可调谐电磁超介质的设计及特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超介质指呈现天然材料或化合物所不具备的性质的人工合成或构造的材料。电磁超介质是通过在传统的媒质材料中嵌入某种几何结构的单元,构造出自然媒质不具有的电磁特性的人工材料。1968年,V. G. Veselago从理论上研究了介电常数ε和磁导率μ同时为负的假想介质,发现一系列奇异的电磁现象。2000年,D. R.Smith等人通过实验证明了这种电磁超介质的存在。随后,电磁超介质迅速成为国际微波、光学、电磁学和物理学界的研究热点之一,但大部分研究都是基于D. R.Smith所实现的金属共振型电磁超介质,这些电磁超介质只有固定的物理参数,不具有可调谐性。
     本学位论文在国家自然科学基金项目“可控调谐型负折射率微波材料的合成方法及特性研究”的资助下,以外加控制磁场作用时磁导率为负的天然YIG(钇铁石榴石)类绝缘型亚铁磁性材料为基体,在其中嵌入负等效介电常数的金属导体线阵列,合成了一种可调谐电磁超介质,并对这种可调谐电磁超介质的电磁作用机理、传输特性、折射特性等进行了深入研究。主要研究工作以及取得的研究成果如下:
     1.改进有效媒质理论,更准确地分析了可调谐电磁超介质的电磁作用机理;完善了在外加控制磁场的作用时,以绝缘型亚铁磁性材料为基体,并在其中嵌入金属导体线阵列构成可调谐电磁超介质的理论体系。
     2.利用全电磁波仿真程序模拟了外加磁场下,电磁波在嵌入了金属导体线阵列的绝缘型亚铁磁性材料YIG中的传播特性和折射特性。仿真结果表明只要选择适当参数,在YIG中嵌入周期金属细导体线阵列结构设计电磁超介质的方法在理论上是正确可行的。完成了内嵌金属导体线阵列的YIG类绝缘型亚铁磁性材料中“电磁场—静态磁场—基体材料—金属导体线阵列”之间的互作用效应的定性分析与数值仿真。
     3.设计了一整套传输实验方案,改进了实验设备,找到了可行的传输实验样品制作方法,完成了可调谐电磁超介质的传输特性的实验验证。在金属导体阵列等效介电常数为负的特定频段,通过调整外加磁场使绝缘型亚铁磁性材料基体等效磁导率同时为负,观察到了可调谐电磁超介质的双负传输特性,传输通带中心能受外加磁场调控。
     4.设计了一整套折射实验方案,改进了实验设备,找到了可行的折射实验样品制作方法,完成了可调谐电磁超介质的折射特性的实验验证。在金属导体阵列等效介电常数为负的特定频段,通过调整外加磁场使绝缘型亚铁磁性材料基体等效磁导率同时为负,记录了不同频率电磁波在可调谐电磁超介质和空气的分界面上的折射角,在微波波段观察到了可调谐电磁超介质的负折射现象。
Metamaterial refers to a composite or structured material that exhibits propertiesnot found in naturally occurring materials or compounds. Electromagneticmetamaterials are constructed by embedding some material units in traditional media,and have the electromagnetic properties not included in natural media. In1968, V. G.Veselago theoretically researched the imaginary media with negative permittivity ε andnegative permeability μ simultaneously, and found a series of strange electromagneticphenomena. In2000, D. R. Smith et al. proved the existence of electromagneticmetamaterial by experiment. The electromagnetic metamaterial quickly became one ofthe international research focuses of microwave, optical, electromagnetic, and physicsresearch. However, most studies were based on the principle of D. R. Smith’sexperiment. These metamaterials had only fixed physical parameters, and had not thetunability.
