备制造业的水平,而数控技术的关键技术之一是插补,其中特别是插补算法中的曲线曲面插补的弦高误差算法在其中扮演着核心技术的角色,本文就此理论和应用问题进行了研究。
     在零件数控精加工过程中,插补算法的弦高误差与零件精加工表面粗糙度是成正比的。由于弦高误差计算的复杂性,提出复杂参数曲线加工中的弦高误差控制算法,它是利用插补点处弧长误差、坐标值及一阶导数信息间接对弦高误差进行控制。其中插补点处的弧长误差由辛普生公式求出,插补点处的坐标值及一阶导数信息由插补算法得到,因而计算量的增加并不显著。对算法的误差情况进行讨论,并利用Nurbs曲线的仿真实例证实此算法单步插补运算时间不大于300μs的前提下,达到的弦高误差加工精度为2.587 83×10-6mm。
     弦高误差是影响零件加工的表面质量的关键因素。利用引入误差补偿值的参数曲面的高精度刀具轨迹规划算法与本文的弦高误差控制算法相结合能够在满足实时性的前提下将弦高误差控制在预定范围内,使零件加工达到预定精度,其本质是通过实时改变零件加工的进给速度来达到提高零件加工质量。在弦高误差的计算过程中,许多必要的计算数据(主要是曲面插补点处的坐标值信息及一阶导数信息)已在引入误差补偿值的参数曲面的高精度刀具轨迹规划算法求出,不必重复计算,只须通过简单的计算公式就可以计算出插补点间的弧长误差并计算出弦高误差,由于避免在直接求取弦高误差时对二阶导数的计算,因而计算量增加不大。同时此算法适用于在插补点处具有一阶连续导数且有二阶导数的各类参数曲线插补及弦高误差控制,适应性较广。
     螺旋齿轮通常是采用专用螺旋锥齿轮数控机床来进行加工,但是由于采用专用设备价格昂贵,利用率低,显然不适合加工单件、小批量生产螺旋锥齿轮。基于以上原因,研究了采用通用五轴数控机床进行螺旋锥齿轮,开发了基于天津大学自主开放式数控系统TDNC-H8开通用五轴数控螺旋锥齿轮数控加工系统。该系统具有在线切削仿真功能,该功能采用了“层片分割”算法,相比以前螺旋锥齿轮仿真算法来说,具有计算速度快、精度高的优点。
     基于采集信号类型、采集方式、信号分析、状态辨识以及监测诊断的实现各点,研究了旋转部件非稳态信号的采集分析和实现方法,提出了基于阶比分析的信号故障提取技术和AR模型的状态辨识方法,并在linux环境下进行了算法实现。最后基于上述算法和监测诊断应用于天津大学自主开放式数控系统TDNC-H8通用五轴数控螺旋锥齿轮数控加工系统,对于曲面、曲线加工能得到很大技术提升。
In the modern equipment manufacturing, the key technique is numeric control, which determines the machine manufacturing level of a country. One of the key techniques in numeric control is interpolation, and the chord deviation of curve and surface in interpolation displays the core technology. This dissertation intends to work on the theory and application on this problem.
     In the process of component finishing in numeric control, the chord deviation in interpolation is scale with surface roughness of the component finishing. Due to the complexity of chord deviation calculation, we propose the chord deviation control algorithm in complex parameter curve manufacturing. It indirectly controls the chord deviation in the way of employing arc-length error, coordinate values and first order derivative in the interpolation points. The arc-length error in the interpolation points is calculated by the Simpson Formula, and the coordinate values and first-order derivative in the points are achieved by interpolation algorithm, as a result the calculation does not increase too much. This paper discusses the error of the algorithm, and uses simulation results of Nurs curve to testify that this algorithm can achieve accuracy of the chord deviation as 2.587 83×10-6mm under the assumption that the calculation of single interpolation is no bigger than 300μs.
     The chord derivation is the key factor in the surface quality of component finishing. Combination of the algorithm proposed in this paper and the parameter surface high accuracy cutting tool trajectory algorithm with the error compensation can control the chord deviation in a certain range with the satisfaction of real-time. It reaches the predetermined accuracy in the component finishing, and the nature of it is to improve the component quality by changing the feed speed in real-time. In the process of calculating the chord derivation, many necessary data are already there in applying the parameter surface high accuracy cutting tool trajectory algorithm with error compensation, and do not need to compute again. It just requires simple calculation for the arc-length error in the interpolation points and gets the chord deviation. No increase of computation appears since it does not need to directly calculate second order derivation for the chord deviation. Meanwhile, this algorithm is suitable for the various parameter curve interpolation and chord deviation control in the interpolation points with continuous first order derivation and existing second order deviation.
