苦参生物碱的分离纯化与苦参碱对体外培养PC-3M的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物碱作为我国传统中药苦参(Sophora flavescens Ait.)的主要有效成份,具有广泛而显著的药理活性,特别是其抗癌作用备受关注,而因业内企业受当前技术水平所限,使得这类药物不断增长的社会需求难以得到满足。本文在综合分析了已有的各种生物碱的提取分离方法的基础上,确定了一套以低成本,高效率为目标的提取分离过程技术研究方案,并从提取、总生物碱分离到主要单体生物碱的分离纯化进行了详细的实验研究,主要研究内容如下:
     1、提取分离以分析检测为先行,故本文首先探讨了适宜本物系进行定性定量分析生物碱含量的薄层色分析条件,选用了相对环境友好型清洁试剂代替了传统的毒性较高的苯C6H6和甲醇CH3OH等混合展开剂,并在前人的研究基础上以二次回归正交旋转组合设计优化了展开剂配比,选定预分离的4种主要生物碱中差别最小的槐果碱SC和苦参碱MAT的Rf值差值为目标函数,采用统计软件SAS9.0进行统计分析,从而确定能够得到最佳分离效果的展开剂配比为:乙酸乙酯/无水乙醇/氨水=5.2/0.7/0.7。通过验证实验得出优化后的Rf值差值为0.079。如此优化建立起来的薄层色检测体系简捷、精确、稳定、对环境相对友好,并且可以作为柱色的先导,能够预试摸索出柱色的洗脱条件。
     2、在生物碱的浸提过程中,以同样的统计学方法优化了苦参中生物碱的提取工艺:以苦参生物碱的提取率为评价指标,利用薄层色检测生物碱的含量,选定原料粒度、浸取液pH值、料液比、渗漉流速这四个主要影响因素为考察对象,在单因素实验的基础上采用四因素五水平的二次回归正交旋转组合设计,并以SAS9.0软件进行数据分析,建立了苦参生物碱的提取率与各影响因子的回归方程,得出最优的提取条件为:以pH1.81的稀HCl水溶液浸润68-84目的苦参12h后,以3.37mL·min-1的流速进行渗漉,收集5.35倍料液比的渗漉液。在此条件下总碱提取率为94%。
     3、在生物碱总碱的分离过程中,以可见分光光度法检测了等电点法除蛋白质的效果,并考察了不同浓度的醋酸铅应用于去除苦参渗漉液中的黄酮、蛋白质、氨基酸、有机酸、鞣质等杂质成分的沉淀效果,而后选用萃取法使生物碱总碱成分得以进一步分离。结果表明:1000g苦参经4000ml pH2的稀HCl浸提后,应用等电点法去除蛋白质成分后调节pH7,以浓度为0.050mg·ml-1的醋酸铅沉淀杂质成分,离心后调节溶液pH8.7以去除残余的铅离子,再经CHCl3萃取后最终得到了透明无色的生物碱总碱溶液,其中含SC 0.2242g,MAT 0.4818g,SRI 0.1242g,OMT 2.4995g。
     4、在生物碱单体的分离过程中,借用薄层色的分析条件,以硅胶柱层析法进行单体生物碱的分离,最终得到了纯度达99.99%以上的4种主要生物碱SC 223.5mg,MAT 479.9mg,SRI 123.8mg和OMT 2483.7mg。
     最后,为拓宽其中最具代表性的生物碱MAT的应用领域,探索了MAT对于体外培养人前列腺癌细胞PC-3M的影响,以期为前列腺癌的治疗及开发新药提供参考:
     以MTT法检测了不同浓度0.3g·L-1、0.5g·L-1、0.8g·L-1、1.0g·L-1、1.5g·L-1、2.0g·L-1、2.5g·L-1、3.0g·L-1、3.5g·L-1的MAT对PC-3M作用不同时间24h,48h,72h,96h的细胞抑制率。结果显示,MAT对PC-3M的抑制作用呈量—效关系和时—效关系,随着作用时间的延长和药物浓度的增加,PC-3M的存活率逐步降低。
As a main active constituent of traditional Chinese medicine herb, alkaloids possess many kinds of biological activities and could cure cancers. But applied circumscription of medicine is confined by technology, which makes this kind of medicine can not meet the increasing need of society. This article designed a low cost and high efficient technology in extraction and separation based on the comprehensive analysis of extant alkaloids’extraction and separation. Then we carried on detailed research and experiment from the extraction, separation of the main alkaloids to the separation and purification of the main individual alkaloid. The main research contents are as follow:
     1. Detection is essential for abstraction and extraction. Hence condition of thin-layer chromatography in test must be optimizated first. In the detection, less toxic reagent was selected to make instead of more toxic one and the match of developers was optimized according to quadratic regression rotational combinatorial design with SAS9.0. The results showed that the optimal chromatographic condition is EAc/C2H5OH/NH3·H2O=5.2/0.7/0.7. Condition of thin-layer chromatography optimizated is simple, exact and less toxic. It can provide some reference for column chromatography.
