二萜类化合物对土壤纤毛虫的毒性效应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
2006年7月至2007年12月,采用“非浸没培养皿法”(non-flooded Petri dish method)和活体观察法对小陇山自然保护区麻沿林区的土壤纤毛虫群落进行了定性、定量研究。利用花盆实验,通过添加二萜类化合物对该地区土壤纤毛虫群落的毒性进行了研究。并从实验土壤中分离出膨胀肾形虫、僧帽肾形虫和粘游仆虫,通过急性和慢性毒性试验,研究了二萜类化合物对土壤纤毛虫种群的毒性。主要结果如下:
     1、麻沿林区土壤纤毛虫群落结构的原位研究共鉴定到土壤纤毛虫91种,其中包括7个未定名种和14个中国土壤纤毛虫新纪录种,隶属于3纲、11目、29科、42属。其中,下毛目(Hypotrichida)为优势类群,肾形目(Colpodida)和前口目(Prostomatida)为次优势类群,侧口目(Pleurostomatida)、缘毛目(Peritrichida)和寡毛目(Oligotrichida)为偶见类群,膨胀肾形虫(Colpoda inflata)、长篮环虫(Cyrtolophosis elongata)、大口薄咽虫(Leptopharynx eurystoma)和长圆膜袋虫(Cyclidium oblongum)为优势种。原位研究结果表明,小陇山麻沿林区土壤纤毛虫群落物种丰富,特有和稀有物种繁多,群落结构复杂,林区土壤纤毛虫群落与我国已有研究报道的其他地区的均不相似。同时麻沿林区土壤纤毛虫的C/P系数为0.710,反映了麻沿林区比较适合土壤纤毛虫生长繁殖。
     2、模拟生态实验中,定性研究共鉴定到纤毛虫88种,其中对照组75种,实验组随添加的二萜类化合物浓度升高,纤毛虫物种数减少,群落结构简单化;回归分析表明纤毛虫物种数和二萜类化合物浓度成极显著负相关关系。当施药浓度超过32.5 mg·kg~(-1)时土壤纤毛虫优势种和C/P系数发生变化,此时优势种为膨胀肾形虫(Colpoda inflata)、长篮环虫(Cyrtolophosis elongata)、苔藓膜袋虫(Cyclidium muscicola)、水藓薄咽虫(Leptopharynx sphagnetorum)、大弹跳虫(Halteria grandinella)、小尖毛虫(Oxytricha minor)、有肋薄咽虫(Leptopharynx costatus)和前口虫属一种(Frontonia sp.);C/P系数大于1,表明二萜类化合物使土壤纤毛虫群落结构遭到了相当大的破坏。
     定量研究发现,在相同曝露时间,不同施药浓度下土壤纤毛虫丰度与对照组相比均有极明显的降低,而同一施药浓度,随着曝露时间逐渐延长,纤毛虫的数量逐渐回升。二萜类化合物残留浓度测定结果表明,即使土壤中二萜类化合物残留浓度很低,也对纤毛虫群落有显著的抑制作用。非参数多个独立样本检验分析结果表明,各浓度组间纤毛虫的丰度存在极显著差异。
     3、种群毒性试验中,12 h和24 h的急性毒性试验结果显示,浓度对数与纤毛虫死亡概率单位之间存在极显著的正相关关系。即随二萜类化合物浓度增大,对纤毛虫种群的毒性增大。膨胀肾形虫、僧帽肾形虫和粘游仆虫12 h-LC50分别为161.4 mg·L~(-1),94.8 mg·L~(-1),83.7 mg·L~(-1); 24 h-LC50依次为114.9 mg·L~(-1),92.3 mg·L~(-1),65.8 mg·L~(-1)。单因子方差分析(ANOVA)显示:与对照组相比,不同浓度的二萜类化合物对三种纤毛虫的致死率存在极显著差异(P﹤0.01);各浓度组之间也存在极显著差异(P﹤0.01)。以上结果表明二萜类化合物对纤毛虫种群的急性毒性作用显著。
     慢性毒性试验结果显示,不同浓度二萜类化合物培养液中三种纤毛虫的种群密度和种群增长率明显低于对照组,而世代时间明显高于对照组。三种纤毛虫在不同浓度二萜类化合物培养液中的种群密度和种群增长率与对照之间存在着极显著的差异(P﹤0.01)。综合以上结果:在试验浓度范围内,二萜类化合物对膨胀肾形虫、僧帽肾形虫和粘游仆虫的种群生长有明显的抑制效应。
     对纤毛虫个体形态的影响方面,二萜类化合物使三种纤毛虫个体形态发生显著变化。
The community characteristic of soil ciliates in the Mayan Forest Region of the National Nature Reserve of Xiaolong Mountains was studied quantitativly and qualitativly by“non-flooded petri dish method”and observation in vivo.Toxicity of Diterpenoids on community of soil ciliates in this area was studied by pot test,and that on population of Colpoda inflata,Colpoda cucullus and Euplotes muscicola was studied by acute and chronic toxicity test.The study was carried out from July of 2006 to December of 2007.The main results are as follows:
     1.In the study in situ,91 species,including 7 unnamed species and 14 new records of soil ciliates in China,belonging to 3 classes,11 orders,29 families and 42 genera,were identified.Hypotrichida was the dominant group,Colpodida and Prostomatida were the subdominant groups,Pleurostomatida,Peritrichida and Oligotrichida were the incidental groups,and Colpoda inflata,Cyrtolophosis elongata, Leptopharynx eurystoma and Cyclidium oblongum were the dominant species.The results showed that there were rich species and endemic and rare species in the community of soil ciliates,the community structure of soil ciliates in the Mayan Forest Region of Xiaolong Mountains was complex and was quite dissimilar to that in other areas with reported results of study in China.The C/P coefficient of soil ciliates was 0.710,which showed that the natural environments of Mayan Forest Region of Xiaolong Mountains was suitable for growth and reproduction of soil ciliates.