     Screw gear is used to producing with screw gear NC machine. Due to the high price and low utilization ratio when employing special equipment, it’s not suitable for single screw gear or small batch. Based on this, we focus on producing the screw gear with five-axis NC machine, and develop NC processing system based on the TDNC-H8 which is an open NC system. This new system has the function of cutting simulation in real-time, and this function employs the algorithm of Slice method. It computes faster and has higher accuracy compared with former screw gear simulation algorithm.
     Based on the signal sampled type, sampling method, signal analysis, state identification, monitoring and diagnosis, this paper studies on the sampling analysis and implementation of the unstable signal of rotating parts. We also propose a fault extraction technique based on order analysis and a state identification method of AR model, and implement experiments under Linux. This paper applies the above algorithm and monitoring & analysis on TDNC-H8, which is a five-axis NC Spiral bevel gear manufacturing system developed by Tianjin University. The results show that the proposed methods can greatly promote the manufacturing technology on curves and surfaces.
引文
[1]黄海鹏,迟关心,王振龙等,基于RT-Linux的多轴联动电火花加工数控系统,现代制造工程,2009,2 :32~35
    [2]王彩霞,数控系统与数控机床技术发展趋势,新技术新工艺,2010,2:163~168
    [3]韩江,刘向前,夏链等,基于IPC的插齿加工数控系统设计及插削斜齿的研究,机械传动,2008,32(2),35~36
    [4]张根保,王国强,何文辉等,基于任务的数控机床可靠性分配技术研究,中国机械工程,2010,19:2269~2273
    [5]范晋伟,张涛,王波雷等,多学科设计优化理论的复合数控机床误差补偿技术研究,现代制造工程,2010,10:9~14
    [6]黄海鹏,迟关心,王振龙,多轴联动电火花加工数控系统实时技术研究,哈尔滨工业大学学报,2010,1,42(1),64~68
    [7]周庆宝,高档数控机床应用技术,金属加工(冷加工),2010,10:21~24
    [8]王姣,宫政,基于嵌入式系统的数控机床信息采集与监测技术的研究,机床与液压,2010,4,38,(4):90~92
    [9]梁铖,刘建群,五轴联动数控机床技术现状与发展趋势,机械制造,2010,1,48(545):5~7
    [10]盛伯浩,唐华,数控机床技术发展浅析,航空制造技术,2002,6:17~33
    [11]王爱玲,刘永江,数控原理及数控系统,北京:机械工业出版社,2006:55~76
    [12]倪其民,李从心,林建平等,圆锥曲线插补技术研究,机械研究与应用,1999 12(3):7~8
    [13] De Souza A F, CoelhoRT. Experimental investigation of feed rate limitations on high speed milling aimed at industrial applications. Intemational Journal of Advanced Manufacturing Teehnology, 2007,32(11-12):1104-1114.
    [14]冯勇,霍勇进,现代计算机数控系统,北京:机械工业出版社,1996,114-117
    [15] Xu Z M, Chen J C, Fang Z J. Performance evaluation of a real-time interpolation algorithm for NURBS curves.International Journal of Advanced Manufacturing Technology, 2002, 20(4): 270~276.
    [16]叶伯生,杨叔子. CNC系统中三次参数样条曲线的插补算法,华中理工大学学报,1996,24(9):9~11.
    [17] Bahr B, Xiao X, Krishnan K. A real-time scheme of cubic parametric curveinterpolations for CNC systems. Computers in Industry, 2001, 45(3): 309~317.
    [18] Erkorkmaz K, Altintas Y. Quintic spline interpolation with minimal feed fluctuation. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2005, 127(2): 339~349.
    [19]郑金兴,张铭钧,孟庆鑫,适于高速加工的五次参数样条曲线插补及其速度生成算法的研究,哈尔滨工程大学学报,2007,28(7):795~801.
    [20]胡自化,张平,三次B样条曲线恒速进给实时插补算法的研究[[J].制造技术与机床,2000, (8):31~33.