     2. Effects of crush size, acidity of extracts, percolate speed, and solid-solvent ratio on extraction yields of alkaloids in Sophora flavescens Ait. And they were detected separately. Based on the above results, a quadratic regression rotational combinatorial design was applied to establish a regression model and to estimate the optimal conditions for maximal extraction yield. The results showed that the optimal extraction conditions were infiltrated Sophora flavescens Ait. of 68-84 meshs 12h with pH 1.81 Hydrochloric Acid, then percolated with the speed of 3.37mL·min-1 and collected 5.35 times percolate liquid. Based on the best extraction conditions, the extraction rate reached 94% through the verification experiment.
     3. Solution was adjusted to the isoelectric point to remove proteins, and sediment effects of different density of plumbi acetas to remove dopant, which includes anthoxanthin, protein, amino acids, polysaccharides, organic acid and tannin, were investigated. At last, we used CHCl3 to separate alkaloids from other components. After efference, solution was adjusted below pH 8.7 to make the remnant plumbum ion removed, meanwhile could educe alkaloids, and benefit its transfer from lye to CHCl3.
     4. Alkaloids were segregated into monomeric component with gel silica column chromatography. At last, we abtained 4 kinds, which are SC 223.5mg, MAT 479.9mg, SRI 123.8mg and OMT 2483.7mg respectively.
     Eventually, the effect of Matrine on human carcinoma of prostate cell strain PC-3M in vitro has been detected, which meets the demand of clinical medication and could provide some references for MAT served as a new medicine.
     In MTT test, PC-3M were treated with 0.3g·L-1, 0.5g·L-1, 0.8g·L-1, 1.0g·L-1, 1.5g·L-1, 2.0g·L-1, 2.5g·L-1, 3.0g·L-1, 3.5g·L-1 MAT, and cultured for 24h, 48h, 72h and 96h respectively. The result showed a linear relationship of effect and affeced time and a linear relationship of effect and concentration. Survival rate gradually decreased with prolonged affeced time and increased concentrations.
引文
[1]丁景和.药用植物学.上海:上海科学技术出版社,1990:149
    [2]江苏新医学院编.中药大辞典(上册).上海:上海科学技术出版社,1986:1283
    [3] Subhuti D. SOPHORA. http: // www. itmonline. org/ arts/ sophora. htm.
