铝合金/高强钢异种金属电阻点焊研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着高强钢、铝合金轻量化材料在汽车制造中应用量的增加,铝合金/高强钢异种金属连接科学技术便成为亟待解决的问题。由于铝合金与高强钢异种金属间物理性能存在显著的差异,且Fe在Al中的固溶度极低,导致铝合金/高强钢异种金属的焊接性极差,焊接接头中容易产生缩孔、裂纹等缺陷及硬脆的金属间化合物,大幅度降低了接头的力学性能,这已成为铝合金与高强钢在汽车制造中更广泛应用的主要技术瓶颈之一。
     本文开展6088-T66铝合金/H220YD高强钢异种金属电阻点焊研究,首先较系统地研究了铝合金/高强钢异种金属电阻点焊接头的组织与性能。研究结果表明,铝合金/高强钢点焊接头主要由铝合金熔核和热影响区组成,本质上属于熔钎焊接头。铝合金与高强钢之间存在着明显的界面,界面处形成了厚度不均匀的金属间化合物层,其主要相组成为靠近高强钢侧的Fe_2Al_5和靠近铝合金侧的Fe_4Al_(13)。铝/钢界面区的硬度分布是不均匀的,界面金属间化合物层的纳米硬度值显著高于两侧区域。点焊接头在拉剪试验中主要以结合面断裂方式破坏,铝合金熔核在铝/钢界面区与高强钢分离。裂纹首先在靠近高强钢侧铝/钢界面金属间化合物层(Fe_2Al_5)内部及金属间化合物层与高强钢界面处萌生,随后易沿着金属间化合物层扩展。研究了点焊过程中铝/钢界面反应机制,通过热力学与动力学分析揭示了界面金属间化合物层的生长过程。与Fe_4Al_(13)和FeAl相比,Fe_2Al_5具有相对更高的生长动力学系数,它在界面反应过程中的生长速度高于另外两相的生长速度。
     较为系统地研究了点焊参数(焊接电流、焊接时间和电极压力)对铝合金/高强钢电阻点焊接头组织及力学性能的影响规律。结果表明,点焊接头的拉剪力大小与焊接电流、焊接时间和电极压力相关,而点焊接头熔核直径及铝/钢界面硬脆的金属间化合物厚度是决定点焊接头拉剪力的直接因素。在一定熔核直径的条件下(2.4mm-5.7mm),熔核直径是决定点焊接头拉剪力的主要因素,当界面金属间化合物层达到一定厚度时(5.6μm),它对接头拉剪力的限制作用才可体现出来。
     研究不锈钢电极板辅助铝合金/高强钢异种金属电阻点焊接头的组织结构特点及点焊参数对电极板辅助点焊接头组织及性能的影响。电极板辅助铝合金/高强钢异种金属电阻点焊接头压痕较小,未出现与电极的粘连以及外部喷溅等缺陷,接头表面成形质量良好;电极板辅助点焊接头熔核尺寸提高约60%,拉剪力提高约30%;铝/钢界面金属间化合物层厚度也有一定程度的减小。
     对电极形貌进行优化,得到优化的电极形貌为:高强钢侧为直径φ10mm的圆形平端面电极,铝合金侧为球面半径为R35mm的球形端面电极。随后在在优化电极形貌的基础上对点焊参数进行优化,在优化的点焊参数下(电极压力3.5kN、焊接电流22kA、焊接时间300ms)得到的点焊接头熔核直径为10.1mm、拉剪力为5.4kN、压痕率为16.8%。与采用F型电极的点焊接头相比,熔核直径和拉剪力分别提高了77%和69%,压痕率降低了43%,铝/钢界面金属间化合物层的厚度也有较大幅度的减小。点焊接头拉剪试样的破坏方式为钮扣断裂,与采用F型电极的点焊接头的结合面断裂方式相比有明显的改善。
     通过加入中间层进行铝合金/高强钢电阻点焊的方式研究了合金元素(Cu和Si)对接头组织及性能的影响,结果表明,Cu和Si元素均对接头组织及性能具有显著的影响。当填加100μm厚铜中间层时,接头中心界面处产生了厚度为1.1μm的具有单层结构的金属间化合物,其Cu含量为5.36wt.%,相组成主要为(Fe,Cu)_4Al_(13)。Cu元素的加入对铝合金/高强钢界面反应有一定的抑制作用。拉剪试验结果表明,铝/钢界面附近的CuAl_2成为限制点焊接头力学性能的主要因素。当填加300μm厚的4047 AlSi12中间层时,铝/钢界面金属间化合物层具有锯齿状形貌,其厚度为0.9μm,Si含量为4.26wt.%。接头拉剪力最高(6.2kN),比未加中间层时的拉剪力提高约15%。,拉剪试样为纽扣断裂形式。
     通过ANSYS有限元模拟软件建立轴对称有限元模型,对采用铝合金/高强钢异种金属点焊过程进行模拟。预压接触行为弹塑性力学分析的结果表明,采用F型电极条件下各接触面(结合面)上的接触压力分布是不均匀的,采用优化电极条件下各接触面(结合面)上的接触压力分布状态较F型电极时有一定程度的改善。对两种电极条件下点焊热过程进行热、电、力多物理场耦合分析,结果表明,F型电极条件下工件与电极的电流密度分布是不均匀的,在点焊参数为电极压力2.5kN、焊接电流9kA、焊接时间250ms时,电流密度在电极端面边缘处出现峰值(3.7×10~3A/mm~2),接头中心界面处温度最高达973℃;优化电极条件下工件与电极的电流密度分布较F型电极时有明显的改善,当点焊参数为电极压力3.5kN、焊接电流22kA、焊接时间300ms时,电流密度在电极端面边缘处出现峰值(2.71×10~3A/mm~2),接头中心界面处温度的最高值为925℃。两种电极条件下数值模拟得到的熔核直径(5.9mm、9.7mm)均与试验结果相吻合。
With the increasing use of high strength steel and aluminum alloy in automotive manufacturing industry, it has became an indispensible problem to be solved to study the joining technology of dissimilar materials of aluminum alloy and high strength steel. Due to the great discrepancies concerning the physical and chemical properties between aluminum alloy and high strength steel, and the extremely low solid solubility of Fe in Al, the weldability of dissimilar materials of aluminum alloy and high strength steel is poor. Plenty of defects suck as shrinkage cavities, cracks as well as intermetallic compound layer are readily to be formed in the welded joint, and they will lower mechanical properties of the welded joint greatly, which thereby turns out to be one of the main technical bottlenecks in further extensive use of aluminum alloy and high strength steel in the domain of vehicle manufacturing.