     The research work of this dissertation is supported by the National Natural ScienceFoundation of China “The composed method and characteristic research on tunablenegative refractive index microwave materials”. A tunable metamaterial is composed byincorporating periodic metallic wire array into YIG (Yttrium Iron Garnet) applied byexternal magnetic field. In-depth study was carried out for this tunable electromagneticmedium over the electromagnetic mechanism, transmission characteristic, and refractioncharacteristic. The main research activities and innovative achievements gained are asthe following:
     1. The effective medium theory is improved, and the tunable metamaterial’selectromagnetic mechanism is analysed more accurately. The theoretical system oftunable metamaterial composed by incorporating periodic metallic wire array intoyttrium iron garnet applied by external magnetic field is derived.
     2. The full-wave electromagnetic simulation program is used to simulate thepropagation and refraction features of electromagnetic wave in the composite medium,which is designed by incorporating periodic metallic wire array into yttrium iron garnetunder external electromagnetic field. Simulation results show that as long as the appropriate parameters are selected, the design method of metamaterial by embeddingin YIG with a periodic array of metal conductors will be theoretically correct andfeasible. Qualitative analysis and numerical simulation of the interaction effect between"electromagnetic field-static magnetic field-base material-metal conductors array" inthe tunable metamaterial composed by incorporating periodic metallic wire array intoyttrium iron garnet applied by external magnetic field are completed.
     3. A set of transfer experiment program is designed, the experimental equipment isimproved, a viable method of making the sample is found, and the experimentalverification of electromagnetic wave transmission characteristic of the tunablemetamaterial is completed. In the specific frequency band where the equivalentdielectric constant of metal conductors array is negative, by adjusting the externalmagnetic field to make the equivalent permeability of YIG simultaneously negative,double negative transmission propertie of the tunable electromagnetic medium isobserved. The transmission passband center can be regulated by the magnetic field.
     4. A set of refraction experiment program is designed, the experimental equipmentis improved, a viable method of making the refraction experiment sample is found, andthe experimental verification of electromagnetic wave refraction characteristic of thetunable metamaterial is completed. In the specific frequency band where the equivalentdielectric constant of array of metal conductors is negative, by adjusting the externalmagnetic field to make the equivalent permeability of yttrium iron garnetsimultaneously negative, the angle of refraction on the interface of the air and thetunable metamaterial at different frequencies is recorded, and negative refractionphenomenon of the tunable metamaterial in the microwave band is observed.
引文
[1] V. G. Veselago. The electrodynamics of substances with simultaneously negative values of εand μ. Sov. Phys. Uspekhi,1968,10(4):509-514
    [2] J. B. Pendry, A. J. Holden, D. J. Robbins, et al. Low frequency plasmons in thin-wirestructures. J. Phys.: Condens. Matter,1998,10:4785-4809
    [3] J. B. Pendry, A. J. Holden, D. J. Robbins, et al. Magnetism from conductors and enhancednonlinear phenomena. IEEE T. Microw. Theory,1999,47(11):2075-2084