     2.In the simulation test of soil ecosystem,totally 88 species were identified in qualitative study,75 species in which were in control groups.The species numbers decreased with increasing of centration of Diterpenoids in test groups,the community structure of soil ciliates was simplified. The results of regression analysis showed that there were significant negative correlations between the species numbers and the concentrations of Diterpenoids. When the concentrations were more than 32.5 g·kg~(-1),the dominant species and C/P coefficient changed, and the dominant species were Colpoda inflata,Cyrtolophosis elongata, Cyclidium muscicola,Leptopharynx sphagnetorum, Halteria grandinella, Oxytricha minor,Leptopharynx costatus and Frontonia sp.,the C/P coefficient were more than one,which showed that the community structure of soil ciliates were greatly disturbed.
     Quantitative study showed that the abundance of ciliates decreased markedly compared to control groups with different concentrations at the same exposed time,but that increased gradually with extending exposed time at the same concentrations. The results of determined residual concentrations showed that the community structure of soil ciliates was significantly restrained even in lower concentrations. The result of K-independent sample of nonparametric tests showed that there were significant difference on the abundance of ciliates among different concentrations groups.
     3.In toxicity test on population, 12 h and 24 h acute toxicity test showed that there were significant positive correlations between the concentration logarithm and the mortality probability units, i.e. the toxicity of Diterpenoids on populations of soil ciliates increased with the concentrations of Diterpenoids increasing. 12 h-LC50 of Colpoda inflate,Colpoda cucullus and Euplotes muscicola were 161.4 mg·L~(-1),94.8 mg·L~(-1),83.7 mg·L~(-1) respectively,and 24 h-LC50 was in sequence of 114.9 mg·L~(-1),92.3 mg·L~(-1),65.8 mg·L~(-1). ANOVA showed that,compared with the control groups,a significant difference (P<0.01) were found between the mortality rate of ciliates and the concentrations of Diterpenoids and it occured also among the groups in terms of different concentration. Considering all the above,the acute toxicity of Diterpenoids on populations were significant.
     The chronic toxicity test showed that population densities and population growth rates of test groups were obviously lower than ones in control groups while the generation times were obviously longer than ones in control groups.The analysis indicated that there were a significant difference (P<0.01) between the population densities and the growth rates of test groups and those of control groups.According to above results,within the test concentration ranges,the population growth of Colpoda inflata,Colpoda cucullus and Euplotes muscicola were restrained significantly by Diterpenoids.
     The results of effects on body shape indicated that the body shape of Colpoda inflata and Colpoda cucullus changed significantly.
引文
曹志平,陈国康,张凯,吴文良. 2005.不同土壤培肥措施对华北高产农田原生动物丰度的影响,生态学报,25(11):2992-2995.
    陈素芳,徐润林,王勇军,昝启杰,廖文波,2003.化学防除薇甘菊对内伶仃岛土壤原生动物群落的影响.应用与环境生物学报,9(4):422-428.
    程培元等. 1984.大萼香茶菜新二萜成分:大萼香茶菜甲素和乙素的结构.药学学报, 19 (8):593.
    崔振东,庞延斌,张作人,1989.土壤原生动物.动物学杂志,24(2):43-47.