    [21] Nam S H, Yang M Y, A study on a generalized parametric interpolator with real-time jerk-limited acceleration.Computer-Aided Design, 2004, 36(1):27~36.
    [22]赵国勇,徐志祥,赵福令,高速高精度数控加工中NURBS曲线插补的研究明,中国机械工程,2006,17(3):291~294.
    [23] Lei W T, Sung M P, Lin L Y, et al. Fast real-time NURBS path interpolation for CNC machine tools. International Journal of Machine Tools and Manufacture, 2007, 47(10):1530~1541.
    [24] Hu J, Xiao L, Wang Y, et al. An optimal feedrate model and solution algorithm for a high-speed machine of small line blocks with look-ahead[J].International Journal of Advanced Manufacturing Technology, 2006, 28(9):930~935.
    [25] Luo F Y, Zhou Y F, Yin J. A universal velocity profile generation approach for high-speed machining of small line segments with look-ahead[J].The International Journal of Advanced Manufacturing Technology, 2006, 35(5~6):505~518.
    [26] Piegl L., W.Tiller, The NURBS Book 2nd Edition, Springer, 1997.
    [27] Piegl L., On NURBS: A Survey, IEEE Computer Graphics & Application, 1991, 11(1): 55-71
    [28] Koren Y., Computer Control of Manufacturing Systems, McGraw-Hill, 1983.98
    [29] Chou J.J., D.C.H.Yang, Command Generation for Three-Axis CNC Machining, Journal of Engineering for Industry, Transactions of the ASME, 1991, 113: 305-310
    [30] Kim D.Ⅱ, Study on Interpolation Algorithms of CNC Machine Tools, IEEE Industry Applications Conference, 1995, 1930-1937
    [31] Zhang Q. G.and R.B. Greenway, Development and Implementation of a NURBS Curve Motion Interpolator, Robotics Computer-Integrated Manufacturing, 1998, 14: 27-36
    [32]唐英,现代数控机床高速化发展的最新动向,机床与液压,2007,3,35(3):211
    [33]吴宇燕,彭志牛,王宇晗,NURBS曲线数控插补方法及误差控制,机械设计与研究,2006,8,22,(4):75~78
    [34]姚哲,冯景春,王宇晗,面向五轴加工的双NURBS曲线插补算法,上海交通大学学报,2008,2,42(2):235~244
    [35]刘宏,复杂曲面多轴数控加工非线性误差理论分析及控制,组合机床与自动化加工技术,2003,12:66~68
    [36]裴兴林,组合曲面的NURBS插补技术的研究,科学技术与工程,2010,10,10(1):287~290
    [37]韩军,常瑞丽,史文浩,基于PC机的开放式数控系统的开发与研究,机床与液压,2009,37(4):112~113
    [38]李兆文,王勇,陈正洪,螺旋锥齿轮技术的研究现状,工具技术,2007, 41(10):3~6
    [39]唐进元,卢延峰,周超,螺旋锥齿轮齿面接触分析改进算法研究,航空动力学报,2009,24(1):189~195
    [40]张华,曹雪梅,邓效忠等,四轴联动数控螺旋锥齿轮铣齿机的齿长曲率修正,农业机械学报,2010,41(7):205~209
    [41]王志永,曾韬,PhoenixⅡ数控螺旋锥齿轮铣齿机加工仿真,计算机仿真,2009,26(1): 280~282
    [42]唐进元,李友元,周超等,螺旋锥齿轮数控磨齿机机床空间误差与机床调整参数的关系,机械工程学报,2009,45(4):148~154
    [43]陈书涵,严宏志,明兴祖等,螺旋锥齿轮差曲面模型的建立与仿真,系统仿真学报,2009,21(11):3430~3433
    [44]栗新,克林根贝格螺旋锥齿轮的加工及仿真,工具技术,2008,42(2):31~33
    [45]周超,唐进元,曾韬等,螺旋锥齿轮磨齿机砂轮位置误差与齿轮齿面误差的关系,机械工程学报,2008,44(2):94~101
    [46]陈书涵,严宏志,明兴祖,含误差螺旋锥齿轮齿面方程建立与分析,机械传动,2008,2:22~29
    [47]李敬财,王太勇,范胜波等,基于数字化制造的螺旋锥齿轮齿面误差修正,农业机械学报,2008,39(5):174~178
    [48]唐进元,卢延峰,周超,有误差的螺旋锥齿轮传动接触分析,机械工程学报,2008,44(7):16~23
    [49]王志永,曾韬,数控螺旋锥齿轮磨齿机加工性能的实验研究,中国机械工程,2008,19(14):1661~1664
    [50]陈书涵,严宏志,明兴祖等,基于多体系统理论的螺旋锥齿轮误差齿面建立与分析,制造技术与机床,2008,8:102~106
    [51]李天兴,邓效忠,李志明等,螺旋锥齿轮齿面测量与机床调整修正系统,机械传动,2008,32(5):18~21
    [52]陈书涵,严宏志,明兴祖等,螺旋锥齿轮六轴五联动数控加工模型,农业机械学报,2008,39(10):198~202
    [53]李普华,对格里森弧齿锥齿轮接触区的认识与修正,机电工程技术,2010,39(8):169~171
    [54]邓谷鸣,陈春榕,石林等,基于UG的格里森弧齿锥齿轮建模,机械,2008,35(10):34~347
    [55]唐进元,雷国伟,CNC机床运动误差对弧齿锥齿轮齿面接触质量的影响研究,中国机械工程,2010,21(20): 2395~2402
    [56]侯文健,弧齿锥齿轮接触区的调整,机械传动,2010,34(2):76~78
    [57]谷霁红,李建华,樊红卫等,弧齿锥齿轮测量齿面的NURBS重构,机械与电子,2010(2):41~43