    [4] Subhuti D. Oriental perspectives on cancer and its treatment. http: // www. itmonline. org/ arts/ sophora. htm
    [5] Yamazaki M. The Pharmacological Studies on Matrine and Oxymatrine. YAKUGAKU ZASSHI. 2000,120(10):1025~1033
    [6] Subhuti D. Garlic as the central herb theraby for AIDS. http: // www. rdi. gpo. or. th/ Netzine/ V3N42/ hiv. htm
    [7]蒋莲芳,蒋亚生.苦参药理研究进展.时珍国医国药,2000,11(3):278~279
    [8]郑永权,姚建仁.苦参化学成分及农业应用研究概况.农药科学与管理,2000,21(1):24~26
    [9]张玉军.苦参的近代药理及临床研究进展.中华医学实践杂志,2005,4(7):697~699
    [10]梁生旺.生物碱类成分分析.北京:学苑出版社,1999:1
    [11]赵慧娟,孙文基.苦参中黄酮类化合物的化学成分及药理研究进展.中药材,2005,28(3):247~251
    [12]王秀坤,李家实.苦参挥发油成分的研究.中国中药杂志,1994,19(9):552~553
    [13]王秀坤,李家实.苦参中脂肪酸成分的研究.中药材,1994,17(3):34~35
    [14]杨治平,吕定刚.苦参的化学成分与药理作用研究进展.桂林医学,2000,3:92~94
    [15]张俊华,赵玉英.苦参化学成分的研究.中国中药杂志,2000,25(1):37~39
    [16]秦建平,蒋纪恺,张彦,等.苦参对K562红白血病细胞系诱导分化作用.重庆医科大学学报,1994,19(12):151
    [17]张永清,黄高昇,王哲,等.苦参碱对K562细胞增殖及凋亡相关分子表达的影响.中国医学科学院学报,2001,23(4):333~336
    [18]张彦,蒋纪恺,刘小珊,等.苦参碱诱导K562白血病细胞分化和凋亡的实验研究.癌症,2000,19(8):756~758
    [19]司维柯,尚桃元,康格非.苦参碱对人肝癌细胞HepG2的细胞形态影响和相关增殖因素的变化.第三军医大学学报,2000,22(6):553~556
    [20]张百红,岳红云,李新民.苦参碱对胃癌细胞SGC-7901 Bcl-2表达的影响.中国肿瘤临床与康复,2000,7(3):34
    [21] Lidenboin L,Diamond R,Rothernberg E,et al. Apoptosis induced by serum deprivation of bcl-2 cells is not preceded by growth arrest and can occur at each phase of the cell cycle. Cancer Res,1995,55(6):1242
    [22] Tamura A,Yuik. Age-dependent reduction of Bcl-2 expression in peripheral T cells of lpr gld mutant mice. J Immunol,1995,155(1):499
    [23]黄曙,李洁,朱建立,等.吗特灵治疗中晚期胃癌的临床观察.中国中西医结合杂志,1997,17(6):364
    [24] Jiang M C,Chen H,Zhang M,et al. Matrine inhibiting the proliferation of human HT 1080 cell line in vitro. Acta Academiae Medicinae CPAPF,2002,11(2):71~73
    [25]邓惠,罗焕敏,黄丰,等.苦参碱对U251胶质瘤细胞的增殖抑制和原癌基因表达的影响.中国药理学通报,2004,20(8):893~896
    [26]申志华,揭伟,陈锦,等.苦参碱对鼻咽癌细胞CNE1-GL增殖及转移相关能力的影响.实用癌症杂志,2008,23(2):126~134
    [27]种铁,牛建强,王子明,等.苦参碱抑制人肾癌细胞系GRC-1细胞株增殖和促凋亡的实验研究.中西医结合学报,2006,4(4):388~391
    [28]钟声,徐永健,张珍祥.苦参碱对肺腺癌A549细胞CC10 mRNA表达的影响.实用医学杂志,2006,22(10):1103~1105