    [4] D. R. Smith, W. J. Padilla, D. C. Vier, et al. Composite medium with simultaneously negativepermeability and permittivity. Phys. Rev. Lett.,2000,84(18):4184-4187
    [5]徐新河.二维传输线媒质成像特性研究.成都:电子科技大学,2009,1-11
    [6] J. B. Pendry. Negative refraction makes a perfect lens. Phys. Rev. Lett.,2000,85(18):3966-3969
    [7] J. B. Pendry, S. A. Ramakrishna. Near-field lenses in two dimensions. J. Phys.: Condens.Matter,2002,14:8463-8479
    [8] F. Goos, H. H nchen. Ein neuer und fundamentaler versuch zur totalreflexion. Ann. Phys.,1947,1:333-346
    [9] D. M. Pozar. Microwave Engineering. Second Edition, John Wiley&Sons,1997,41-42
    [10] H. K. V. Lotsch. Beam displacement at total reflection: the Goos-H nchen effect. I. Opt.,1970,32:116-137
    [11] A. Lakhtakia. Positive and negative Goos-H nchen shifts and negative phase-velocitymediums (alias left-handed materials). Int. J. Electron. Commun.,2004,58(3):229-231
    [12] S. A. Ramakrishna. Physics of negative refractive index materials. Rep. on Prog. Phys.,2005,68:449-521
    [13] S. Shui, M. Qiu. Doppler effects in a left-handed material: A first-principles theoretical study.Microw. Opt. Technol. Lett.,2005,47(1):76-79
    [14] P. A. Cerenkov. Visible radiation produced by electrons moving in a medium with velocitiesexceeding that of light. Phys. Rev.,1937,52:378-379
    [15]崔万照,马伟,邱乐德,等.电磁超介质及其应用.北京:国防工业出版社,2008,4-15
    [16] L. I. Mandelshtam. Lectures on some problems of the theory of oscillations. Acad. Sci.,1904,1:473-479
    [17] D. V. Sivukhin. The energy of electromagnetic fields in dispersive. Opt. Spek,1957,3:308-312
    [18] G. D. Malyuzhinets. A note on the radiation principle. Zh. Tekh. Fiz.,1951,21:940-942
    [19] R. A. Silin. Optical properties of artificial dielectrics. Izv. Vuz. Rad.,1972,15:809-820
    [20] J. B. Pendry, A. J. Holden, W. J. Stewart, et al. Extremely low frequency plasmons in metallicmesostrures. Phys. Rev. Lett.,1996,76(25):4773-4776
    [21] D. R. Smith, W. J. Padilla, D. C. Vier, et al. Composite medium with simultaneously negativepermeability and permittivity. Phys. Rev. Lett.,2000,84(18):4184-4187
    [22] A. Shelby, D. R. Smith, S. Schultz. Experimental verification of a negative index ofrefraction. Science,2001,292(6):77-79
    [23] P. M. Valanju, R. M. Walser, A. P. Valanju. Wave refraction in negative-index media: Alwayspositive and very inhomogeneous. Phys. Rev. Lett.,2002,88(18):187401:1-4
    [24] N. Carcia, M. N. Vesperinas. Left-handed materials do not make a perfact lens. Phys. Rev.Lett.,2002,88(20):207403:1-4
    [25] J. A. Kong, B. I. Wu, Y. Zhang. A unique lateral displacement of a gaussian beam transmittedthrough a slab with negative permittivity and permeability. Microw. Opt. Technol. Lett.,2002,33(2):136-139
    [26] J. B. Pendry, D. R. Smith. Comment on ‘wave refraction in negative-index media: alwayspositive and very inhomogeneous’. Phys. Rev. Lett.,2003,90(2):029303
    [27] R. W. Ziolkowski. Design, fabrication, and testing of double negative metamaterials. IEEE T.Antenn. and Propag.,2003,51(7):1516-1528
    [28] A. L. Pokrovsky, A. L. Efros. Electrodynamics of metallic photonic crystals and the problemof left-handed materials. Phys. Rev. Lett.,2002,89(9):093901:1-4
    [29] A. Lakhtakia. Positive and negative Goos-H nchen shifts and negative phase-velocitymediums (alias left-handed materials). Int. J. Electron. Commun.,2004,58(3):229-231
    [30] R. W. Ziolkowski. Plused and CW gaussian beam interactions with double negativemetamaterial slabs. Opt. Express,2003,11(7):662-681.