     The study on resistance spot welding of dissimilar materials of aluminum alloy and high strength steel was carried out in the paper. Microstructures and mechanical properties of dissimilar material resistance spot welded joints were studied systematically firstly. The results showed that the resistance spot welded joint of dissimilar materials of aluminum alloy and high strength steel was composed of aluminum nugget and heat affected zone, which belonged to an especial welding-brazing joint in essential. An evident interface was observed between aluminum nugget and high strength steel, and intermetallic compound layers with unequal thicknesses were formed in the aluminum/steel interface, which were composed of Fe_2Al_5 on high strength steel side and Fe_4Al_(13) on aluminum alloy side. It was not uniform in the nanohardness distribution at the interfacial zone, and the value of nanohardness of the intermetallic compound layer was higher than that of other regions. Interfacial failure mode was obtained during the tensile shear testing, with aluminum nugget detaching from the high strength steel at the interfacial zone. The cracking tended to initiate at the inetrmetallic compound layer as well as the interface between the intermetallic compound layer and high strength steel, and then propagate through the intermetallic compound layer. Besides, the interfacial reaction mechanism was studied, and the growth process of the intermetallic compound layer was studied by means of thermal dynamics and kinetic analysis. The results showed that the growth kinetic coefficient for Fe_2Al_5 was higher than those of Fe_4Al_(13) and FeAl, which resulted in the faster growth for the former phase.
     Effects of resistance spot welding parameters (welding current, welding time and electrode force) on microstructures and mechanical properties of dissimilar material resistance spot welded joints were studied. The results indicated that the tensile shear load of the welded joint was mainly decided by welding current, welding time and electrode force. The nugget diameter of the welded joint and the thickness of the brittle intermetallic compound layer, however, were direct factors which regulated the tensile shear load of the welded joint. When the nugget diameter varied from 2.4mm to 5.7mm, it became the major factor which decided the tensile shear load of the welded joint, while the limiting of the interfacial intermetallic compound layer on the tensile shear load began to act immediately its thickness exceeded 5.6μm. Resistance spot welding of dissimilar materials of aluminum alloy and high strength steel with electrode plate was carried out, and microstructures of welded joints were studied. Besides, effects of welding parameters on microstructures and mechanical properties of the welded joints with electrode plate were carried out. The results showed that the indentation ratio of the welded joint was shallow enough, and the surface forming quality was acceptable since no expulsion and alloying process were observed. Compared with the nugget diameter and tensile shear load of the welded joint with F type electrode, the nugget diameter and tensile shear load of the welded joint were improved by 60% and 30%, respectively. Furthermore, the thickness of of interfacial intermetallic compound layer also decreased to a certain extent.
     The morphology of electrode tip was optimized, and the optimum electrode morphologies were drawn as follows: the electrode tip diameter on high strength steel side was 10mm, and the spherical electrode radius was 35mm on aluminum alloy side. Based on the optimum electrode morphologies, welding parameters were optimized. Under the optimum welding parameters (electrode force of 3.5kN, welding current of 22kA, welding time of 300ms), the nugget diameter (10.1mm) and tensile shear load (5.4kN) were improved by 77% and 69%, respectively, compared to those of the welded joint obtained with F type electrode. Meanwhile, the indentation ratio (16.8%) decreased by 43%. The tensile shear specimen of the welded joint fractured in the nugget pullout failure mode, which was improved dramatically as compared to that with F type electrode.
     Effects of alloy elements (Cu, Si) on joint microstructures and properties were studied by the method of adding interlayer between high strength steel and aluminum alloy during resistance spot welding. The results showed that both Cu and Si had great effects on joint microstructures and properties. With the addition of 100μm thick Cu interlayer, the single-layer structure of the intermetallic compounds with thickness of 1.1μm was formed in the aluminum/steel interface at the joint center, which contained 5.36wt.% Cu, and the phase compositions were mainly (Fe,Cu)_4Al_(13). Cu additions led to the suppression in the interfacial reaction between aluminum alloy and high strength steel to a certain extent. The tensile shear test results showed that CuAl_2 near the aluminum/steel interface turned out to be the main reason to restrict the joint mechanical properties. With the addition of 300μm thick 4047 AlSi12, the intermetallic compound layer exhibited serrated feature, with the thickness of 0.9mm and containing 4.26wt.% Si. The joint tensile shear load reached the highest value (6.2kN), increasing by 15% compared with the welded joint without interlayer. Tensile-shear specimen of the welded joint displayed a nugget pullout failure mode.
     An axisymmetrical finite element model by ANSYS finite element simulation software was developed for studying the process of resistance spot welding of dissimilar materials of aluminum alloy and high strength steel with both F type electrodes and optimized electrodes. The elastic-plastic mechanics analysis results of the pre-pressure contact behavior showed that the distribution of the contact pressure on the interfaces was un-uniform when using F type electrode, and that the distribution of the contact pressure on the interfaces improved to a certain extent when optimized electrodes were used. The multi-physics coupling analysis of heat, electricity and force on thermal process during resistance spot welding under both electrodes conditions showed that the distribution of the current density in workpieces and electrodes was un-uniform when using F type electrodes, and that when the resistance spot welding parameters was (electrode force of 2.5kN, welding current of 9kA, welding time of 250ms), the current density appeared a peak value of 3.7×10~3A/mm~2 on the region near the edge of electrode tip, and the temperature of the aluminum/steel interface at joint center reached the highest value (973℃). The distribution of the current density in workpieces and electrodes was improved greatly by using optimized electrodes, and when the resistance spot welding parameters were (electrode force of 3.5kN, welding current of 22kA, welding time of 300ms), the current density appeared a peak value of 2.7×10~3A/mm~2 on the region near the edge of the electrode tip, and the temperature of the aluminum/steel interface at joint center reached the highest temperature (925℃). The nugget sizes (5.9mm、9.7mm) obtained by means of after numerical simulation under the two types of electrodes were consistent with experimental results.