    [58]谷计划,段建中,格利森弧齿锥齿轮啮合传动节线的数学原理,工程设计学报,2010,17(1):71~75
    [59]聂帅强,魏冰阳,邓效忠;弧齿锥齿轮小轮锥度切削原理及其仿真,机械传动,2010,34(2):11~14
    [60]陈兴明,唐进元,雷国伟;Matlab与VB混合编程在弧齿锥齿轮SGM调整卡计算中的应用,机械传动,2010,34(5):92~94
    [61]王强,程晓峰,基于实际数控加工弧齿锥齿轮刀盘中心位置分析,机械设计与制造,2009,10:198~200
    [62]韩佳颖,王太勇,李清等,准双曲面齿轮切削仿真及齿面误差分析,制造技术与机床,2010,1:112~116
    [63] Ling Wenfeng, Jiang Hong, Honing technology in spiral bevel gear finish machining after heat treatment, Hsi-An Chiao Tung Ta Hsueh/Journal of Xi'an Jiaotong University, 2007, 41(7): 815-819
    [64] Safavi S. Mohsen, Mirian S. Saeed, Abedinzadeh Reza, etal, Use of PLC module to control a rotary table to cut spiral bevel gear with three-axis CNC milling, International Journal of Advanced Manufacturing Technology, 2010, 49(9-12): 1069-1077
    [65] Zhang Wei, Wang Taiyong, Xiong Yuedong, etal, Virtual system solution of CNC machine for spiral bevel and hypoid gears, Transactions of Tianjin University, 2006, 12(5): 373-377
    [66] Suh S.H., Jih W.S., Hong H.D., etal, Sculptured surface machining of spiral bevel gears with CNC milling, International Journal of Machine Tools and Manufacture, 2001, 41(6): 833-850
    [67] Simon Vilmos V., Advanced manufacture of spiral bevel gears on CNC hypoid generating machine, Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference 2009, DETC2009, 2010, 233-243
    [68] Simon, Vilmos V., Advanced manufacture of spiral bevel gears on CNC hypoid generating machine, Journal of Mechanical Design, Transactions of the ASME, 132(3): 0310011-0310018
    [69] Shih Yi-Pei, Fong Zhang-Hua, Flank correction for spiral bevel and hypoid gears on a six-Axis CNC hypoid generator, Journal of Mechanical Design, Transactions of the ASME, 2008, 130(6): 0626041-06260411
    [70] Shih Yi-Pei, Fong Zhang-Hua, Flank correction for spiral bevel and hypoid gears on a six-axis CNC hypoid generator, ASME International Mechanical Engineering Congress and Exposition, Proceedings, 2008, 431-440
    [71] Yanwei Xu, Lianhong Zhang, Wei Wei, etal, Virtual simulation machining on spiral bevel gear with new type spiral bevel gear milling machine, 2009 International Conference on Measuring Technology and Mechatronics Automation, ICMTMA 2009, 2009, 432-435
    [72] Simon V., Advanced design and manufacture of face-hobbed spiral bevel gears, ASME International Mechanical Engineering Congress and Exposition, Proceedings, 2010, 539-548
    [73] Fan Qi, DaFoe Ronald S., Swanger John W., Higher order tooth flank form error correction for face-milled spiral bevel and hypoid gears, 2007 Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, DETC2007, 2008, 229-237
    [74] Wang Pei-Yu, Fong Zhang-Hua, Fourth-order kinematic synthesis for face-milling spiral bevel gears with modified radial motion (MRM) correction, Source: Journal of Mechanical Design, Transactions of the ASME, 2006, 457-467
    [75] Fan Qi, Dafoe Ronald S., Swanger John W., Higher-order tooth flank form error correction for face-milled spiral bevel and hypoid gears, Journal of Mechanical Design, Transactions of the ASME, 2008, 0726011-0726017
    [76] Simon, Vilmos V., Loaded tooth contact analysis and stresses in spiral bevel gears, Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference 2009, DETC2009, 2010, 271-279
