坡耕地中耕开沟筑垱联合作业机的试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黑龙江省是我国最主要的粮食生产基地之一,但春季、夏初经常发生不同程度的干旱,特别是西部的大庆、齐齐哈尔地区和西南部的松嫩平原地区尤为突出。常年干旱已经严重的制约了黑龙江省农业的可持续发展。而黑龙江省的耕地又多为坡耕地,分布在东部和西部,集中在6~9月份的降雨多以暴雨的形式出现,在地表形成径流,因此极易造成侵蚀,严重的水土流失也已成为制约黑龙江省农业的可持续发展的又一个重要因素。因此,采取正确合理的耕作方法,并配合相应农机具进行高效率的作业以减小水土流失并节水保田势在必行。
     本课题主要针对黑龙江省西部半干旱坡耕地的春旱和雨季到来之前时易产生田间径流的问题,提出了一种节水保土的新的耕作方法——中耕开沟成垱联合作业。根据农艺要求,设计了相应作业的机具——中耕开沟筑垱联合作业机,旨在实现节水保土的可持续发展农艺。本课题主要从以下几个方面进行研究:
     1、首先,进行了中耕开沟成垱联合作业机具的设计工作,完成了各部件——机架、传动系统、开沟成垱铲、控制系统、中耕部件以及限深部件的设计。在传动系统的设计中,突破了传统的设计方法,采用MATLAB的数学建模设计技术,首先建立起所需机构的数学模型,再将理想的运动轨迹微分化,通过迭代轨迹的坐标逆推计算出各杆件的长度。通过CATIA的实体造型和运动仿真功能设计仿真出传动系统各构件最佳的空间位置和几何形状。采用继电器控制机具进行间歇作业,控制电路的成本较低、工作较可靠,达到了机、电、液的结合。最后对整个机构的提升力进行了计算。
     2、为保证机具能实现农艺的要求,进行了开沟筑垱作业的试验研究,分别以开沟深度、铲板宽度和作业速度等条件为试验因素,所开沟穴和形成土垱的理论尺寸作为试验指标,采用正交试验方法,使用极差分析和方差分析法分析确定各因素对各指标影响的主次顺序,并选取各因素的最优组合,得到结论:当开沟深度为100mm,铲板宽度为350mm,作业速度在3.0km/h左右时的开沟成垱作业效果较佳。
     3、应用电测法,对开沟成垱部件和整个机具在不同作业速度下受力的情况进行测试,经试验研究得出以下结论;
     (1)对开沟成垱部件:作业速度在2.5~3km/h区间时,开沟成垱作业阻力随着作业速度的增加而增大;而作业速度在3~3.5km/h区间时,开沟成垱作业阻力随着作业速度的增加而减小,作业速度为3km/h时作业阻力最大,为313.03N;作业速度为3.5km/h时作业阻力最小,为214.00 N。
     (2)对于机具:作业速度在2.5~3.5km/h区间内,机具的耕作阻力随着作业速度的增大而减小,作业速度为2.5km/h时作业阻力最大,为9962.9N;作业速度为3.5km/h时作业阻力最小,为6872.9N。
     4、进行开沟成垱部件的计算机辅助分析(CAE)研究。本文根据开沟成垱铲以及机架的受载特点,基于ANSYS软件分别对其进行有限元分析。
Heilongjiang province is one of the main food production bases in China. It often occurs drought in different degree in spring and summer, especially the western area of daqing, Qiqihar and songnen plain region of southwest. Drought has serious restriction throughout the sustainable development of agriculture in Heilongjiang province. There are lot of slope in the east and west in Heilongjiang province. Rainfall forces on from June to September which makes runoff. Soil erosion restricts the sustainable development of agriculture in Heilongjiang province is another important factors. So, taking the reasonable cultivation method and using the farming tools is imperative.
     For solving this problem we introduce a new cultivating method– cultivator, ditching and ridging. Precipitation has been used effectively through saving rainfall and reducing surface runoff. A new machine has been designed for this cultivating method. This subject researched mainly from following several aspects:
     1、Firstly, design of intertillage weeding furrowing and furrow diking machine has been done, which include frame, driven system, controlling system, intertillage part, and limits the deep cellular. Mathematical modeling has been used with MATLAB for transmission systems design, which broken down the traditional design method. First link mechanism model is made. Then the tracking formulations are cauculated. Finally each length of links are calculated according to iteration of tracking. To optimize the driven system through 3D modeling and kinematics simulation based on CATIA. Machine is controlling by relay, which has low price and reliable work. The machine combines electricity and liquid. Finally, the calculating of lifting capacity was done.