引文
[1] W. S. Miller, L. Zhuang, J. Bottema, et al. Recent development in aluminium alloys for the automotive industry[J]. Materials Science and Engineering A, 2000, 280(1): 37-49.
    [2] M. Pfestorf. Manufacturing of high strength steel and aluminum for a mixed material body in white[J]. Advanced Materials Research, 2005, 6-8:109-124.
    [3] E. Schubert, M. Klassen, I. Zerner, et al. Light-weight structures produced by laser beam joining for future applications in automobile and aerospace industry[J]. Journal of Materials Processing Technology, 2001, 115 (1), 2-8.
    [4] T. A. Barnes, I. R. Pashby. Joining techniques for aluminium spaceframes used in automobiles: partⅠ–solid and liquid phase welding adhesive bonding and mechanical fasteners[J]. Journal of Materials Processing Technology, 2000, 99(1-3): 62-71.
    [5] A. Mathieu, R. Shabadi,A. Deschamps, et al. Dissimilar material joining using laser (aluminum to steel using zinc-based filler wire)[J]. Optics & Laser Technology, 2007, 39(3): 652-661.
    [6]任家烈,吴爱萍.先进材料的连接[M].北京:国防工业出版社,2000:335-357.
    [7] W. Li, D. Cerjanec. ASME International Mechanical Engineering Congress and Exposition, IMECE 2004, Anaheim, November 13-19, 2004 [C]. New York: American Society of Mechanical Engineers, 2004.
    [8] H. Ozaki, M. Kutsuna. Laser-roll welding of a dissimilar metal joint of low carbon steel to aluminium alloy using 2KW fiber laser[J]. Welding International. 2009, 23(5): 345-352.
    [9] B. P.里亚博夫.铝及铝合金与其它金属的焊接[M].王义衡,赵瑞湘译.北京:宇航出版社, 1990.
    [10] R. P. King. Analysis and quality monitoring self-pierce riveting process[D]. Hertfordshire: University of Hertfordshire, 1997.
    [11] L. Han, Y. K. Chen, A. Chrysanthou, et al. Self-pierce riveting–a new way for joining structures[J]. ASME, 2002, 446(2):123-7.
    [12] W. Voelkner. Present and future developments of metal forming: selected examples[J]. Journal of Materials Processing Technology, 2000, 106(1-3): 236-242
    [13] M.-H. Lee, H.-Y. Kim, S.-I. Oh. Crushing test of double hat-shaped members of dissimilar materials with adhesively bonded and self-piercing riveted joining methods[J]. Thin-Walled Structures, 2006, 44(4): 381-386.
    [14] X. Sun, E. V. Stephens, M. A. Khaleel. Fatigue behaviors of self-piercing rivets joining similar and dissimilar sheet metals[J]. International Journal of Fatigue, 2007, 29(2): 370-386.
    [15] L. Han, A. Chrysanthou. Evaluation of quality and behaviour of self-piercing riveted aluminium to high strength low alloy sheets with different surface coatings[J]. Materials and Design, 2008, 29 (2): 458-468.
    [16] K. Mori, T. Kato, Y. Abe, et al. Plastic joining of ultra high strength steel and aluminium alloy sheets by self piercing rivet[J]. Annals of the CIRP-Manufacturing Technology, 2006, 55(1): 283-286.
    [17] Y. Abe, T. Kato, K. Mori. Joinability of aluminium alloy and mild steel sheets by self piercing rivet[J]. Journal of Materials Processing Technology, 2006, 177(1-3): 417-421.
    [18] Y. Abe, T. Kato, K. Mori. Self-pierce riveting of three high strength steel and aluminium alloy sheets[J]. International Journal of Material Forming, 2008, 1(s1): 1271-1274.
    [19] Y. Li, H. Hashimoto, E. Sukedai, et al. Morphology and structure of various phases at the bonding interface of Al/steel formed by explosive welding[J]. Journal of Electron Microscopy, 2000, 49(1): 5-16.
    [20] H. W. Liu, J. B. Yu. Interface strength and structure of explosive welding stainless steel-aluminum clad[J]. Advanced Materials Research, 2009, 79-82: 1803-1806.
    [21] M. Acarer, B. Demir. An investigation of mechanical and metallurgical properties of explosive welded aluminum–dual phase steel[J]. Materials Letters, 2008, 62(25): 4158-4160.
    [22] M. Czechowski. Stress corrosion cracking of explosion welded steel-aluminum joints[J]. Materials and Corrosion, 2004, 55(6): 464-467.
    [23] L. Tricarico, R. Spina, D. Sorgente, et al. Effects of heat treatments on mechanical properties of Fe/Al explosion-welded structural transition joints[J]. Materials and Design, 2009, 30(7): 2693-2700.
    [24] K. Hokamoto, T. Izuma, M. Fujita. New explosive welding technique to weld aluminum alloy and stainless steel plates using a stainless steel intermediate plate[J]. Metallurgical Transactions A, 1993, 24A(10): 2289-2297.
    [25] A. Chiba, K. Hokamoto, M. Nishida. Effect of heat treatment on tensile strength of explosively-welded maraging steel/Al and maraging steel/Ti multilayered composites[J]. Journal of the Japan Institute of Metals,1989, 53 (12): 1268-75.
    [26] J. H. Han, J. P. Ahn, M. C. Shin. Effect of interlayer thickness on shear deformation behavior of AA5083 aluminum alloy/SS41 steel plates manufactured by explosive welding[J]. Journal of Matierials Science, 2003, 38(1): 13-18.
    [27] J. Tsujino, K. Hidai, A. Hasegawa, et al. Ultrasonic butt welding of aluminum, aluminum alloy and stainless steel plate specimens[J]. Ultrasonics, 2002, 40(1-8): 371-374.
    [28] J. Tsujino, T. Ueoka, T. Kashino, et al. Ultrasonic butt welding of aluminum and stainless steel specimens using a 15 kHz welding system[J]. Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers, 1999, 38(7): 4254-4255.
    [29] T. Watanabe, H. Sakuyama, A. Yanagisawa. Ultrasonic welding between mild steel sheet and Al– Mg alloy sheet[J]. Journal of Materials Processing Technology, 2009, 209(15-16): 5475-5480.