    [31] J. Pacheco, T. M. Grzegorczyk, B. I. Wu, et al. Power propagation in homogeneous isotropicfrequency-dispersive left-handed media. Phys. Rev. Lett.,2002,89(25):257401:1-4
    [32] C. G. Parazzoli, R. B. Greegor, K. Li, et al. Experimental verification and simulation ofnegative index of refraction using snell’s law. Phys. Rev. Lett.,2003,90(10):107401:1-4
    [33] R. Marques, D. R. Smith. Comment on ‘electrodynamics of metallic photonic crystals and theproblem of left-handed materials’. Phys. Rev. Lett.,2004,92(5):059401
    [34] I. V. Lindell, S. A. Tretyakov, K. I. Nikoskinen, et al. BW media-media with negativeparameters, capable of supporting backward waves. Microw. Opt. Technol. Lett.,2001,31(2):129-133
    [35] J. A. Kong, B. I. Wu, Y. Zhang. A unique lateral displacement of a gaussian beam transmittedthrough a slab with negative permittivity and permeability. Microw. Opt. Technol. Lett.,2002,33(2):136-139
    [36] S. Foteinopoulou, E. N. Economou, C. M. Soukoulis. Refraction in media with a negativerefractive index. Phys. Rev. Lett.,2003,90:107402
    [37] D. R. Smith, D. Schurig, J. B. Pendry. Negative refraction of modulated electromagneticwaves. App. Phys. Lett.,2002,81(15):2713-2715
    [38] M. W. McCall, A. Lakhtakia, W. S. Weiglhofer. The negative index of refractiondemystified.Eur. J. Phys.,2002,23:353-359
    [39] A. K. Iyer, G. V. Eleftheriades. Negative refractive index metamaterials supporting2-D waves.2002IEEE MTT-S International Microwave Symposium, vol.2:412-415
    [40] P. Mark s, C. M. Soukoulis. Numerical studies of left-handed materials and arrays of splitring resonators. Phys. Rev. E,2002,65:036622:1-8
    [41] R. Marqués, F. Median, R. R. Idrissi. Role of bianisotropy in negative permeability andleft-handed metamaterials. Phys. Rev. B,2002,65:144440:1-6
    [42] T. Q. Li, G. J. Wen, Y. J. Huang, et al. Experimental device of tunable left hand material.2009International Conference on Applied Superconductivity and Electromagnetic Devices,2009,108-111
    [43] M. Gokkavas, K. Guven, R. S. Penciu, et al. Experimental demonstration of a left-handedmetamaterial operating at100GHz. Phys. Rev. B,2006,73(19):193103:1-4
    [44] H. Chen, L. Ran, J. A. Kong, et al. Left-handed materials composed of only S-shapedresonators. Phys. Rev. E,2004,70(5):057605:1-4
    [45] K. W. Eccleston. Application of left-handed media in distributed amplifiers. Microw. Opt.Technol. Lett.,2005,44(6):527-530
    [46] H. J. Zhao, J. Zhou, Q. Zhao, et al. Magnetotunable left-handed material consisting of yttriumiron garnet slab and metallic wires. Appl. Phys. Lett.,2007,91:131107:1-3
    [47] Y. J. Huang, G. J. Wen, T. Q. Li, et al. Left handed metamaterial with ε=-ε0and μ=-μ0andsome applications.2009International Conference on Applied Superconductivity andElectromagnetic Devices,2009,119-122.
    [48] Y. J. Huang, G. J. Wen, T. Q. Li, et al. Tunneling effect in ferrites based left handedmetamaterial.2009International Conference on Applied Superconductivity andElectromagnetic Devices,2009,123-126.