    邓韵,蔡妙颜,田野等.2005.溪黄草不同溶剂提取物中总二萜含量的测定.现代食品科技,21(2):153-154.
    丁兰,王瀚,刘国安,杨东娟,2005a.拟缺香茶菜化学成分的研究.西北师范大学学报(自然科学版),41(1):58-60.
    丁兰,王莱,孙坤,王汉卿,2004.总序香茶菜和蓝萼香茶菜挥发油成分研究.西北师范大学学报(自然科学版),40(2):60-65.
    丁兰,郁开北,刘国安,2005b.细胞毒活性二萜Wangzaozin A的晶体结构.高等学校化学学报,26(8):1455-1458.
    堵锡华.2005.酯类化合物对四膜虫毒性的拓扑研究.环境污染与防治,27(1):15-17.
    方卫飞,盛华仙. 2001.金属镉对草履虫繁殖能力和过氧化物酶活性影响的研究.金华职业技术学院学报, 4:70-71.
    冯伟松,杨军,叶志鸿,缪炜,余育和,黄铭洪,沈韫芬, 2004.凡口铅锌矿湿地处理系统的土壤原生动物.动物学杂志,39(1):2-11.
    傅诚杰,俞婷,缪炜,沈韫芬, 2005.四膜虫:毒理学与生态毒理学研究中的优良模式生物.动物学杂志,40(1):108-113.
    高吉喜,沈英娃,曹洪法,1997.中国生态毒理学研究现状.环境科学研究, 10(3):54-58.
    高云超,朱文珊,陈文新,2000.土壤原生动物群落及其生态功能.生态学杂志,19(1):59-65.
    谷艳芳,柳爱莲,丁圣彦等, 2007.农药胁迫对草履虫个体生长和种群动态的影响.生态学杂志,26 (5):678-681.
    郭非凡,史雅娟,孟凡乔,陈京生,吕永龙. 2006.典型POPs物质对土壤原生动物丰度的影响.生态学报,26(1):70-74.
    郭跃伟,程培元,侯惠欣. 1992.香茶菜属二萜的化学特征.中草药, 23(7):380-381.
    胡好远,郝家胜,靳璐. 2006.Cd对草履虫种群的毒性作用.生物学杂志,23(1):19-21.
    黄卫红,赵天珍,赵柳青等.2006.六氯苯对原生动物四膜虫的生物毒性实验室研究.环境科学与技术,29(12):11-13.
    金忠民,沙伟,2003.香茶菜属植物的研究现状及药用前景.齐齐哈尔大学学报,19(4):10-13.
    景体凇,徐镜波,张永祥,刘怡.2000.镉、铜、锌对梨形四膜虫的毒性作用.松辽学刊(自然科学版),2:18-20.
    李力,谢娟英.2004.培养液对尾草履虫种群增长和个体形态的影响.西北大学学报(自然科学版),34(3):315-316.
    李建成,叶启霞. 2000.内折香茶菜乙素抗肿瘤作用的研究.中草药, 31(9):681-683.
    李建成等. 2001.内折香茶菜素和内折香茶菜素D抗肿瘤作用的实验研究.中医药研究, 32(1):49-52.
    刘红艳,刘树深. 2006.部分苯酚化合物对梨型四膜虫毒性的三维定量效关系. 桂林工学院学报,26(4):538-542.
    刘庆余,成毅萍.1995.氯苯化合物对草履虫的毒性研究.环境化学,14(1):58-61.
    马正学,龚大杰,宁应之,牛世全,刘左军,崔永德.2002.铅锌矿采矿废物污染对土壤原生动物的影响.甘肃科学学报,14(3)53-57.
    马正学,宋秀琴,曹同庚.1989.重金属化合物对上海四膜虫生长抑制的效应和形态变化的初步分析.中国环境科学,9(5):337-3431.
    宁应之,沈韫芬.1996.土壤原生动物.生物学通报, 31(3):13-15.
    宁应之,沈韫芬.1998a.中国典型地带土壤原生动物:II生态学研究.动物学报,44(3):271-276.
    宁应之,沈韫芬. 1998b.中国典型地带土壤原生动物食性的观察.动物学研究, 19(5):397-400.
    宁应之,沈韫芬.1999a.中国典型地带29种土壤纤毛虫记述(纤毛门:动基片纲).西北师范大学学报(自然科学版),35(3):75-82.
    宁应之,沈韫芬.1999b.中国典型地带土壤原生动物群落结构及其特征.西北师范大学学报(自然科学版),35(2):50-54.
    宁应之,沈韫芬. 1999c.中国土壤原生动物新纪录种3(纤毛虫门:寡膜纲).动物学杂志,34(6):2-4.