    [30] P. Prangnell, F. Haddadi, Y. C. Chen. Ultrasonic spot welding of aluminium to steel for automotive applications– microstructure and optimization[J]. Materials Science and Technology, 2011, 27(3): 617-624.
    [31] S. D. Kore, P. P. Date, S. V. Kulkarni. Electromagnetic impact welding of aluminum to stainless steel sheets[J]. Journal of materials processing technology, 2008, 208(1-3): 486-493.
    [32] T. Aizawa, M. Kashani, K. Okagawa. Application of magnetic pulse welding for aluminum alloys and SPCC steel sheet joints[J].Welding Journal, 2007, 86(5): 119s-124s.
    [33] K. J. Lee, S. Kumai, T. Arai, et al. Interfacial microstructure and strength of steel/aluminum alloy lap joint fabricated by magnetic pressure seam welding[J]. Materials Science and Engineering A, 2007, 471(1-2): 95-101.
    [34] H. P. Yu, Z. D. Xu, C. F. Li, et al. Experimental research on magnetic pulse joining of 3A21 aluminum alloy-20 steel tubes[J]. Acta Metallurgica Sinica, 2011, 47(2): 197-202.
    [35] P. Sammaiah, A. Suresh, G. R. N. Tagore. Mechanical properties of friction welded 6063 aluminum alloy and austenitic stainless steel[J]. Journal of Matierials Science, 2010, 45(20): 5512-5521.
    [36] M. Kimura, H. Ishii, M. Kusaka, et al. Joining phenomena and joint strength of friction welded joint between pure aluminum and low carbon steel[J]. Science and Technology of Welding and Joining, 2009, 14(5): 388-395.
    [37] H. Seil, A. I. M. Ismail, E. Rachman, et al. Mechanical evaluation and thermal modelling of friction welding of mild steel and aluminium[J]. Journal of Materials Processing Technology, 2010, 210(9): 1209-1216.
    [38] S. Fukumoto, H. Tsubakino, K. Okita, et al. Microstructure of friction weld interface of 1050 aluminium to austenitic stainless steel[J]. Materials Science and Technology, 1998,14(4): 333-338.
    [39] S. Fukumoto, H. Tsubakino, K. Okita, et al. Friction welding process of 5052 aluminum alloy to 304 stainless steel[J]. Materials Science and Technology, 1999, 15(9): 1080-1086.
    [40] H. Ochi, K. Ogawa, Y. Yamamoto, et al. Proceedings of the 7th international offshore and polar engineering conference, Honolulu, May 25-30, 1997[C]. Golden: ISOPE, 1997.
    [41] H.Ochi, K.Ogawa, Y.Yamamoto, et al. Static strength of friction welded joint of 6061 aluminum alloy to SUS304 stainless steel[J]. Journal of Japan Institute of Light Metals, 1996, 46(10): 500-504.
    [42] M. Yilmaz, M. Col, M. Acet. Interface properties of aluminum/steel friction-welded components[J]. Materials Characterization, 2003, 49(5): 421-429.
    [43] E. Taban, J. E. Gould, J. C. Lippold. Dissimilar friction welding of 6061-T6 aluminum and AISI 1018 steel: Properties and microstructural characterization[J]. Materials and Design, 2010, 31(5): 2305-2311.
    [44] E. Taban, J. E. Gould, J. C. Lippold. Characterization of 6061-T6 aluminum alloy to AISI 1018 steel interfaces during joining and thermo-mechanical conditioning[J]. Materials Science and Engineering A, 2010, 527(7-8): 1704-1708.
    [45] M. Sahin. Joining of stainless-steel and aluminium materials by friction welding[J]. International Journal of Advanced Manufacturing Technology, 2009, 41(5-6): 487-497.
    [46] I. Masumoto, H. Hira. High temperature heavy-working phenomenon of the friction welds of carbon steel S55C[J]. Japan welding society, 1979, 48(12): 1048-1053.
    [47] K. J. Lee, S. Kumai, N. Kawamura, et al. Growth manner of intermetallic compounds at the weld interface of steel/aluminum alloy lap joint fabricated by a defocused laser beam[J]. Materials Transactions, 2007, 48(6): 1396-1405.
    [48] K. J. Lee, S. Kumai. Characterization of intermetallic compound layer formed at the weld interface of the defocused laser welded low carbon steel/6111 aluminum alloy lap joint[J]. Materials Transactions, 2006, 47 (4): 1178-1185.
    [49] A. Fuji. Friction welding of Al-Mg-Si alloy to Ni-Cr-Mo low alloy steel[J]. Science and Technology of Welding and Joining, 2004, 9(1): 83-89.
    [50] S. Fukumoto, T. Inuki, H. Tsubakino, et al. Evaluation of friction weld interface of aluminum to austenitic stainless steel joint[J]. Materials Science and Technology, 1997, 13: 679-686.
    [51] S. Fukumoto, H. Tsubakino, K. Okita, et al. Amorphization by friction welding between 5052 Aluminum Alloy And 304 Stainless Steel[J]. Scripta Materialia, 2000, 42(8):807-812.
    [52] S. Fukumoto, H. Tsubakino, K. Okita, et al. Microstructure of friction weld interface of 1050 aluminium to austenitic stainless steel[J]. Materials Science and Technology, 1998, 14(4): 333-338.
    [53] I. Kenji, Y. Naotsugu, T. Makoto, et al. Effect of interfacial layer on bond strength of friction-bonded joint of Al alloys to steel[J]. Transactions of JWRI, 2005, 34(1):1-10.
    [54] G. M. Reddy, A. S. Rao, T. Mohandas. Role of electroplated interlayer in continuous drive friction welding of AA6061 to AISI 304 dissimilar metals[J]. Science and Technology of Welding and Joining, 2008, 13(7):619-627.
    [55] R. S. Mishra, Z. Y. Ma. Friction stir welding and processing[J]. Materials Science and Engineering R, 2005, 50(1-2): 1-78.
    [56] T. Watanabe, H. Takayama, A. Yanagisawa. Joining of aluminum alloy to steel by friction stir welding[J]. Journal of Materials Processing Technology, 2006, 178(1-3): 342-349.
    [57] K. Kimapong, T. Watanabe. Friction stir welding of aluminum alloy to steel[J]. Welding Journal, 2004, 83(10): 277s-282s.