    [49] G. V. Eleftheriades, A. K. Iyer, P. C. Kremer. Planar negative refractive index media usingperiodically L-C loaded transmission lines. IEEE T. Microw. Theory,2002,50(12):2702-2712
    [50] C. Caloz, T. Itoh. Application of the transmission line theory of left-handed (LH) materials tothe realization of a microstrip LH transmission line.2002IEEE Antennas and PropagationSociety International Symposium, vol.2:412-415
    [51] C. Caloz, T. Itoh. Transmission line approach of left-handed (LH) structures and microstriprealization of a low-loss broadband LH filter. IEEE T. Antenn. Propag.,2004,52(5):1159-1166
    [52] A. A. Oliner. A periodic-structure negative-refractive-index medium without resonantelements.2002IEEE-APS/URSI International Symposium Digest, Vol.1:41-43
    [53] A. A. Oliner. A planar negative-refractive-index medium without resonant elements.2003IEEE MTT-S International Microwave Symposium Digest, Vol.1:191-194
    [54] A. K. Iyer, P. C. Kremer, G. V. Eleftheriades. Experimental and theoretical verification offocusing in a large, periodically loaded transmission line negative refractive indexmetamaterial. Opt. Express,2003,11(7):696-708
    [55] D. Felbacq, G. Bouchitte. Theory of mesoscopic magnetism in photonic crystals. Phys. Rev.Lett.,2005,94(18):183902:1-4
    [56] M. Notomi. Theory of light propagation in strongly modulated photonic crystals:refractionlike behavior in the vicinity of the photonic band gap. Phys. Rev. B,2000,62(16):10696-10705
    [57] P. V. Parimi, W. T. Lu, J. S. Derov, et al. Negative refraction and left-handedelectromagnetism in microwave photonic crystals. Phys. Rev. Lett.,2004,92(12):127401:1-4
    [58] Chiyan Luo, Steven G. Johnson, J. D. Joannopoulos. All-angle negative refraction in athree-dimensionally periodic photonic crystal. Appl. Phys. Lett.,2002,81(13):2352-2354
    [59] C. Luo, S. G. Johnson, J. B. Pendry, et al. Subwavelength imaging in photonic crystals. Phys.Rev. B,2003,68(4):045115:1-15
    [60] S. Colladey, A. Tarot, P. Pouliguen, et al. Use of electromagnetic band gap materials for RCSreduction. Microw. Opt. Techn. Lett.,2005,44(6):546-550.
    [61] S. Enoch, G. Tayeb, P. Sabouroux, et al. A metamaterial for directive emission. Phys. Rev.Lett.,2002,89(18):213902:1-4
    [62] A. Berrier, M. Mulot, A. Talneau, et al. Negative refraction at infrared wavelengths in atwo-dimensional photonic crystal. Phys. Rev. Lett.,2004,93(7):073902:1-4
    [63] C. Monzon, P. Loschialpo, D. Smith, et al. Three-dimensional focusing of broadbandmicrowave beams by a layered photonic structure. Phys. Rev. Lett.,2006,96(20):207402:1-4
    [64] E. Schonbrun, T. Yamashita, W. Park, et al. Negative-index imaging by an index-matchedphotonic crystal slab. Phys. Rev. B,2006,73(19):195117:1-6
    [65] P. A. Belov, Y. Hao. Subwavelength imaging at optical frequencies using a transmissiondevice formed by a periodic metal-dielectric structure operating in the canalization regime.Phys. Rev. B,2006,73(11):113110:1-4
    [66] D. R. Smith, D. C. Vier, T. Koschny, et al. Electromagnetic parameter retrieval frominhomogeneous metamaterials. Phys. Rev. E,2005,71:036617-1-11
    [67] A. T. Ishikawa, T. K. Tanaka, S. Kawata. Negative Magnetic Permeability in the VisibleRegion. Phys. Rev. Lett.,2005,95(23):237401:1-4