    宁应之,沈韫芬. 2000.中国土壤原生动物新纪录种3(纤毛虫门:多膜纲;异毛目). 动物学杂志,35(1):2-4.
    宁应之,王娟,刘娜,马正学,程晓. 2007.甘肃天水麦积山风景名胜区土壤纤毛虫的物种多样性.动物学研究,28(4):367-373.
    牛世全,宁应之,马正学,龚大杰,刘左军,许亚国.2002.重金属复合污染土壤中原生动物的群落特征.甘肃科学学报,14(3):44-48.
    潘志崇,刘云,孙平跃. 2005.铜、锌离子对尾草履虫的急性毒性试验.水产科学,24(10):19-21.
    沈韫芬,刘江,宋碧玉.1992.原生动物.见:尹文英等著,中国亚热带土壤动物. 北京:科学出版社.97-156.
    沈韫芬,张宗涉,龚循矩等. 1990.微型生物监测新技术.北京:中国建筑工业出版社.231-524.
    宋碧玉. 1995.浙西北天目山的亚热带森林土壤纤毛虫.渝州大学学报(自然科学版),12(2):16-18.
    宋微波,马洪钢.2000.我国海洋纤毛虫原生动物的研究进展.生物学通报,35(5):1-10.
    宋微波. 1994a.长颈虫属两种土壤纤毛虫研究(动基片纲:刺钩目).动物分类学报,19(4): 385-391.
    宋微波. 1994b.青岛地区土壤纤毛虫区系:Ⅰ.动基片纲,寡膜纲,肾形纲.青岛海洋大学学报,24(1):15-23 .
    宋微波等.1999.原生动物专论.青岛:青岛海洋大学出版社.15-16.
    宋雪英,宋玉芳,孙铁珩,张薇,周启星.2004.土壤原生动物对环境污染的生物指示作用.应用生态学报,15(10):1979-1982.
    苏镜娱. 1992.海藻化学及药物研究概况.中国海洋药物,11(2):25.
    孙秉强,张强,董安祥等. 2005.甘肃黄土高原土壤水分气候特征.地球科学进展,20(9): 1041-1045.
    孙汉董,许云龙,姜北.2001.香茶菜属植物二萜化合物.北京:科学出版社. 133-147.
    孙焱鑫,林启美,赵小蓉.2003.三种纤毛虫对土壤微生物量和有效氮磷含量的影响.生态学报,23(6):1230-1233.
    汤敏燕,汪洪武,孙凌峰.1997.具有抗肿瘤活性的天然萜类化合物.林产化学与工业,17(2):73-79.
    土壤动物研究方法手册编写组.1998.北京:中国林业出版社,67.
    王瀚,丁兰,刘国安,杨东娟,孙坤.2005.拟缺香茶菜二萜成分及细胞毒活性研究.西北师范大学学报(自然科学版),41(6):54-57.
    王丽,鲁志松,丁书茂,杨旭.2006.四膜虫彗星实验在环境水质检测中的应用环境科学与技术,29(5):31-33.
    王梅,许恒龙,陶振铖等.2003.海洋纤毛虫实验生态学研究Ⅰ:不同浓度葡萄糖对种群增长的影响.应用与环境生物学报,9(6):627-630.
    徐润林,白庆笙.1993.纤毛虫世代时间与个体大小的关系.中山大学学报(自然科学版), 32:247-251.
    徐润林,莫燕.2001.垃圾渗滤液浇灌对红壤原生动物群落的影响.应用与环境生物学报,7(1):41-44.
    徐润林,孙逸湘.2000.大鹏半岛土壤纤毛虫的群落特点.应用生态学报,11(3):428-430.
    许恒龙,王梅,朱明壮,宋微波.2004.海洋纤毛虫实验生态学研究Ⅲ:纤毛虫摄食胁迫弧菌(Vibrio sp.)种群增长的影响.应用与环境生物学报,10(1): 75-78.
    杨兵等,1997.柄叶香茶菜二萜成分研究.应用与环境生物学报. 3(1):79-81.
    杨春英,李娜. 2007.培养液及其浓度和pH值对草履虫种群增长的影响,微生物学杂志,27 (4):70-72.
    杨东娟,马瑞君,王莱,孙坤,丁兰,王瀚.2005.维西香茶菜化学成分的研究.西北师范大学学报(自然科学版),41(4):59-61.
    杨纪珂,孙长鸣,汤旦林. 1983.应用生物统计学.北京:科学出版社. 303-334.
    余世金,梅梅.2007.不同温度、pH值对草履虫Logistic增长实验效应的影响.安庆师范学院学报(自然科学版),13(2):71-73.