     2、In order to meet the requirement of agronomic, Experimental study of working effect has been done. The depth of ditching, the width of shovel plate and the speed of tractors are chose as factors. The struction of ditching and ridge are chose as target. The orthogonal experiment, extreme difference analysis and variance analysis are used to makes data processing.: the work results is more better when the depth of ditching is 100mm, the width of shovel plate is 350mm and the speed of tractors is 3.0km/h.
     3、Experimental study of cultivation resistance was done and the conclusion is following:
     (1)To the work component: when the speeds are in the range of 2.5 to 3km/h, the cultivation resistance increases with the speed increasing. When the speeds are in the range of 3.0 to 3.5km/h, the cultivation resistance decreases with the speed increasing.Cultivation resistance is 313.03N which is the largest when the speed is 3km/h.Cultivation resistance is 214.0N which is the least when the speed is 3.5km/h.
     (2) To the machine: when the speeds are in the range of 2.5 to 3.5km/h, the cultivation resistance decreases with the speed increasing. Cultivation resistance is 9962.9N which is the largest when the speed is 2.5km/h.Cultivation resistance is 6872.9N which is the least when the speed is 3.5km/h.
     4、Computer-aided analysis to the key component has been done. The three dimensional finite element analyses with the ANSYS software to the key component and frame have been done according to the force characteristic.
引文
ANSYS公司. 2000.ANSYS建模与分网手册.北京:ANSYS公司.
    ANSYS公司. 2000.ANSYS基本过程手册.北京:ANSYS公司.
    成大先. 2004.机械设计手册[M].北京:化学工业出版社. 01.
    戴娟,汪大鹤,陈蕾. 2003.电测应力实验中应变片的粘贴技巧[J].湖南工程学院学报, 13(3):55~57.
    邓志党,李科,胡喜仁等.2006.CATIA V5R15机械设计高级应用实例[M] .北京:机械工业出版社.6
    丁志成,邵维民. 1983.农机测试技术[M]农业出版社. 06.
    范建荣,潘庆宾. 2002.东北典型黑土区水土流失危害及防治措施[R].水土保持科技情报.
    范建荣,潘庆宾. 2002.东北典型黑土区水土流失危害及防治措施[N].水土保持科技情报. 7.
    甘露,孙大明.2008.1FFSL-5型浅翻深松翻转犁的设计与试验[J]农机化研究.5:35~39
    高秀华,王智明,王继新.2004.工程分析及电子养鸡模拟[M].北京:化学工业出版社.
    郭新荣,谷谒白. 1999.全方位深松部件牵引阻力的分析[J].山西师范大学学报.13(4):31~35.
    郭仁生.2006.机械工程设计分析和MATLAB应用[M].北京:机械工业出版社.
    贾洪雷,马成林,刘昭.2007.北方旱作农业区蓄水保墒耕作模式研究[J].农业机械学报.38(12):25~27
    贾素梅,王进朝,张西群.2008.机械化振动深松技术[J].农机使用与维修.4:112~113
    康鲁杰,杨继红. 2004.电阻应变片的选用[J] .衡器. 06.
    李明镐,蒋虎. 2007.振动深松在改土保墒技术中的应用[J].黑龙江水利科技. 4.
    李鹏,黄晴. 2008.测量中应变片的误差分析[J] .企业家天地. 06.
    李卫民,杨红义,王宏祥. 2007.ANSYS工程结构使用案例分析[M].化学工业出版社. 09.
    刘玉涛,王宇先,赵德春.2008.黑龙江省西部半干旱地区防旱抗旱综合技术对策[J].吉林农业科学. 33(2):60~62.
    路琴,孟凡光. 2005.坡耕地耕作技术在水土保持中的作用[J].现代化农业,(7):26.
    马耀光. 2004.旱地农业节水技术[M].北京:化学工业出版社.
    齐占庆.2004.机床电气控制技术[M].北京:机械工业出版社.