    [77] NAkimov Vasiliy V., Lagutin Sergey A., Volkov Andrey E.,ew approach to the local synthesis of spiral bevel gears, 2007 Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, DETC2007, 2008, 13-17
    [78] Zhang Yi, Wu Zhi, Geometry of tooth profile and fillet of face-hobbed spiral bevel gears, 2007 Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, DETC2007, 2008, 181-192
    [79] Kawasaki Kazumasa, Tsuji Isamu, Analytical and experimental tooth contact pattern of large-sized spiral bevel gears in cyclo-palloid system, Journal of Mechanical Design, Transactions of the ASME, 2010, 132(4): 0410041-0410048
    [80] Kawasaki Kazumasa, Tsuji Isamu, Analytical and experimental tooth contact pattern of large-sized spiral bevel gears in cyclo-palloid system, Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference 2009, DETC2009, 2010, 139-147
    [81] Simon V., Design and manufacture of spiral bevel gears with reduced transmission errors, ASME International Mechanical Engineering Congress and Exposition, 2008 Proceedings of ASME International Mechanical Engineering Congress and Exposition, IMECE 2008, 2009, 131-143
    [82] Fuentes Alfonso, Gonzalez-Perez Ignacio, Litvin Faydor L., etal, Determination of basic machine-tool settings for generation of spiral bevel gears from blank data, 2007 Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, DETC2007, 2008, 57-68
    [83] Simon Vilmos, Optimal tooth modifications in spiral bevel gears introduced by machine tool setting variation, Fall Technical Meeting of the American Gear Manufacturers Association 2006, 2006, 193-206
    [84] Simon Vilmos V., Machine-tool settings to reduce the sensitivity of spiral bevel gears to tooth errors and misalignments, Journal of Mechanical Design, Transactions of the ASME, 2008, 130(8): 0826031-08260310
    [85] Simon Vilmos V., Reduction of sensitivity of spiral bevel gears to misalignments by the use of appropriate machine tool settings, 2007 Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, DETC2007, 2008, 3-12
    [86] Simon Vilmos, Computer simulation of tooth contact analysis of mismatched spiral bevel gears, Mechanism and Machine Theory, 2007, 42(3): 365-381
    [87] Simon V., Advanced design and manufacture of face-hobbed spiral bevel gears, ASME International Mechanical Engineering Congress and Exposition, Proceedings, 2010, 539-548
    [88] Cao Xue-Mei, Deng Xiao-Zhong, Deviation and correction of tooth surface for spiral bevel gears, 2010 International Conference on Mechanic Automation and Control Engineering, MACE2010, 2010, 3400-3403
    [89] Simon, Vilmos, Influence of tooth errors and misalignments on tooth contact in spiral bevel gears, Mechanism and Machine Theory, 2008, 1253-1267
    [90]王飞,裴海龙,开放式数控系统中软PLC系统的开发及应用,制造技术与机床,2010,8:73~76
    [91]吴立伟,陈进,孙卫祥,远程设备监测与诊断系统的DCOM组件设计与实现方法,振动与冲击,2007,26(3):117~119
    [92]张保银,梁朝辉,李永燕,铁路信号设备故障诊断专家系统研究,铁道通信信号,2010,46(7):26~28
    [93]张冰凌,许英姿,潘全文,智能故障诊断方法的研究和展望,飞机设计,2007,27(5):55~59
    [94]卢艳军,孟凡龙,李一波,机电设备故障诊断中的模式识别技术,机械设计与制造,2009:29(3):82~83
    [95]高永强,旋转机械故障机理的研究,机床与液压,2007,35(8):237~239
    [96]陈兆虎,何振歧,黄梓友,加强状态监测与故障诊断技术应用提升设备管理水平,中国设备工程,2010,7:34~35