    [58] C. M. Chen, R. Kovacevic. Joining of Al 6061 alloy to AISI 1018 steel by combined effects of fusion and solid state welding[J]. International Journal of Machine Tools and Manufacture, 2004, 44(11): 1205-1214.
    [59] T. Tanaka, T. Morishige, T. Hirata. Comprehensive analysis of joint strength for dissimilar friction stir welds of mild steel to aluminum alloys[J]. Scripta Materialia, 2009, 61(7): 756-759.
    [60] T. P. Chen. Process parameters study on FSW joint of dissimilar metals for aluminum–steel[J]. Journal of Materials Science, 2009, 44(10): 2573-2580.
    [61] M. Girard, B. Huneau, C. Genevois, et al. Friction stir diffusion bonding of dissimilar metals[J]. Science and Technology of Welding and Joining, 2010, 15(8): 661-665.
    [62] H. Uzun, C. D. Donne, A. Argagnotto, et al. Friction stir welding of dissimilar Al 6013-T4 To X5CrNi18-10 stainless steel[J]. Materials and Design, 2005, 26(1): 41-46.
    [63] W. B. Lee, M. Schmuecker, U. A. Mercardo, et al. Interfacial reaction in steel–aluminum joints made by friction stir welding[J]. Scripta Materialia, 2006, 55(4): 355-358.
    [64] R. S. Coelho, A. Kostka, J. D. Santos, et al. EBSD technique visualization of material flow in aluminum to steel friction-stir dissimilar welding[J].Advanced engineering Materials, 2008, 10(12): 1127-1133.
    [65] A. Elrefaey, M. Gouda, M. Takahashi, et al. Characterization of aluminum/steel lap jointby friction stir welding[J]. Journal of Materials Engineering and Performance, 2005, 14(1): 10–17.
    [66] K. Kimapong, T. Watanabe. Effect of welding process parameters on mechanical property of FSW lap joint between aluminum alloy and steel[J]. Materials Transactions, 2005, 46(10): 2211-2217.
    [67] K. Kimapong, T. Watanabe. Lap joint of A5083 aluminum alloy and SS400 steel by friction stir welding[J]. Materials Transactions, 2005, 46(4): 835-841.
    [68] Y. C. Chen, T. Komazaki, T. Tsumura, et al. Role of zinc coat in friction stir lap welding Al and zinc coated steel[J]. Materials Science and Technology, 2008, 24(1): 33-39.
    [69] Y. C. Chen, T. Komazaki, T. Tsumura, et al. Interface microstructure study of friction stir lap joint of AC4C cast aluminum alloy and zinc-coated steel[J]. Materials Chemistry and Physics, 2008, 111(2-3): 375-380.
    [70] Y. C. Chen, K. Nakata. Effect of the surface state of steel on the microstructure and mechanical properties of dissimilar metal lap joints of aluminum and steel by friction stir welding[J]. Metallurgical and materials transactions A, 2008, 39(8): 1985-1992.
    [71] E. Ahmed, T. Makoto, I. Kenji. Friction-stir-welded lap joint of aluminum to zinc-coated steel[J]. Quarterly Journal of the Japan Welding Society, 2005, 23(3): 186-193.
    [72] C. Y. Lee, D. H. Choi, Y. M. Yeon, et al. Dissimilar friction stir spot welding of low carbon steel and Al–Mg alloy by formation of IMCs[J]. Science and Technology of Welding and Joining, 2009, 14(3): 216-220.
    [73] S. Bozzi, A. L. Etter, T. Baudin, et al. Proc. 6th Int. Conf. on‘Friction stir welding’, Saint Sauveur, Canada, October 2007[C]. London: TWI, 2007.
    [74] S. Bozzi, A. L. Helbert-Etter, T. Baudin, et al. Intermetallic compounds in Al 6016/IF-steel friction stir spot welds[J]. Materials Science and Engineering A, 2010, 527(16-17): 4505-4509.
    [75] T. Liyanage, J. Kilbourne, A. P. Gerlich, et al. Joint formation in dissimilar Al alloy/steel and Mg alloy/steel friction stir spot welds[J]. Science and Technology of Welding and Joining, 2009, 14(6): 500-508.
    [76] V.-X. Tran, J. Pan. Fatigue behavior of dissimilar spot friction welds in lap-shear and cross-tension specimens of aluminum and steel sheets[J]. International Journal of Fatigue 2010, 32(7): 167-1179.
    [77] V.-X. Tran, J. Pan. Analytical stress intensity factor solutions for resistance and friction stir spot welds in lap-shear specimens of different materials and thicknesses[J]. Engineering Fracture Mechanics, 2010, 77(14): 2611-2639.
    [78] Y. Uematsu, K. Tokaji, Y. Tozaki, et al. Fatigue behaviour of dissimilar friction stir spotweld between 6061 and SPCC welded by a scrolled groove shoulder tool[J]. Procedia Engineering, 2010, 2(1): 193-201.
    [79] Y. Uematsu, K. Tokaji, Y. Tozaki, et al. Fatigue behaviour of dissimilar friction stir spot welds between 6061-T6 and low carbon steel sheets welded by a scroll grooved tool without probe[J]. Fatigue & Fracture of Engineering Materials & Structures, 2011,34(8): 581-591.
    [80] R. Nandan, T. DebRoy, H. K. Bhadeshia. Recent advances in friction-stir welding– Process, wldment structure and properties[J]. Progress in Materials Science, 2008, 53(6): 980-1023.
    [81] T. DebRoy, H. K. Bhadeshia. Friction stir welding of dissimilar alloys– a Perspective[J]. Science and Technology of Welding and Joining, 2010, 15(4): 266-270.
    [82] K. Miyagawa, M. Tsubaki, Y. Masami, et al. Spot welding between aluminium alloy and Zn-coated steel by friction stirring[J]. Welding International, 2009, 23(9): 648-653.
    [83] M. Geiger, F. Micari, M. Merklein, et al. Friction stir knead welding of steel aluminium butt joints[J]. International Journal of Machine Tools and Manufacture, 2008, 48(5): 515-521.
    [84] A. A. M. da Silva, E. Aldanondo, P. Alvarez, et al. Friction stir spot welding of AA 1050 Al alloy nd hot stamped boron steel (22MnB5)[J]. Science and Technology of Welding and Joining, 2010, 15(8): 682-687.