    俞婷,缪炜,万明亮等.2005.镉和铜对嗜热四膜虫金属硫蛋白基因的诱导表达.动物学报,51(6):1115-1121.
    张春芬,李建美,辛勤等.1998.泰山内折香茶菜的药理研究.山东医药工业,17(4):30-31.
    张绍丽,马洪钢,宋微波.2001a.海洋纤毛虫巨大拟阿脑虫的实验生态学研究:初始密度及食物对其种群生长的影响.海洋与湖沼,32(6):641-646.
    张绍丽,马洪钢,宋微波.2001b.海洋纤毛虫——巨大拟阿脑虫的实验生态学研究Ⅲ.pH对种群生长的影响.应用与环境生物学报,7(3):244-247.
    张绍丽,马洪钢,许恒龙,宋微波.2001c.海洋纤毛虫——巨大拟阿脑虫的实验生态学研究Ⅴ.捕食竞争对种群生长的影响.生态学报,21(12):2039-2044.
    张绍丽,宋微波.2000.海洋纤毛虫——巨大拟阿脑虫的实验生态学研究Ⅱ:温度及盐度对其种群生长的影响.应用与环境生物学报,6(3):227-231.
    张元桐,沙东旭,沙明等. 1991.高效液相色法测定蓝萼香茶菜菜叶中蓝萼甲素的含量.中国药学杂志,16(11):679-680.
    钟硕宇,肖克明,曾秋初.1993.香茶菜甲素共沉淀对大鼠小肠吸收的研究.中草药,24(8):420-422.
    周可新,许木启,曹宏,宁应之.2003.土壤原生动物在环境监测中的应用.动物学杂志,38(1):80-84.
    周启星,王美娥.2006.土壤生态毒理学研究进展与展望.生态毒理学报,1(1): 1-11.
    周学敏,许美娟,郭越伟等. 1991.香茶菜中甲素的反相HPLC法测定.中草药,22(10):448-449.
    周永欣,章宗涉. 1989.水生生物毒性试验方法.北京:农业出版社.1-156.
    邹涛,宁应之,李晓鸿等. 2008.白水江自然保护区土壤纤毛虫群落特点.西北师范大学学报(自然科学版),44(2): 87-91.
    Acosta-Mercado D., Lynn. D. H., 2002. A preliminary assessment of spatial patterns of soil ciliate diversity in two subtropical forests in Puerto Rico and its implications for designing an appropriate sampling approach.J. Soil Biol & Bioch, 34: 1517-1520.
    Aescht E., Foissner W.,1993.Effects of organically enriched magnesite fertilizers on the soil ciliates of a spruce forest..J .Pedobiologia, 37 (6) : 321~335.
    Al - Chalabi K.A.A, Al - Khayat B.H.A. 1989.The effects of lindane on nuleic acid, protein and carbohydrate content in Tetrahymena pyriformis Environ. Pollut., 57:281-287.
    Bamadad M, Reader S, Croliere C A.et al.. 1997. Uptake and efflux of polycyclic aromatic hydrocarbons by Tetrahymena pyriformis evidence for a resistance mechanism. Cytometry, 28:170-175.
    Bamforth S. S., 1991. Enumeration of soil ciliate active forms and cysts by a direct count method.Agric Ecosys Environ., 34: 209-212.
    Bamforth S. S., 1995.Interpreting soil ciliate biodiversity. Plant Soil., 170:159-164.
    Bamforth S. S., 2001.Proportions of active ciliate taxa in soils. J.Biol Fertil Soil., 33: 197-203.
    Bearden A P and Schultz T W. 1997.Structure - toxicity relationships for Pimephales and Tetrahymena : a mechanism of action approach. Environ. Toxicol. Chem, 16(6):1311-1317.
    Bearden A.P. , Gregory B W and Schultz T W. 1997. Population growth kinetics Tetrahymena pyriformis exposed to selected nonpolar narcotics. Arch. Environ. Contam. Toxicol, 33:401 - 406.
    Bearden A.P. , Sinks G.D , Schultz T.W. 1999. Acclimation to sublethal exposure to a model nonpolar narcotic: population growth kinetics and membtane lipid alterations in Tet rahymena pyriformis. Aquatic. Toxicol, 46:11-21.
    Bearden A.P. , Gregory B W, Schultz T. W et al. 1997. Growth kinetics of preexposed and naive populations of Tetrahymena pyriformis to 2-decanone and acetone. Ecotoxicol. Environ. Saf., 37: 245 - 250
    Berthold A. and Foissner W.,1993.Singh`s dilution culture method is inappropriate for estimating individual numbers of active soil ciliates.J.Protozool, 40: 17A (Abstract98).