    [68] C. Enkrich, M. Wegener, S. Linden, et al. Magnetic metamaterials at telecommunication andvisible frequencies. Phys. Rev. Lett.,2005,95(20):203901:1-4
    [69] N. Katsarakis, T. Koschny, M. Kafesaki. Electric coupling to the magnetic resonance of splitring resonators. Appl. Phys. Lett.,2004,84(15):2943-2945
    [70] W. J. Padilla, C. Highstrete, R. D. Averitt. Dynamical electric and magnetic metamaterialresponse at terahertz frequencies. Phys. Rev. Lett.,2006,96(10):107401:1-4
    [71] S. O. Brien, D. McPeake, J. B. Pendry, et al. Near-infrared photonic band gaps and nonlineareffects in negative magnetic metamaterials. Phys. Rev. B,2004,69(24):241101:1-4
    [72] J. Zhou, T. Koschny, M. Kafesaki, et al. Saturation of the magnetic response of split-ringresonators at optical frequencies. Phys. Rev. Lett.,2005,95(22):223902:1-4
    [73] S. Zhang, W. Fan, N. C. Panoiu, et al. Experimental demonstration of near-infrarednegative-index metamaterials. Phys. Rev. Lett.,2005,95(13):137404:1-4
    [74] G. Shvets, Y. A. Urzhumov. Negative index meta-materials based on two-dimensionalmetallic structures. J. Opt. A: Pure Appl. Opt.,2006,8: S122-S130
    [75] H. Chen, L. Ran, J. A. Kong, et al. Metamaterial with randomized patterns for negativerefraction of electromagnetic waves. Appl. Phys. Lett.,2006,88(3):031908:1-3
    [76] J. Zhou, L. Zhang, Thomas Koschny, et al. Negative index materials using simple short wirepairs. Phys. Rev. B,2006,73(4):041101:1-4
    [77] J. Zhou, T. Koschny, L. Zhang, et al. Experimental demonstration of negative index ofrefraction. Appl. Phys. Lett.,2006,88(22):221103:1-3
    [78] L. Liu, C. Caloz, C. C. Chang, et al. Forward coupling phenomena between artificialleft-handed transmission lines. J. Appl. Phys.,2002,92(9):5560-5565
    [79] G. V. Eleftheriades, O. Siddiqui, A. K. Iyer. Transmission line models for negative refractiveindex media and associated implementations without excess resonators. IEEE Microw. Wirel.Co.,2003,13(2):51-53
    [80] G. V. Eleftheriades, O. Siddiqui, A. K. Iyer. Transmission line models for negative refractiveindex media and associated implementations without excess resonators. IEEE Microw. Wirel.Co.,2003,13(2):51-53
    [81] A. Grbic, G. V. Eleftheriades. Periodic analysis of a2-D negative refractive indextransmission line structure. IEEE T. Antenn. Propag.,2003,51(10):2604-2611
    [82] A. Grbic, G. V. Eleftheriades. Dispersion analysis of a microstripbased negative refractiveindex periodic structure. IEEE Microw. Wirel. Co.,2003,13:155-157
    [83] A. Grbic, G. V. Eleftheriades. Experimental verification of backward-wave radiation from anegative refractive metamaterial. J. Appl. Phys.,2002,92(10):5930-5935
    [84] G. V. Eleftheriades, O. F. Siddiqui. Negative refraction focusing in hyperbolictransmission-line periodic grids. IEEE T. Microw. Theory,2005,53(1):396-403
    [85] T. Kokkinos, C. D. Sarris, G. V. Eleftheriades. Periodic finite-difference time-domain analysisof loaded transmission-line negative-refractive-index metamaterials. IEEE T. Microw. Theory,2005,51(4):2297-2305
    [86] A. Grbic, G. V. Eleftheriades. Growing evanescent waves in negative-refractive-indextransmission-line media. Appl. Phys. Lett., vol.82, pp.1815-1817, Mar.2003