    [97]敖云晖,战仁军,机动装备状态监测与故障诊断技术的研究,国防技术基础,2008,12:38~40
    [98]赵铁军,基于插值傅立叶变换的谐波参数识别及阶比分析,[博士学位论文],北京:华北电力大学,2009
    [99]纪跃波,郭瑜,阶比分析技术的发展应用与展望,现代制造工程,2007,11:123~126
    [100]赵晓平,旋转机械阶比分析研究与软件实现,[博士学位论文],南京:南京航空航天大学,2008
    [101]姚晓山,张永祥,明廷锋等,支持向量机和声发射技术在齿轮裂纹故障诊断中的应用,海军工程大学学报,2010,22(2):71~73
    [102]郭瑜,迟毅林,弗德卡曼滤波阶比跟踪解耦新方法,振动与冲击,2009,28(7):90~94
    [103]赵晓平,张令弥,郭勤涛,旋转机械阶比跟踪技术研究进展综述,地震工程与工程振动,2008,28(6):213~219
    [104]孔庆鹏,刘敬彪,章雪挺等,多转轴机械自适应滤波交叉阶比跟踪,农业机械学报,2009,40(1):213~216
    [105]黑开伟,小波分析在旋转机械故障诊断中的应用,大众科技,2010,3:109~110
    [106] Meltzer G., Dien Nguyen Phong, Fault diagnosis in gears operating under non-stationary rotational speed using polar wavelet amplitude maps, Mechanical Systems and Signal Processing, v 18, n 5, p, September 2004, 18(5): 985-992
    [107] Abu-Mahfouz Issam A., Gearbox health monitoring experiment using uibration signals, Journal of Engineering Technology, 2007, 24(1): 26-31
    [108] Endo H., Randall R.B., Gosselin C., Differential diagnosis of spall vs. cracks in the gear tooth fillet region: Experimental validation, Mechanical Systems and Signal Processing, April 2009, 23(3): 636-651
    [109] Barszcz Tomasz, Randall Robert B., Application of spectral kurtosis for detection of a tooth crack in the planetary gear of a wind turbine, Mechanical Systems and Signal Processing, 2009, 23(4): 1352-1365
    [110] Page T.F., Shaw B.A., Scanning electron acoustic microscopy (SEAM): A technique for the detection of contact-induced surface & sub-surface cracks, Journal of Materials Science, 2004, 39(22): 6791-6805
    [111] Ghassabzadeh Saryazdi M., Ghaffari Saadat M.H., Detecting backlash and crack in tortional vibration of a gear train system, Proceedings of the ASME Design Engineering Division– 2002, 2002, 285-289,
    [112] Wang Wenyi, Early detection of gear tooth cracking using the resonance demodulation technique, Mechanical Systems and Signal Processing, 2001, 15(5): 887-903
    [113] Zhou Xiaojun, Shao Yimin, Zuo Ming J., Features of early cracks in a gear based on a 16DOF nonlinear time-varying stiffness dynamic model, Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference 2009, DETC2009, 2010, 349-354
    [114] Ploj Virtic M., Aber?ek B., Cudina M., Bel?ak A., Developement of mathematical model for detection of cracks in tooth root using an adaptive algorithm, Key Engineering Materials, 2006, v 324-325 II, 793-798
    [115] Patrick Romano, Ferri Al, Vachtsevanos George, Detection of carrier-plate cracks using vibration spectra, 2007 Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, DETC2007, 2008, 1719-1730
    [116] Barter S., Dixon B., Investigation using quantitative fractography of an unexpected failure in an F/A-18 centre fuselage bulkhead in the FINAL teardown program, Engineering Failure Analysis, 2009, 16(3): 833-848
    [117] Belsak Ales, Flasker Joze, Determining cracks in gears using adaptive wavelet transform approach, Engineering Failure Analysis, 2010, 17(3): 664-671
    [118] Blunt David M., Keller Jonathan A., Detection of a fatigue crack in a UH-60A planet gear carrier using vibration analysis, Mechanical Systems and Signal Processing, 2006, 20(8): 2095-2111