    乔欣欣、杨育红、孙靖峰. 2001.黑土坡耕地水土保持田间措施的选择[J],黑龙江省水利科技,(1):93-94.
    盛选禹,盛选军.2008.CATIA V5运动和力学分析实例教程[M].北京:化学工业出版社.
    沈昌蒲,温锦涛,李英. 2006.关于抢救黑土地的建议[J].资源环境年.6:62.
    沈昌蒲,尹嘉峰. 1995.国内外研究垄作区田的情况[J].水土保持科技情报(02)
    栗延令,张学雷. 2007.振动深松技术改土增产应用效果[J].水利科技与经济
    孙桓,陈作模.2000.机械原理[M].北京:高等教育出版社.
    孙彦君,司振江等. 2006.新型保护性耕作蓄水保墒联合耕整地机械的研发[J].水利水电技术. 37(12):43~46.
    王俊,李爽,于明. 2007.试论东北黑土区坡耕地治理政策和办法[J].水土保持应用术. (2):44~45.
    王沫然.2001.MATLAB6.0与科学计算[M].北京:电子工业出版社.
    王秀珍.邱立春. 2006.1HS-1.2中耕深松机对土壤含水量影响的试验研究[J].农机化研究
    巍巍. 2004.MATLAB应用数学工具箱技术手册[M]].国防工业出版社.
    许一飞.1997.国外农业高效用水的研究应用及发展趋势[J].节水灌溉,4:30~33.
    颜重光.2007.电阻应变片的粘贴技术[J] .华东电子仪器厂.
    袁志发,周静芋.2006.试验设计与分析[M].北京:高等教育出版社.
    杨金斗. 1994.鼠道犁初探[J] .水利电力机械.
    杨黎明.1996.机械零件设计手册[M].北京:工业出版社.
    杨文文,张学培,王洪英.2005.东北黑土区坡耕地水土流失及防治技术研究进展[J].水土保持研究.12(5):232~234.
    尹大庆,冯江,刘立意.2003. 1QD-3型垄向区田筑垱机的研制[J].农机化研究.1(1):95~97.
    张朝晖,李树奎. 2008.ANSYS11.0有限元分析理论与工程应用[M].电子工业出版社. 03.
    张正斌,段子渊,徐萍. 2008.解决中国干旱缺水问题和发展区域现代农业方略探讨[EB/OL].
    中国科学院论坛http://www.cas.ac.cn/html/Dir/2008/01/04/15/55/01.htm,01~04.
    张忠学,曾赛星. 2005.东北半干旱抗旱灌溉区节水农业理论与实践[M] .中国农业出版社,:14~40
    中国农机院编著. 1990.农业机械设计手册.北京:机械工业出版社
    朱龙根. 2001.机械系统设计[M].北京:机械工业出版社.
    Al-Adawi,S.S. and Reeder,R.C. 1996.Compaction and subsoiling effects corn and soybean yields and soil properties[J].Trans of the ASAE. 39(5):1641~1649.
    Araya K. 1994.Soil failure caused by subsoilers with pressurized waterinjector[J].Journal of Agricultural Engineering Research. 58(2): 27-28.
    Dr R Manian. 2001.Development and evaluation of an active-passive tillage machine[J]. AMA,33(1):16-22.
    Harris B.L,Krishna J.H. 1989.Furrow diking to comserve moisture[J]. Soil and water comservation. (4):271~273.
    Kushwaha, R.L.and Zhang,Z.X. 1998.Evaluation of factors and current approaches related to computerized design of tillage tools:a review. Journal ofTerra.35(1):69~86
    Lomond,R.U. 2005.Agriculture development on US.DE[J].science (12):8~13
    Lyle W. M,Dixon D.R.Basin. 1997. tillage for rainfall retention[J].Trans ASAE.20:1013~1017.
    Peery.T.R. 2001. Cultivated field Protection,and agriculture development discussion[J].R.R.No91265
    Pilul JK. 1999.Wheat response and residual soil properties following subsoiling of sandy loaminesstern Montana[J].Soil&tillage Res.51:61~70.
    RosaUA,WulfsohnD.1999.Constitutive model for high speed tillage using narrow tools[J]. Terrameehanies.36:221~234.
    Weise G. 1993.Active and passive elements of a combined tillage machine: interaction, draught requirement and energy consumption[J]. Agric Engng Res, 56: 287-299 .