    [87] T. Andrade, A. Grbic, G. V. Eleftheriades.Growing evanescent waves in continuoustransmission-line grid media. IEEE Antenn. Wirel. Propag. Lett.,2003,2:186-189
    [88] A. Grbic, G. V. Eleftheriades. Subwavelength focusing using a negative-refractive-indextransmission-line lens. IEEE Antenn. Wirel. Propag. Lett.,2003,2:186-189
    [89] A. Grbic, G. V. Eleftheriades. Negative refraction, growing evanescent waves andsub-diffraction imaging in loaded transmission-line metamaterials. IEEE T. Microw. Theory,2003,51:2297-23052003
    [90] A. Grbic, G. V. Eleftheriades. Overcoming the diffraction limit with a planar left-handedtransmission-line lens. Phys. Rev. Lett.,2004,92(11):117403(1)-117403(4)
    [91] A. K. Iyer, G. V. Eleftheriades. A multilayer negative-refractive-index transmission-line(NRI-TL) metamaterial free-space lens at X-band. IEEE T. Antenn. Propag.,2007,55(10):2746-2753
    [92] A. Grbic, G. V. Eleftheriades. A generalized negative-refractive-index transmission-line(NRI-TL) metamaterial for dual-band and quad-band applications. IEEE Microw. Wirel. Co.,2007,17(6):415-417
    [93] A.Grbic, G. V. Eleftheriades. An isotropic three-dimensional negative-refractive-indextransmission-line metamaterial. J. Appl. Phys.,2005,98:043106:1-5
    [94] T. Kokkinos, R. Islam, C. D. Sarris, et al. Rigorous analysis of negative refractive indexmetamaterials using FDTD with embedded lumped elements.2004IEEE MTT-SInternational Microwave Symposium Digest,2004,3:1783-1786
    [95] E. Yablonovitch. Inhibited spontaneous emissionin solid-statephysics and electronics. Phys.Rev. Lett.,1987,58(20):2059-2061
    [96] S. John. Strong localization of photonsin certain disordered dielectric superlattice. Phys. Rev.Lett..1987,58(23):2486-2489
    [97] Chiyan Luo, Steven G. Johnson, J. B. Pendry, et al. All-angle negative refraction withoutnegative effective index. Phys. Rev. B,2002,65(20):201104(R):1-4
    [98] Chiyan Luo, Steven G. Johnson, J. B. Pendry, et al. Subwavelength imaging in photoniccrystals. Phys. Rev. B,2003,68(4):045115:1-15
    [99] P. V. Parimi, W. T. Lu, J. S. Derov, et al. Negative refraction and left-handedelectromagnetism in microwave photonic crystals. Phys. Rev. Lett.,2004,92(12):127401:1-4
    [100] S. John. Localization of light. Phys. Today.1991,44(5):32-40
    [101] D. S. Wiersma, P. Bartolini. Localization of light in a diaordered medium. Nature,1997,390(6661):671-673
    [102]贾正根.光学新技术.半导体情报,2001,38(2):24-25
    [103] K. M. Ho, C. T. Chan, C. M. Soukoulis, et al. Photonic band gaps in three dimensions: newlayer-by-layer periodic structures. Solid State Comm.,1994,89:413-416
    [104] E. Ozbay, A. Abeyta, G. Tuttle, et al. Measurement of a three-dimensional photonic band gapin a crystal structure made of dielectric rods. Phys. Rev. B,1994,50(3):1945-1948
    [105] S. Y. Lin, J. G. Fleming, D. L. Hetheriongton, et al. A three-dimensional photonic crystalsystem for intergrated optics. Nature,1998,394(6690):251-253
    [106] I. I. Tarhan, G. H. Watson. Photonic band structure of fee colloidal crystal. Phys. Rev. Lett..1996,76(2):315-318
    [107] H. B. Sun, S. Mateuo, H. Misawa. Three-dimensional photonic crystal structures achievedeith two-photon absordption photo-polymerization of resin. Appl. Phys. Lett.,1999,74:786-788