    [85] K. Ikeuchi, M. Takahashi, H. Watanabe, et al. Effects of carbon content on intermetallic compound layer and joint strength in friction welding of Al alloy to steel[J]. Welding in the word, 2009, 53(5-6): 135-139.
    [86] S. Bozzia, L. Helbert-Etter, T. Baudin, et al. Intermetallic compounds in Al 6016/IF-steel friction stir spot welds[J]. Materials Science and Engineering A, 2010, 527(16-17): 4505-4509.
    [87] Y. Uematsu,K. Tokaji,Y. Tozaki, et al. Fatigue behaviour of dissimilar friction stir spot welds between A6061-T6 and low carbon steel sheets welded by a scroll grooved tool without probe[J]. Fatigue & Fracture of Engineering Materials & Structures, 2011, 34(8): 581-591.
    [88] G. Sierra, P. Peyre, F. Deschaux-Beaume, et al. Steel to aluminium key-hole laser welding[J]. Materials Science and Engineering A, 2007, 447(1-2): 197-208.
    [89] M.J. Torkamany, S. Tahamtan, J. Sabbaghzadeh. Dissimilar welding of carbon steel to 5754 aluminum alloy by Nd:YAG pulsed laser[J]. Materials & Design, 2010, 31(1): 458-465.
    [90] H.-C. Chen, A. J. Pinkerton, L. Li, et al. Gap-free fibre laser welding of Zn-coated steelon Al alloy for light-weight automotive applications[J]. Materials and Design, 2011, 32(2): 495-504.
    [91] Y. Shi, H. Zhang, T. Watanabe, et al. CW/PW dual-beam YAG laser welding of steel/aluminum alloy sheets[J]. Optics and Lasers in Engineering, 2010, 48(7-8): 732-736.
    [92] G. Sierra, P. Peyre, D. Stuart, et al. Galvanised steel to aluminium joining by laser and GTAW processes[J]. Materials Characterization, 2008, 59(12): 1705-1715.
    [93] P. Peyre, G. Sierra, D. Stuart, et al. Generation of aluminium–steel joints with laser-induced reactive wetting[J]. Materials Science and Engineering A, 2007, 444(1-2): 327-338.
    [94] R. Borrisutthekul, T. Yachi, Y. Miyashita, et al. Suppression of intermetallic reaction layer formation by controlling heat flow in dissimilar joining of steel and aluminum alloy[J]. Materials Science and Engineering A, 2007, 467(1-2): 108-113.
    [95] G. Sierra, P. Peyre, D. Stuart, et al. Steel to aluminium braze welding by laser process with Al–12Si filler wire[J]. Science and Technology of Welding and Joining, 2008, 13(5): 430-437.
    [96] A. Mathieu, S. Pontevicci, J. Viala, et al. Laser brazing of a steel/aluminium assembly with hot filler wire (88% Al, 12% Si)[J]. Materials Science and Engineering A, 2006, 435-436(5): 19-28.
    [97] K. Saida, H. Ohnishi, K. Nishimoto, et al. Fluxless laser brazing of aluminium alloy to galvanized steel using a tandem beam - dissimilar laser brazing of aluminium alloy and steels[J]. Welding International, 2010, 24(3): 161-168.
    [98] H. Laukant, C. Wallmann, M. Korte, et al. Fluxless laser beam joining of aluminium with zinc coated steel[J]. Science and Technology of Welding and Joining, 2005, 10(2): 220-226.
    [99] C. Dharmendra, K. P. Rao, J. Wilden, et al. Study on laser welding–brazing of zinc coated steel to aluminum alloy with a zinc based filler[J]. Materials Science and Engineering A, 2011, 528(3): 1497-1503.
    [100] A. Mathieu, S. Mattei, A. Deschamps, et al. Temperature control in laser brazing of a steel/aluminium assembly using thermographic measurements[J]. NDT&E International, 2006, 39(4): 272-276.
    [101] H. Ozaki, M. Kutsuna, S. Nakagawa, et al. Laser roll welding of dissimilar metal joint of zinc coated steel to aluminum alloy[J]. Journal of Laser Applications, 2010, 22(1): 1-6.
    [102] M. J. Rathod, M. Kutsuna. Joining of aluminum alloy 5052 and low-carbon steel bylaser roll welding[J]. Welding Journal, 2004, 83(1): 16s-26s.
    [103] J. L. Song, S. B. Lin, C. L. Yang, et al. Effects of Si additions on intermetallic compound layer of aluminum–steel TIG welding–brazing joint[J]. Journal of Alloys and Compounds, 2009, 488(1): 217-222.
    [104] J. L. Song, S. B. Lin, C. L. Yang, et al. Spreading behavior and microstructure characteristics of dissimilar metals TIG welding–brazing of aluminum alloy to stainless steel[J]. Materials Science and Engineering A, 2009, 509(1-2): 31-40.
    [105] J. L. Song, S. B. Lin, C. L. Yang, et al. Analysis of intermetallic layer in dissimilar TIG welding–brazing butt joint of aluminium alloy to stainless steel[J]. Science and Technology of Welding and Joining, 2010, 15(3): 213-218.
    [106] J. L. Song, S. B. Lin, C. L. Yang, et al. Brazability of dissimilar metals tungsten inert gas butt welding–brazing between aluminum alloy and stainless steel with Al–Cu filler metal[J]. Materials and Design, 2010, 31(5): 2637-2642.
    [107] J. L. Song, S. B. Lin, C. L. Yang, et al. Metallurgical and mechanical investigations of aluminium-steel butt joint made by tungsten inert gas welding–brazing[J]. Science and Technology of Welding and Joining, 2009, 14(7): 636-639.
    [108]宋建岭.铝合金/不锈钢预涂层TIG熔-钎焊特性与界面行为研究[D].哈尔滨:哈尔滨工业大学博士学位论文, 2010.
    [109]林三宝,宋建岭,杨春利,等.铝合金/不锈钢钨极氩弧熔-钎焊接头界面层的微观结构分析[J].金属学报, 2009, 45(10): 1211-1216.
    [110]宋建岭,林三宝,杨春利,等.铝合金/不锈钢异种金属预涂层钨极氩弧熔钎焊接头特性[J].中国有色金属学报, 2009, 19(7): 1209-1215.