    [29]李丹,张蔚,李福敏,等.苦参碱对宫颈癌HeLa细胞的作用.武汉大学学报(医学版),2008,29(1):28~31
    [30]凌丹,李力,黎丹戎,等.苦参碱对卵巢癌细胞生长及其尿型纤溶酶原激活因子和抑制因子表达的影响.广西医科大学学报,2007,24(4):497~500
    [31]张金廷,崔慧先,李庆星,等.苦参碱对KB细胞及其多药耐药细胞KBv200的凋亡诱导作用.华西口腔医学杂志,2005,23(3):254~257
    [32]周炳刚,孙靖中,苏刚,等.苦参碱诱导人乳腺癌细胞MCF-7/ADR的凋亡研究.中华实验外科杂志,2003,20(6):515~516
    [33]黄建,陈康杰,张卧,等.苦参碱抑制人大肠癌HT29细胞增殖及诱导凋亡作用与机制.中草药,2007,38(8):1210~1214
    [34]侯武卫,徐玉生,苗金红,等.苦参碱诱导胰腺癌细胞凋亡的实验研究.医药论坛杂志,2007,28(5):20~21
    [35]卢晓江.中药提取工艺与设备.北京:化学工业出版社,2004:37~38
    [36] Ortega M G,Agnese A M,Cabrera J L. Anti eholinesterase activity in an alkaloid extract of Huperzia saururus. Pytomedicine,2004,11:539~543
    [37]秦学功,元英进.苦豆子种子中生物碱的冷浸提取实验研究.中草药,2001,32,7:604~606
    [38]龙德清,丁宗庆,谢茂军.酸性醇回流法提取魔芋中的总生物碱研究.食品科学,2003,24(7):87~89
    [39]杨翓,钱捷,郝青春.清热通淋栓中黄连提取工艺的考察.北京中医药大学学报,2004,27(6):56~57
    [40]严伟,李淑芬,田松江.超声波协助提取技术.化工进展,2002,21(9):649~651
    [41]郭孝武.一种提取中草药化学成分的方法—超声提取法.天然产物研究与开发,1999,11(3):37
    [42]王艳,张铁军.微波萃取技术在中药有效成分提取中的应用.中草药,2005,36(3):470~473
    [43] Zhang F,Chen B. Optimization and omparison of different extraction techniques for sanguinarine and chelerythrine in fruits of Macleayacordata(Wind)R. Br.. Separation and Purification Technology,2005,42(3):283~290
    [44]陈路林.生物酶解技术用于中药水提液分离纯化研究.中国药学会学术年会,北京:2001
    [45]马桔云.纤维素酶在黄连提取工艺中的应用.中草药,2000,31(2):103
    [46]于喜水,姜颖,赵晶岩,等.纤维素酶在黄连提取工艺中的应用.中草药,2000,31(2):103~104
    [47]陈耀祖,陈绍缓.中药现代化研究的化学法导论.北京:科学出版杜,2003:11~12
    [48]齐景伟,关红,乌云,等.苦参生物碱的提取分离及抗寄生虫作用的研究.畜牧与饲料科学,2003,3:5~7
    [49]卢艳花.中药有效成分提取分离技术.北京:化学工业出版社,2007,9:12~13
    [50]张国安,朱元龙.右旋儿茶素的提取新工艺.中华人民共和国国家知识产权局,1985
    [51]王思宏,金香淑,姚艳红,等.野生和栽培高山红景天的核磁共振指纹图的研究.延边大学学报(自然科学版),2001,27(4):274~276
    [52]郭安.苦参碱和氧化苦参碱提取纯化工艺研究.西南林学院学报,2006,26(2):37~39
    [53]史作清,施荣富,王春红,等.树脂吸附法在中药有效成分提取中的应用.中草药,2001,32(7):660
    [54]米靖宇,宋纯清.大孔吸附树脂在中草药研究中的应用进展.中草药,2001,23(12):914~917
    [55]杨明利,周乐,冉晓娅,等.大孔吸附树脂分离苦参中氧化苦参碱的研究.西北农林科技大学学报(自然科学版),2006,11(34):129~133
    [56]崔九成.氧化苦参碱的提取分离工艺研究.陕西中医学院学报,2000,23(5):51~52
    [57]刘茉娥.膜分离技术.北京:化学工业出版社,1998:1~2
    [58]姜忠义,吴洪.膜技术在中药有效部位和有效成分提取分离中的应用.离子交换与吸附,2002,18(2):185~192