    [108] S. M. Kirkptrick, J. W. Baur, C. M. Clark, et al. Holographic recording usingtwo-photon-induced photo-polymerization. Appl. Phys. A,1999,69:461-464
    [109] G. Dewar. The applicability of ferrimagnetic hosts to nanostructured negative index ofrefraction (left-handed) materials. Proceeding of SPIE,2002,4806:156-166
    [110] G. Dewar. Minimization of losses in a structure having a negative index of refraction. New J.Phys.,2005,7:161:1-11
    [111] G. Dewar. A thin wire array and magnetic host structure with n <0. J. Appl. Phys.,2005,97:10Q101:1-3
    [112] R. X. Wu, X. K. Zhang, Z. F. Lin, et al. Possible existence of left-handed materials in metallicmagnetic thin films. J. Magn. Magn. Mater.,2004,271:180-183
    [113] R. X. Wu. Effective negative refraction index in periodic metal-ferrite-metal film composite.J. Appl. Phys.,2005,97:076105:1-4
    [114] F. J. Rachford, D. N. Armstead, V. G. Harris, et al. Simulations of ferrite-dielectric-wirecomposite negative index materials. Phys. Rev. Lett.,2007,99:057202
    [115] X. B. Cai, X. M. Zhou, G. K. Hu. Numerical study on left-handed materials made of ferriteand metallic wires. Chin. Phys. Lett.,2006,23(2):348-351
    [116]曹云建,文光俊,吴凯敏,等.一种新型负折射率微波媒质的设计与仿真模拟.科学通报,2006,51(22):2612-2617
    [117] Y. J. Cao, G. J. Wen, K. M. Wu, et al. A novel approach to design microwave medium ofnegative refractive index and simulation verification. Chinese Sci. Bull.,2007,52(4):433-439
    [118]曹云建,文光俊,吴凯敏,等.人工合成负折射率微波媒质的一种新方法.电子科技大学学报,2007,36(4):716-719
    [119] B. R. Zheng, G. J. Wen, Z. H. Shao, et al. Design of metamaterial based-on ferromagneticsubstrate. PIERS Proceedings,2008,658-662
    [120]郑博仁,文光俊,曹云建.铁氧体内嵌金属线阵宽带负折射特性研究.材料导报,2009,23(3):84-88
    [121] Y. X. He, P. He, V. G. Harris, et al. Role of ferrites in negative index metamaterials. IEEE T.Magn.,2006,42(10):2852-2854
    [122] Y. X. He, P. He, S. D. Yoon, et al. Tunable negative index metamaterials using yttrium irongarnet. J. Magn. Magn. Mater.,2007,313:187-191
    [123] H. J. Zhao, J. Zhou, Q. Zhao, et al. Magnetotunable left-handed material consisting of yttriumiron garnet slab and metallic wires. Appl. Phys. Lett.,2007,91:131107:1-3
    [124] H. J. Zhao, L. Kang, J. Zhou,et al. Experimental demonstration of tunable negative phasevelocity and negative refraction in a ferromagnetic/ferroelectric composite metamaterial.Appl. Phys. Lett.,2008,93:201106:1-3
    [125] N. Zheludev. The road ahead for metamaterials. Science,2010,328:582-583
    [126] F. Robert. Next wave of metamaterials hopes to fuel the revolution. Science,2010,327:138-138
    [127] D. M. Pozar.微波工程(,张肇仪,周乐柱,吴德明等).北京:电子工业出版社,2006,380-400
    [128]曹云建.新型负折射率微波媒质设计方法研究:[硕士学位论文].成都:电子科技大学,2007,12-30
    [129]李天倩,文光俊,谢康,等.外加恒定磁场复合微波媒质负折射率条件.电子科技大学学报,2008,37(5):689-692
    [130]杨显清,赵家升,王园.电磁场与电磁波.北京:国防工业出版社,2003,79-85
    [131]李天倩,文光俊,谢康,等.66矩阵法在周期层叠结构微波媒质分析中的应用.西华大学学报,2008,27(5):4-6
    [132] C. M. Krowne. Fourier transformed matrix method of finding propagation characteristics ofcomplex anisotropic layered media. IEEE T. Microw. Theory,1984,32:1617-1625
    [133]黄勇军.基于负折射率媒质的吸波材料设计与电磁特性研究:[硕士学位论文].成都:电子科技大学,2010,20-30
    [134] M. G. Silveirinha, C. A. Fernandes. Homogenization of3-D-connected and nonconnectedwire metamaterials. IEEE T. Microw. Theory,2005,53(4):1418-1430