    [111]林三宝,宋建岭,马广超,等.铝合金与不锈钢异种金属铝硅药芯焊丝TIG熔钎焊接头组织及性能[J].焊接学报, 2009, 30(7): 9-12.
    [112] S. B. Lin, J. L. Song, C. L. Yang, et al. Experimental study on dissimilar TIG welding-brazing of 5A06 aluminum alloy to SUS321 stainless steel[J]. China Welding, 2010, 19(1): 26-31.
    [113]宋建岭,林三宝,杨春利,等.特种钎剂辅助铝/钢异种合金TIG熔-钎焊[J].焊接学报, 2010, 31(2): 45-48.
    [114] H. G. Dong, L. Q. Yang, C. Dong, et al. Arc joining of aluminum alloy to stainless steel with flux-cored Zn-based filler metal[J]. Materials Science and Engineering A, 2010, 527(26): 7151-7154.
    [115] T. Murakami, K. Nakata, H. J. Tong, et al. Dissimilar metal joining of aluminum to steel by MIG arc brazing using flux cored wire[J]. ISIJ International, 2003, 43(10): 1596-1602.
    [116] H. T. Zhang, J. C. Feng, P. He, et al. The arc characteristics and metal transfer behaviour of cold metal transfer and its use in joining aluminium to zinc-coated steel[J]. Materials Science and Engineering A, 2009, 499(1-2): 111-113.
    [117] H. T. Zhang, J. C. Feng, P. He, et al. Interfacial microstructure and mechanical properties of aluminium–zinc-coated steel joints made by a modified metal inert gas welding–brazing process[J]. Materials Characterization, 2007, 58(7): 588-592.
    [118] H. T. Zhang, J. K. Liu. Microstructure characteristics and mechanical property of aluminum alloy/stainless steel lap joints fabricated by MIG welding–brazing process[J]. Materials Science and Engineering A, 2011, 528(19-20): 6179-6185.
    [119] R. F. Qiu, C. Iwamoto, S. Satonaka. Interfacial microstructure and strength of steel/aluminum alloy joints welded by resistance spot welding with cover plate[J]. Journal of Materials Processing Technology, 2009, 209(8): 4186-4193.
    [120] R. F. Qiu, H. X. Shi, K. K. Zhang, et al. Interfacial characterization of joint between mild steel and aluminum alloy welded by resistance spot welding[J]. Materials Characterization, 2010, 61(7): 684-688.
    [121] R. F. Qiu, S. Satonaka, C. Iwamoto. Effect of interfacial reaction layer continuity on the tensile strength of resistance spot welded joints between aluminum alloy and steels[J]. Materials and Design, 2009, 30(9): 3686-3689.
    [122] R. F. Qiu, S. Satonaka, C. Iwamoto. The influence of reaction layer on the strength of aluminum/steel joint welded by resistance spot welding[J]. Materials Characterization, 2009, 60(2): 156-159.
    [123]渡辺健彦,土井悠平,柳沢敦,等.軟鋼とAl-Mg合金の抵抗スポット溶接[J].溶接学会論文集, 2005, 23(3): 491-495.
    [124] I. H. Hwang, T. Watanabe, Y. Doi. Dissimilar metal welding of steel to Al-Mg alloy by spot resistance welding[J]. Advanced Materials Research, 2007, 15-17: 381-386.
    [125] X. Sun, E. V. Stephens, M. A. Khaleel, et al. Resistance spot welding of aluminum alloy to steel with transition material– from process to performance– Part I: experimental study[J]. Welding Journal, 2004, 83(6): 188s-195s.
    [126] X. Sun, M. A. Khaleel. Resistance spot welding of aluminum alloy to steel with transition material–PartⅡ: finite element analyses of nugget growth[J]. Welding Journal, 2004, 83(7): 197s-202s.
    [127] H. Oikawa, S. Ohmiya, T. Yoshimura, et al. Resistance spot welding of steel and aluminium sheet using insert metal sheet[J]. Science and Technology of Welding and Joining, 1999, 4(2): 80–88.
    [128] T. Fukui, Y. Sugiyama. Joining aluminium to mild steel by resistance spot welding[J].Sumitomo Light Metal Technical Reports, 1977, 18(3-4): 45-50.
    [129] M. Yasuyama, K. Fukui, K. Ogawa, et al. Spot welding of aluminum and steel sheet with insert of aluminum clad steel sheet[J]. Sumitomo Metals, 1996, 48(4): 87-95.
    [130] Y. Saito, H. Umeshita, T. Ogura, et al. Effects of alloying copper and silicon on the bondability of dissimilar metal joints of aluminum alloys to steel[J]. Quarterly Journal of the Japan Welding Society, 2009, 27(2): 187s-191s.
    [131] T. Ogura, Y. Saito, H. Umeshita, et al. Characteristics and estimation of interfacial microstructure with additional elements in dissimilar metal joints of aluminum alloys to steel[J]. Quarterly Journal of the Japan Welding Society, 2009, 27(2): 174s-178s.
    [132] M. K. Karfoul, G. J. Tatlock, R. T. Murray. The behaviour of iron and aluminium during the diffusion welding of carbon steel to aluminium[J]. Journal of Materials Science, 2007, 42(14): 5692-5699.
    [133] T. Momono, T. Enjo. Diffusion welding of aluminum to steel[J]. Journal of Japan Institute of Light Metals, 1985, 35(7): 396-404.
    [134] K. Saida, S.-I. Kuroda, K. Nishimoto. Improvement in interfacial reactivity of A6061 by eutectic reaction between A6061 and pre-coated Metals[J]. Quarterly Journal of the Japan Welding Society, 2005, 23(3): 405-411.
    [135] S.-I. Kuroda, K. Saito, K. Nishimoto. Microstructure and properties of directly bonded joint of A6061 aluminum alloy to SUS316 stainless steel - study on diffusion bonding of aluminum alloy to stainless steel (Report 1)[J]. Quarterly Journal of the Japan Welding Society, 1999, 17(3): 484-489.