    [59]彭国平,郭立玮,徐丽华,等.超滤技术应用对中药成分的影响.南京中医药大学学报,2002,18(6):339~341
    [60]高红宁,郭立玮,金万勤.陶瓷膜微滤技术澄清苦参水提液的研究.水处理技术,2002,28(2):108~109
    [61]李卫民,金波,冯毅凡.中药现代化与超临界流体萃取技术.北京:中国医药科技出版社,2002,95~96
    [62]朱自强.超临界流体技术原理和应用.北京:化学工业出版社,2000:18~20
    [63] Ling J Y,Zhang G Y,Cui Z J,et al. Super critical fluid extraction of quinolizidine alkaloids from Sophora flavescens Ait. And purification by high-speed counter-current chromatography. J Chromatogr A,2007,1145(1~2):123~127
    [64]张立伟,毛建明,杨频.超临界二氧化碳流体萃取中药苦参的生物总碱.化学研究与应用,2003,15(1):129~130
    [65]刘耀驰,项伟中,徐伟箭.分子印迹技术在固相萃取中的应用与展望.化工学报,2004,55(10):1602~1606
    [66]黄晓冬,邹汉法,毛希琴,等.原位分子印迹毛细管电色柱的制备及其对非对映异构体的分离.色,2002,20(5):436~438
    [67] Lai J P,He X W,Jiang Y,et al. Preparative separation and determination of matrine from the Chinese medicinal plant Sophora flavescens Ait. by molecularly imprinted solid-phase extraction. Anal Bioanal Chem,2003,375(2):264~269
    [68]卢艳花.中药有效成分提取分离技术.北京:化学工业出版社,2005:32~33
    [69] Yong J W,Qing S,Zhao Q Z,et al. Determination of quinolizidine alkaloids in Sophora flavescens and its preparation using capillary electrophoresis. Biomedical Chromatography,2005,20(5):446~450
    [70]李建萍,邸丽芝,许和.粉防己中非酚性生物碱的提取与分离.中草药,2002,33(5):407
    [71]胡艳丽,郭丽,贾晓红.苦参总碱分离纯化方法的研究.食品科学,2007,28(1):32~36
    [72]周慧,祝经平,马竹卿.苦参碱胶囊的初步稳定性实验.中草药,2000,22(7):527~528
    [73]黄梦娴.三蛇胆川贝糖浆中总生物碱含量测定.广西医学,2001,23(4):757~759
    [74]庞志功,汪宝琪,王翔,等.用荧光猝灭法测定苦参碱和氧化苦参碱.药物分析杂志,1998,18(6):378
    [75]章育中,张淑蓉,崔建芳.苦参及其制剂中生物碱的薄层分离和含量测定.药学学报,1981,4(16):283~287
    [76]张尧明,万立琼,郭济贤.薄层光密度法测定山豆根中苦参碱和氧化苦参碱的含量.现代应用药学,1994,l1(1):38~40
    [77]田娟,王智民,王维皓. HPLC测定苦参药材中苦参碱和氧化苦参碱的含量.中国实验方剂学杂志,2006,12(2):23
    [78] Yamamoto K,Arimoto K,Iwata Y,et a1. Analysis of matrine,matrine N-Oxide and sophocarpine N-Oxide in sophora root“kushen”. Nat Med,1994,48(3):180
    [79]王青虎,包明兰,高玉峰,等.气相色法测定查干—汤中苦参碱的含量.中国民族民间医药杂志,2004,69(4):232~234
    [80]秦学功,元英进.高效薄层色分离苦豆子生物碱的体系优化.中草药,2002,33(6):513~514
    [81]杨德.试验设计与分析.北京:中国农业出版社,2002,239~241
    [82]唐启义,冯明光. DPS数据处理系统—实验设计、统计分析及模型优化.北京:科学出版社,2006,264~265