    Bonkowski M., 2002. Protozoa and plant growth: trophic links and mutualism. Eur J Protistol, 37:363-365.
    Bonkowski M., 2004. Protozoa and plant growth: the microbial loop in soil revisited. New Phytologist, 162:617-631.
    Bowers N.J. and Pratt J.R., Beeson D.,Lenis M.,1995.Comparative evaluation of soil toxicity using lettuce seeds and soi ciliates.Environ.Toxicol.Chem., 16: 207-213.
    Bowers N.J.,Kroll, T.,Pratt J.R.,1997.Phylogengraphy of cosmopolitanly distributed soil ciliates: pattern or chaos? 10th Int. Congr. Protozool, Sydney, Programme and (Abstracts56):428-430.
    Brandy N.C. 1974.The Nature and Properties of Soils(Eight edition).New York:Macmillan.
    Brown S 2002. Aspects of soil protozoa on a grassland farm. Protistology.37:359-360.
    Buchbauer G et al. 1990. Biological effect of diterpenes. Pharm. Unserer. Zeit., 19(1): 28.
    Campbell C.D, Warren A, Cameron C. M, Hope S.J. , 1997. Direct toxicity assessment of two soils amended with sewage sludge contaminated with heavy metals using a protozoan (Colpoda steinii) bioassay. Chemosphere, 34:501-514.
    Clarholm M. 2005. Soil protozoa: an under-researched microbial group gaining momentum. Soil Biology & Biochemistry, 37: 811-817.
    Corliss J.O..1975. Three centuries of protozoology: a brief tribute to its founding father, A.van Leeuwenhoek of Delft.J.Protozool., 22: 3-7.
    Coiliss J.O. .1979. The Ciliated Protozoa.Characterization, Classification and Guide to the Literature. 2nd ed. Pergamon Press: Oxford and Frankfurt. 455.
    Co?teaux M. M., Palkal. . 1988. A direct counting method for soil ciliates. Soil Biol. Biochem., 20: 7-10.
    Couteaux M.M.,Raubuch M.,Berg M.. 1998. Response of protozoan and microbial communities in various coniferous forest soils after transfer to forests with different levels of atmospheric pollution.Biol Fertil Soils, 27: 179~188.
    Darbyshire J. F., Davidson M.S., Chapman S.J., Ritchie S.. 1994. Excretion of nitrogen and phosphorus by the soil ciliates Colpoda steinii when fed the soil bacterium.Arthrobacter sp. Soil Biol.Biochem., 26: 1193-1195.
    Díaz et al. . 2006. Evaluation of heavy metal acute toxicity and bioaccumulation in soil ciliated protozoa. Environment International., 32:711-717.
    Epstein S.S., Saporoschetz I. B., Huntner S. H., 1967. Toxicity of antioxidants to Tetrahymena pyriformis. Protozool, 14(2):238-244.
    Fernández-Galiano D., 1976. Silver impregnation of ciliated protozoa: procedure yielding good results with the pyridinated silver carbonate method. Trans. Am. Microsc Soc., 95:557–60.
    Fenchel T., 1968.The ecology of marine microbenthos III.the reproductive potential of ciliates.Ophelia., 5:123-136.
    Finlay B.J., 1977. The dependence of reproductive rate on cell size and temperature infreshwater ciliated protozoa.Oecologia (Berl.), 30:75-81.
    Finlay B J. Fenchel T., 2001. Protozoan, community structure in a fractal soil environment.Protist, 152:203-218.
    Foissner W., 1987. Soil Protozoa: Fundamental problems, ecological significance, ada ptations in ciliates and testaceans,bioindicators,and guide to the Literature.J. Progress in protistology, 2: 69-212.
    Foissner W.,1991.Basic light and scanning electron microscopic methods for taxonomic studies of ciliated protozoa.Europ.J.Protistol, 27: 30-313.
    Foissner W., 1992. Estimating the species richness of soil protozoa using the“non-flooded petri dish method”.In:Lee JJ,Soldo AT. Protocols in Protozoology. Lawrence:Allen Press. B-10.1-B-10.2
    Foissner W., 1994. Soil protozoa as bioindicators in ecosystems under human influence. In: Darbyshire J. F. ed. Soil Protozoa.England: CAB International Wallingford Oxon. 147-193.
    Foissner W., 1995a. Tropical soil protozoan diversity:the ciliates (Protozoa, Ciliophora) of a giant pancake,Etosha in Namibia (Southwest Africa).Europ.J. Protiszol., 31:426.