    [136] S.-I. Kuroda, I. Makino, K. Kada, et al. Improvement in diffusion-bondability of A6061 aluminum alloy to SUS316 stainless steel using Ag insert metal and its quantitatively evaluation by mathematical method - study on diffusion bonding of aluminum alloy to stainless steel (Report 2) [J]. Quarterly Journal of the Japan Welding Society, 1999, 17(4): 519-525.
    [137] K. Nishimoto, K. Saida, S.-I. Kuroda. Removing of surface oxide film of SUS316 and improvement of diffusion-bondability of A6061 aluminum alloy to SUS316 stainless steel using surface-activated pre-coating technique - study on diffusion bonding of aluminum alloy to stainless steel. (Report 3)[J]. Quarterly Journal of the Japan Welding Society, 2000, 18(4): 567-571.
    [138] M. Roulin, J. W. Luster, G. Karadeniz, et al. Strength and Structure of Furnace-Brazed Joints between Aluminum and Stainless Steel[J]. Welding Journal, 1999, 78(5): 151s-155s.
    [139] P. Liu, Y. J. Li, J. Wang, et al. Vacuum brazing technology and microstructure near theinterface of Al/18-8 stainless steel[J]. Materials Research Bulletin, 2003, 38(9-10): 1493-1499
    [140] J. C. Feng, P. He. High frequency induction contact reactive brazing of aluminum to stainless steel[J]. Transactions of Nonferrous Metals Society of China, 2005, 15(2): 11-15.
    [141]何鹏,冯吉才,钱乙余,等.接触反应法解决铝/不锈钢钎焊的缺陷及脆性[J].材料科学与工艺, 2005, 13(1): 82-85.
    [142] M.-F. Wu, N.-C. Si, J. Chen. Contact reactive brazing of Al alloy/Cu/stainless steel joints and dissolution behaviors of interlayer[J].Transactions of Nonferrous Metals Society of China, 2011, 21(2): 1035-1039.
    [143] S. Y. Liu, A. Suzumura, T. T. Ikeshoji, et al. Brazing of Stainless to Various Aluminum Alloys in Air[J]. JSME International Journal, 2005, 48(4):420-425.
    [144] U. R. Kattner, B. P. Burton. Phase Diagrams of Binary Iron Alloys[M]. Materials Park, Ohio: ASM International, 1993.
    [145] P. M. Robinson, M. B. Bever. Thermodynamic properties-Intermetallic Compounds[M]. New York: John Wiley & Sons Ltd, 1967.
    [146] S. K. Das. Al-rich intermetallics in aluminium alloys-Intermetallic Compounds: Vol. II Practice[M]. New York: John Wiley & Sons Ltd, 1994.
    [147] G. F. Malek, M. J. Hamedi, M. J. Torkamany, et al. Weld metal microstructural characteristics in pulsed Nd:YAG laser welding[J]. Scripta Materialia, 2007, 56(11): 955-958.
    [148] A. Matsunawa, V. Semak. Simulation of front keyhole and dynamic during laser welding[J]. Journal of Physics D: Applied Physics, 1997, 30(5): 798-809.
    [149] K. Saito, K. Sugiyama, K. Hiraga. Al13M4-type structures and atomic models of their twins[J]. Materials Science and Engineering A, 2000, 294: 279-282.
    [150] A. Bahadur, O. N. Mohanty. Structural studies of hot dip aluminized coatings on mild steel[J]. Materials Transactions, 1991, 32(11): 1053-1061.
    [151] Y. Tanaka, M. Kajihara. Kinetics of isothermal reactive diffusion between solid Fe and liquid Al[J]. Journal of Materials Science, 2010, 45(20): 5676-5684.
    [152] A. Bouayad, C. Gerometta, A. Belkebir, et al. Kinetic reactions between solid iron and molten aluminium[J]. Materials Science and Engineering A, 2003, 363(1-2): 53-61.
    [153] K. Bouché, F. Barbier, A. Coulet. Intermetallic compound layer growth between solid iron and molten aluminium[J]. Materials Science and Engineering A, 1998, 249(1-2): 167-175.
    [154] V. I. Dybkov. Interaction of 18Cr-10Ni stainless steel with liquid aluminium[J].Journal of Materials Science, 1990, 25(8): 3615-3633.
    [155]梁英教,车荫昌.无机物热力学数据手册[M].沈阳:东北大学出版社,1993.
    [156]程兰征,章燕豪.物理化学[M].上海:上海科学技术出版社. 2007.
    [157]陈树海. Ti/Al异种合金激光熔钎焊工艺与连接机理[D].哈尔滨:哈尔滨工业大学博士学位论文, 2009.
    [158]张洪涛.铝/镀锌钢板CMT熔-钎焊机理研究[D].哈尔滨:哈尔滨工业大学博士学位论文, 2008.
    [159]方洪渊,冯吉才.材料连接过程中的界面行为[M].哈尔滨:哈尔滨工业大学出版社, 2005.
    [160] G. Eggeler, W. Auer, H, Kaesche. On the influence of silicon on the growth of the alloy layer durig hot dip aluminizing[J]. Journal of Materials Science, 1986, 21:3348-3350.
    [161]夏志皋.塑性力学[M].上海:同济大学出版社, 1991.
    [162]王勖成.有限单元法[M].北京:清华大学出版社, 2003.
    [163]徐秉业等译.接触力学[M].北京:高等教育出版社, 1992.
    [164]龙昕,汪建华,张增艳,等.电阻点焊温度场分布的数值模拟[J].上海交通大学学报. 2001, 35 (3): 416-419.
    [165] A. De, M. P. Theddeus. Finite element analysis of resistance spot welding in aluminium[J]. Science and Technology of Welding and Joining. 2002, 7 (2): 111-118.
    [166]李宝清.铝合金电阻点焊过程的数值模拟及能量分析研究[D].天津:天津大学博士学位论文, 2002.
    [167]杨黎峰.铝合金电阻点焊熔核形成过程的数值模拟[D].长春:吉林大学硕士学位论文, 2005.
    [168] Gould. Modeling primary dendrite arm spacings in resistance spot welds, Part II–experimental studies[J]. Welding Journal, 1994, 73(5): 91-100.
    [169]黄伯云,李成功,石力开,等.中国材料工程大典第4卷[M].北京:化学工业出版社, 2006.
    [170]钟卫佳主编. Cu铜加工技术实用手册[M].北京:冶金工业出版社, 2007.