    [119] Shao Renping, Huang Xinna, Li Yonglong, Influence of crack on structure vibration of gear tooth, Journal of Failure Analysis and Prevention, 2009, 9(6): 563-571
    [120] Mark W.D., Reagor C.P., McPherson D.R., Assessing the role of plastic deformation in gear-health monitoring by precision measurement of failed gears, Mechanical Systems and Signal Processing, 2007, 21(8): 177-192
    [121] Loutridis S.J., Self-similarity in vibration time series: Application to gear fault diagnostics, Journal of Vibration and Acoustics, Transactions of the ASME, 2008, 130(3)
    [122] Moldovan Dumitrita, Fechete Radu, Demco Dan Eugen, Culea Eugen, Blümich Bernhard, Herrmann Volker, Heinz Michael.Heterogeneity of nanofilled EPDM elastomers investigated by inverse laplace transform 1H NMR relaxometry and rheometrya, Macromolecular Chemistry and Physics, 2010, 211(14): 1579~1594
    [123] Rodríguez Osvaldo, Medina Aurelio.Stressed power systems analysis by using higher order modal series method: A basic study, 2010 IEEE PES Transmission and Distribution Conference and Exposition: Smart Solutions for a Changing World, 2010
    [124] Savian S Ali A, Mohammadiasl Ebrahim, Backlash detection in CNC machines based on experimental vibration analysis, 2008 IEEE International Conference on Robotics, Automation and Mechatronics, 2008, 393~398
    [125] J A Strosnider, J P Lehoczky, L Sha. The deferrable server algorithm for enhanced aperiodic responsiveness in hard real-time environments, IEEE Trans on Computers, 1995, 44(1): 73~91
    [126] Wu Dinghai, Zhang Peilin, Ren Guoquan, Li Bing, Cao Jianjun, Study on engine vibration signal denoising method of SURE block threshold based on DT-CWPT, 2009 International Conference on Measuring Technology and Mechatronics Automation, International Conference on Measuring Technology and Mechatronics Automation, 2009, 1: 719~722
    [127] Zhao Ruizhen , Liu Xiaoyu, Li Ching-Chung, Sclabassi Robert J, Sun Mingui A new denoising method based on Wavelet transform and sparse representation, 2008 9th International Conference on Signal Processing, 2008, 71~174
    [128] Elad Michael, Matalon Boaz, Zibulevsky Michael, Image denoising with shrinkage and redundant representations, Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2006, 2: 1924~1931
    [129] Yeh Syh-Shiuh,Sun Jin-Tsu.A scheme for interpolating NURBS curves on NC machines, Computer-Aided Design and Applications, v 4, n 1-6, p 31-40, 2007
    [130] He Ping ,Zhang Caiming, Zhou Jingbo, Ma Yingliang.Calculating the minimum distance between two NURBS curves, Proceeding 2009 IEEE 10th International Conference on Computer-Aided Industrial Design and Conceptual Design: E-Business, Creative Design, Manufacturing - CAID and CD'2009, 2009, 643~648
    [131] Dong Jinhua, Cao Huiqin. NURBS curves interpolation based on dynamic characteristics of machine tools, Advanced Materials Research, 2010, 102-104:353~357
    [132]徐元凡,刘日良,张承瑞等,NURBS曲线插补技术研究,现代制造工程,2009,3:9~12
    [133]张永超,于洋,魏展鹏等,自由曲面加工中NURBS曲线的插补实现,现代制造工程,2010,9:38~41
    [134]叶佩青,陈涛,汪劲松,复杂曲面五坐标数控加工刀具轨迹的规划算法.,机械科学与技术,2004,23(8):883~886
    [135]张志强,数控系统参数曲线、曲面插补算法及加减速控制研究,[博士学位论文].天津:天津大学,2008
    [136]张威,准双曲面齿轮数控加工理论与仿真研究,[博士学位论文].天津:天津大学,2007
    [137]赵琳,基于通用五轴加工中心螺旋锥齿轮数控加工系统的开发,[硕士学位论文].天津:天津大学,2010