    Foissner W., 1995b. Tropical protozoan diversity: 80 ciliates (Protozoa, Ciliophora) in a soil samole from a tropical dry forest of Costa Rica,with descriptions of four new genera and seven new species. Arch.Protistenk, 145:37-79.
    Foissner W., 1996a. Terrestrial ciliates (Protozoa, Ciliophora) from two islands (Gough, Narion) in the southern oceans, with description of two new species, Arcuospathidium cooperi and Oxytricha ottoni.Biol.Fertil.Soils, 23: 91-282.
    Foissner W., 1996b. Faunistics, taxanomy and ecology of mossand soil ciliates (Protzoa, Ciliophora) from Antarctica, with description of new species, including Pleuroplitoides smithi gen.n.sp.n.Acta Protoool, 35: 95-123.
    Foissner W., 1997a. An updated list of described soil ciliates, with notes on their ecology and distribution of new species. Europ. J. Protistol.
    Foissner W., 1997b. Global soil ciliate (Protozoa, Ciliophora) diversity: a probability-based approach using large sample collections from Africa, Australia and Antarctica. Biodiversity and Conservation, 6: 1627-1638.
    Foissner W., 1997c. Protozoa as bioindicators in agroecosystems, with emphasis on farming practices, biocides, and biodiversity. Agriculture ecosystems and Environment, 62:93-103.
    Foissner W., 1997d. Soil ciliates (Protozoa, Ciliophora) from evergreen rain forests of Australia, South America, and Costa Rica: diversity and description of new species. Biol. Fertil.Soil, 25: 317-33.
    Foissner W., 1998. An updated compilation of world soil ciliates (Protozoa, Ciliophora) , with ecological notes new records, and description of new species. Europ .Protistol, 34: 195-235.
    Foissner W., 1999a. Notes on the soil ciliate biota (Protozoa, Ciliophora) from the shimba Hills in Kenya (Africa): diversity and description of three new genera and ten new species. Biodiv Conserv, 8: 319-389.
    Foissner W., 1999b. Soil protozoa as bioindicators: pros and cons, methods, diversity,representative examples.J. Agric Ecosyst Environ, 74: 95-112.
    Foissner W., Agatha S., Berger H., 2002. Soil ciliates (Protozoa, Ciliophora) from Namibia (Southwest Africa), with emphasis on two contrasting environments, the Etosha Region and the Namib Desert. Denisia, 5:1-1459.
    Foissner W., Berger H. , Xu K.et al., 2005. A huge, undescribed soil ciliate(Protozoa:ciliophora) diversity in natural forest stands of Central Europe. Biodiv. Conserv., 14:617-701.
    Fokin S. I.., Ossipov D. V., 1981.Generative nucleus control over cell vegetative functions in parameciuml.J. Acta Protozool, 19: 5l-73.
    Forge T. A., Berrow M.L., Darbyshire J. F., and Warren A., 1993. Protozoan bioassays of soil amended with sewage sludge and heavy metals,sing the common soil ciliate Colpoda steinii.J. Biol. Fertil. Soils, 16 (4) : 282-286.
    Fujita E et al..1973. Terpenoids XXIV, isolation of isodonal and epinodosin from Isodon japonicus and structure elucidation of sodopinin and epinodosinol , novel diterpenoids of the same plant. Chem. Pharm. Bull., 21: 1357.
    Fujita E et al.. 1972. Terpenoids XX, the structure and absolute configuration of lasiokaurin and lasiodonic new diterpenoid from Isodon lasicapus (Hoyata) Kudo. Chem. Pharm. Bull., 20 (8): 1752.
    Fyda J., Wiackowski K., 1998. Benefits and costs of predator-induced morphological changes in the ciliate Colpidium kleini (Protzoa, ciliophora). Europ J Protistol, 34: 118-123.
    Geike F. 1978. Effects of hexachlorobenzene ( HCB) on the activity of some enzymes from Tetrahymena pyriformis. Bull. Environ. Contam. Toxicol, 20(5):640-646.
    Griffiths B.S., 2002. Spatial distribution of soil protozoa in an upland grassland. Eur. J. Protistol, 37:371-373.
    Griffiths B.S., Ritz K., 1988. A technique to extract, enumerate and measure protozoa from mineral soils. Soil Biol. Biochem, 20:163-173.
    Gupta V.V.S.R.,Rogers S., Naidu R., 1998. Effects of secondary treated sewage effluent application on the populations of microfauna in a hardwood plantation soil: Bolivar HIAT trial. Geodenna, 84:249-263.
    Gutiérrez J.C., Martín-González A., 2002. Ciliate encystment–excystment cycle: a response to environmental stress. In: Gutiérrez J.C., editor. Microbial development under environment stress. India: Research Signpost .29-49.
    Gutiérrez J.C., Martín-González A., Díaz S. et al., 2003. Ciliates as a potential source of cellular and molecular biomarkers / biosensors for heavy metal pollution. Eur. J. Protistol, 39:461-467.
    Gutiérrez J.C., Martín-González A., Díaz S., Ortega R., Amaro F., Gallego A., et al.. 2004. Heavy metal bioaccumulation and metallothioneins in ciliates: implications for their use as whole-cell and molecular biosensors. Curr. Trends Microbiol, 1:51-8.
    Janssen M.P.M., Oosterhoff C., Heijmans G.J.S.M, Van der Voet H., 1995. The toxicity of metal salts and the population growth of the ciliate Colpoda cucculus. Bull Environ Contam Toxicol, 54:597-605.
    Lee J.J.,Leedale G.F.,Bradbury P., 2000. An Illustrated Guide to the Protozoa.2nd Edition.Lawrence:Allen Press Inc.
    Madoni P.,Davoli D.,Gorbi G., 1994. Acute toxicity of lead, cromium and other heavy metals to ciliates from activated sludge plants. Bull Environ Contam Toxicol, 53:420-5.
    Martín-González A., Borniquel S., Díaz S. et al., 2005. Ultrastructural alterations in ciliated protozoa under heavy metal exposure. Cell Biol Int, 29:119-26
    Moradas F.P,Costa V.,Guerreiro P., et al., 1992. Heat shock effect on glutathione and superoxide dismutase in Tetrahymena pyriformis. Cell Biol.Int .Rep., 16 (1):19-26.
    Noever D.A, Matsos H.C, Cronise R.J et al., 1998. Computerized in vitro test for chemical toxicity based on Tet rahymena. Adiv. Anim. Altern. Saf . Efficacy Test, 387 - 397.
    Odum E.P., 1981. Stress Effects on Natural Ecosystems.Gary W.Barrett & Rutger Rosenberg.. John Wiley & Sons Ltd. 43-47.
    Persoone G., Dive D., 1978. Toxicity tests on ciliates. Ecotoxicol Environ Saf , 2 (2): 105-114.
    Piccinni E.,Irato P.,Coppellotti O. et al., 1987.Biochemical and ultrastructural data on Tetrahymena pyriformis treated with copper and cadmium. J . Cell Sci. 88:283-293.
    Piccinni E,Staudenmann W,Albergoni V et al., 1994. Purification and primary structure of metallothioneins induced by cadmium in the protists Tetrahymena pigmentosa. and Tetrahymena pyriformis. Eur. J .Biochem, 226(3):853-859.
    Pratt J.R, Mochan D, Xu Z., 1997. Rapid toxicity estimation using soil ciliates: sensitivity and bioavailability. Bull Environ Contam Toxicol, 58:387-393.
    Robers.D.M. and Coauston, H., 1988. Silver nitrate impregnation of ciliated protozoa. Arch. Protistenk., 135:299-318.
    Salvado H.,Gracia M.P.and Amigo J.M., 1995.Capability of ciliated protozoa as Indicators of effluent quality in activated sludge plants.Wat.Res., 29:1041-1050.
    Silvia Diaz,Ana Martin-Gonzalez,Juan Carlos Gutierrez. 2006. Evaluation of heavy metal acute toxicity and bioaccumulation in soil ciliated protozoa. Environment International, 3(4):1-7.
    Stout J.D., 1962. An estimation of microfaunal population in soils and forest litter. J.Soil Sci., 13:314-320.
    Surak J.G., Sxhifanella A.V. 1979.The toxicity of alpha - tomatine to Tetrahymena pyriformis. Food Cosmet. Toxicol., 17(1):61-67.
    Taylor W.D., Berger J., 1975. Growth of Colpidium campylum in monoxenic batch culture. Can J Zool., 54: 392-398.
    Twagilimana L , Bohatier J , Groliere C A , et al., 1998. A new lowcost microbiotest with the Protozoan spirostomum teres : culture conditions and assessment of sensitivity of the ciliate to 14 pure chemicals. Ecotoxicol Environ Saf , 41(3):231-244.
    Xu Z., Bowers N., Pratt J.R., 1997. Variation in morphology, ecology and toxicological responses of Colpoda inflata (Stokes) collected from five biogeographic realms. Eur J Protistol, 33:136-144.
    Wilbert N., 1975. Eine verbesserte Technik der Protargolimpragnation für Ciliaten. Mikrokosmos, 6: 171-179.